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Chapter 1 Introduction

m 1.1. Getting Started

Welcome to Mathematica! To make your first experience in using this computer algebra system as easy as possible, we recom-
mend that you read this introductory chapter very carefully. We will discuss basic syntax and frequently used commands.

NOTE: You may need to obtain a computer account on your school's computer network in order to access the Mathematica
software package on computers at your campus. Check with your instructor or your school'sIT office.
m 1.1.1. First-Time Users of Mathematica 6

Launch the program Mathematica 6 on your computer. Mathematica will automatically create a new notebook (see typical
startup screen below).
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= 1.1.2. Entering and Evaluating Input Commands

Just start typing to input commands (a cell formatted as an input box will be automatically created). For example, type 3+7. To
eva uate this command or any other command(s) contained inside an input box, simultaneously press the SHIFT+ENTER keys,
i.e., the keys SHIFT and ENTER, at the same time. Be sure your mouse's cursor is positioned inside the input box or else select
the input box(es) that you want to evaluate. The kernel application, which does all the computations, will load at the first
evauation. Thisisaone-time procedure whenever Mathematica is launched and may take a few seconds depending on the speed
of your computer, so be patient.
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As can be seen from the screen shot above, a cell formatted as an output box and containing the value 10 is generated as a result
of the evaluation. To create another input box (cell), just start typing again and an input box will be inserted at the position of the
cursor (use the mouse to position the cursor where you would like to insert the new input box).

= 1.1.3. Help Menu

Mathematica provides an on-line help menu to answer many of your questions about the program. One can search for a particu-
lar command expression in the Documentation Center under this menu or else just position the cursor next to the expression (for
example Plot) and right click to select Find Selected Function or else click on Help (see screen shot below).

it Wolfram Mathematica 6.0 - [Untitled-1 *]
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Mathematica will then display a description of Plot, including examples on how to use it.
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Plat a function:

Infa]:= Plot[sin[x], {x, 0, 6Pi}]
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For only a brief description of Plot (or any other expression expr), just evaluate ?Plot (or ?expr).

= ? Pl ot

Plot[ f, {X, Xmin, Xmax}] g€Nerates a plot of f as a function of X from Xgin t0 Xmax-
Plot[{f;, f5, ...}, {X, Xmin, Xmax}] plOts several functions f,. >

m 1.2. Mathematica's Conventions for Inputting Commands

= 1.2.1. Naming

Built-in Mathematica commands, functions, constants, and other expressions begin with capital |etters, and are (for the most part)
one or more full-length English words (each word is capitalized). Furthermore, Mathematica is case sensitive; a common cause
of error isthe failure to capitalize command names. For example, Plot, Integrate, and FindRoot are valid function names. Sin,
Exp, Det, GCD, and Max are some of the standard mathematical abbreviations that are exceptions to the full-length English
word(s) rule.

User-defined functions and variables can be any mixture of uppercase and lowercase letters and numbers. However, a name
cannot begin with a number. User-defined functions may begin with a lowercase letter, but thisis not required. For example, f,
g1, myPlot, r12, sOL ution, and M ethod1 are permissible function names.

m 1.2.2. Parenthesis, Brackets, and Braces

Mathematica interprets various types of delimiters (brackets) differently. Using an incorrect type of delimiter is another common
source of error. Mathematica's bracketing conventions are as follows:

1) Parentheses, (), are used only for grouping expressions. For example, (x-y)*2, 1/(a+b), (x*3-y)/(x+3y”2) demonstrate proper
use of parentheses. Users should realize that Mathematica understands f(2) as f multiplied with 2 and not as the function f(x)
evauated at x = 2.
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2) Square brackets, [ ], are used to enclose function arguments. For example, Sqrt[346], Sin[Pi], and Simplify[(x"3-y"3)/(x-y)]
are valid uses of square brackets. Therefore, to evaluate afunction f(x) at x = 2, we can type f[2].

3) Braces or curly brackets, { }, are used for defining lists, ranges and iterators. In al cases, list elements are separated by
commas. Here are sometypical uses of braces:

{1, 4,9, 16, 25, 36}: Thislists the square of the first six positive integers;

Plot[f[x].{x,-5,5}]: The list {x,-5,5} here specifies the range of valuesfor xin plotting f;

Tablefm"3,{m,1,100}]: Thelist {m,1,100} here specifies the values of the iterator min generating a table of cube powers of the
first 100 whole numbers.

m 1.2.3. Lists

A list (or string) of elements can be defined in Mathematica as List[ey, €,...,6,] or {€1, €,...,6,}. For example, the following
command defines S= {1, 3, 5, 7, 9} to be the list (set) of the first five odd positive integers.

npe= S=List[1, 3, 5 7, 9]

oufz= {1, 3, 5, 7, 9}
To refer to the kth element in alist named expr, just evaluate expr[[k]]. For example, to refer to the fourth element in S, we
evaluate

3= S[[4]]

Out[3]= 7

It is also possible to define nested lists whose elements are themselves lists, called sublists. Each sublist contains subelements.
For example, the list T = {{1, 3, 5, 7, 9}, {2, 4, 6, 8, 10}} contains two elements, each of which isalist (first five odd and even
positive integers).

ma= T={{1, 3, 5, 7, 9}, {2, 4, 6, 8, 10}}

ou4= {{1, 3, 5, 7, 9}, {2, 4, 6, 8, 10}}
To refer to the kth subelement in the jth sublist of expr, just evaluate expr[[j,k]]. For example, to refer to the third subelement
in the second sublist of T (or 6), we evaluate

nsj= T[[2, 311

Out[5]= 6

A detailed description of how to manipulate lists (e.g., to append elementsto alist or delete elements from alist) can be found in
Mathematica's Documentation Center (under the Help menu). Search for the entry List.

m 1.2.4. Equal Signs

Here are Mathematica's rules regarding the use of equal signs:

1) A single equal sign (=) assigns avalue to a variable. Thus, entering g = 3 means that g will be assigned the value 3. If we
then evaluate 10+g” 3, Mathematica will return 37. As another example, suppose the expression y = x*3-x+1 is entered. If we
then assign a value for x, say x = 2, then in any future input containing y, Mathematica will use this value of x to calculate y,
which would be 7 in our case.

2) A colon-equal sign (:=) creates a delayed statement for an expression and can be used to define a function. For example,
typing f[x_]: = x"3-x+1 tells Mathematica to delay the assignnment of f(x) asafunction until f isevaluated at a particular value
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of x. Wewill say more about defining functionsin section 1.3 below.

3) A double-equal sign (= =) isatest of equality between two expressions. If we had previously set x = - 5, then evaluating x = =
-5 returns True, whereas evaluating x = = 5 returns False. Another common usage of = = is to solve equations, such asin
Solve[x" 3-x+1= = 0, x] (see section 1.5 below).

m 1.2.5. Referring to Previous Results

Mathematica saves all input and ouput in a session. A previous output can be referred to by using the percent sign %. A single
% refers to Mathematica's last output, % % refers to the next-to-last ouput, and so forth. The command %k refers to the output
line numbered k. For example, % 45 refers to output line number 45.

NOTE: CTRL+L reproduces the last input and CTRL+SHIFT+L reproduces the last output.

= 1.2.6. Commenting

One can insert comments on any input line. The comments should be enclosed between the delimiters (* and *). For example,

= (* This command plots the graph of two functions in different colors. =)
Pl ot [{Sin[x], Cos[x]}, {X, 0, 2Pi }, PlotStyle -> {Red, Blue}]

1.0

05+

out[6]= VA

-05F

—10-

NOTE: One can also insert comments by creating atextbox. First create an input box. Then select it and format it as Text using
the drop-down window menu.

m 1.3. Basic Calculator Operations

Mathematica uses the standard symbols +, -, *, /, ~, | for addition, subtraction, multiplication, division, raising powers
(exponents), and factorials, respectively. Multiplication can also be performed by leaving a blank space between factors. Powers
can aso be entered by using the palette menu to generate a superscript box (or else press CTRL+6) and fractions can be entered
by generating a fraction box (from palette menu or pressing CTRL+/ ).

To generate numerical output in decimal form, use the command N[expr] or N[expr,d]. In most cases, N[expr] returns six digits
of expr by default and may be in the form n.abcde = 10™ (scientific notation), whereas N[expr,d] attempts to return d digits of
expr.

NOTE: Mathematica can perform calculations to arbitrary precision and handle numbers that are arbitrarily large or small.

Here are some examples:
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In[7]:= Pi
Out[7]= 7T
ingl= N[Pi ]

outgl= 3. 14159

= N[Pi, 200]

outfo]= 3. 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348 -
25342117067982148086513282306647093844609550582231725359408128481117450284102701938521105 -
5596446229489549303820

o= 6%

out[10]= 2210708 544 304 025 665 789 890 545 869 282 983 189 550 730 342 026 817 054 484 706 923 451 925 215 263 -
872221875601412877526055033568150952983731997 599172762 855409042 386638455130114567 -
918179610415 056 135043 685865981 465821197 678 998 054 981 600 364 232 459 680 450 883 986 513 397 -
952866 100532961 319277446513 221 836 325497 685382494 082501890 188075860096 650899 943982 -
604939901 346570765022 869199 395889 789 728 382946 141484 842179531904 056612897 175359078 -
633987 736867003878781857613656893578474392372463398376238316805554810164 724551909 -

376
inf11):= 1 /300t
ou11)= 1/

306057512 216440636 035370461297 268629 388588804 173576999416 776741259476533176716 867 -
465515291422477573349939147 888701726368 864 263907 759003 154 226 842927 906 974 559 841 -
225476930271954604 008012215776 252 176 854 255 965 356 903 506 788 725 264 321 896 264 299 365 -
204576 448 830388 909 753 943 489 625436 053 225980776521 270822437 639449120128678675 368 -
305712293681 943649956 460498 166 450227 716 500 185176 546 469 340112226 034 729 724 066 333 -
258583506 870150169 794 168 850 353 752 137 554 910 289 126 407 157 154 830 282 284 937 952 636 580 -
145235233156 936 482 233 436 799 254594 095 276 820 608 062 232812 387 383 880817 049 600 000 000 -
000000 000 000 000000000000 000000000 000000000000000000000000000000000

in12):= (* This comrand returns a decinmal answer of the |ast output =)
N[%]

ouf12- 3. 267359761105326 x 10 °°

Example1.1. How closeis eV18 7o being an integer?
Solution:

3= EN (Pi % Sgrt [163])

out[13]= eVl% P

inf141:= N[%, 40]

out[14]= 2. 625374126407687439999999999992500725972 x10%

We can rewrite this output in non-scientific notation by moving the decimal point 17 places to the right. This showsthat eV 163 7
is very close to being an integer. Another option is to use the command Maod[n,m], which returns the remainder of n when

divided by m, to obtain the fractional part of eV 163 7:



Chapter 1

inf1s= Mod [%, 1]

out[15]= 0. 9999999999992500725972
nfiep= 1 -%

oufie- 7.499274028 x 103

m 1.4. Functions

There are two different ways to represent functions in Mathematica, depending on how they are to be used. Consider the
following example:

x2+x+2
X+1

Example 1.2. Enter the function f(x) = into Mathematica.

Solution:

2
Method 1: Simply assign f the expression X+—X1+2 eg.,
X+

7= Cear [f, x] (+ This clears the argunents f and x =x)
mgi= f = (X"2+x+2) /7 (x+1)

2+ X + X2
out[18]=
1+X

To evaluate f(x) at x = 10, we use the substitution command /. (slash-period) as follows:
o= f /. x => 10

112
ou[19]s ——
11

Warning: Recall that Mathematica reads f(x) asf multiplied by x.

o= f (10)
10 <2 + X + XZ)
out0)r ——m————
1+X

Method 2: An alternative way to explicitly represent f as a function of the argument x is to enter

In[21]:= d ear [f]
FIX_1:= (X"2+Xx+2)/ (x+1)

Evaluating the command f[10] now tells Mathematica to compute f at x = 10.

in23:= f [10]
112

out23]= ——
11

More generally, the command f[{a,b,c,...}] evaluates f(x) for every value of x inthelist {a,b,c,...}:
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npa= fFL{-3, -2, -1, 0, 1, 2, 3}]

1
Power::infy : Infinite expression — encountered. >
0

L 8 7
out[24]= {—4, -4, Conplexinfinity, 2, 2, x 5}

Here, Mathematica is warning us that it has encountered the undefined expression % in evaluating f(—1) by returning the
message ComplexInfinity.

2
Remark: If there is no need to attach a label to the expression X+—Xl+2 then we can directly enter this expression into
X+
Mathematica:
X2 4+ X +2
In[25))= —— /. X => 10
X+1
112
out[25]= ——
11
X2 4+X +2
In26)= — /. X -> {-3, -2, -1, 0, 1, 2, 3}
X +1

Power::infy : Infinite expression — encountered. >
0

o 8 7
out[26]= {—4, -4, ConplexInfinity, 2, 2, E E}

Piece-wise functions can be defined using the command If[cond, p, q], which evaluates p if cond is true; otherwise, q is
evaluated.
Example 1.3. Enter the following piece-wise function into Mathematica:
tan(ﬂ), if x| <1;
foo={ 4
X, if |x] =1,
Solution:

ne7i= f[x_1:=1f[Abs[x] <1, Tan[Pi *x /4], X]

m 1.5. Palettes

Mathematica allows us to enter commonly used mathematical expressions and commands from six different palettes. Palettes are
calculator pads containing buttons that can be clicked on to insert the desired expression or command into a command line.
These palettes can be found under the Palettes menu. |If the Basic Math Input Palette does not appear by default, then click on
Palettes from the menu and select BasicM athl nput.
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Untitled-1*

e ECEEE
[ L 2 L I3, L
v

JBIX] | startup patette Basic Math.[X| (x|

Iit}= 347

oupi= 10

Plot

Example 1.4. Enter S into a notebook.

24

Solution:

Here is one set of instructions for entering this expression using the Basic Math Input Palette:

a) Click on the palette button Vo .
b) Click on ~.
¢) Enter the number 3 into the highlighted top placehol der.

3

O

d) Press the TAB key to movethe cursor to the bottom placeholder.
e) Click ono”.
f) Toinsert 7 into the base position, click on the palette button for 7.

3

I(D

g) Press the TAB key to move the cursor to the superscript placeholder.
h) Enter the number 4.
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3

iad

m 1.6. Solving Equations

Mathematica has a host of built-in commands to help the user solve equations and manipulate expressions. The command
Solve[lhs == rhs, var] solves the equation Ihs == rhs (recall Mathematica's use of the double-equal sign) for the variable var.
For example, the command below solves the quadratic equation x> — 4 = 0 for x.

inegl= Sol ve[x"2 -4 =0, X]

ou28= {{X > -2}, {X->2}}

A syssem of m equations in n unknowns can be solved with the command

Solve[{lhs, ==rhs;, lhs, ==rhs,, ..., lhs, ==rhs,}, {X1, X2, ..., X,}]. In situations where exact solutions cannot be obtained

(e.g. certain polynomial equations of degree five or higher), numerical approximations can be obtained through the command
NSolve[lhs == rhs, var]. Here are two examples:

In[29]:= Sol Ve[{2X-y == 3‘ X+4y == _2].' {X, y}]
10 7

out[29]= {{x»?, y%,g}}

inz0l:= NSol ve [x"5 -x +1 =0, X]

ouaol- {{X > -1.1673}, {x - -0.181232 - 1.08395 i}, {x - -0.181232 + 1. 08395 i},
(X > 0.764884 - 0.352472 i}, {x »0.764884 +0.352472 i1}

There are many commands to algebraically manipulate expressions. Expand, Factor, Together, Apart, Cancel, Simplify,
FullSimplify, Trigexpand, TrigFactor, TrigReduce, ExpToTrig, Power Expand, and ComplexExpand.

in[31):= Factor [x"2 +4 x -21]
ou3l)= (-3 +X) (7 +X)
NOTE: These commands can also be entered from the Algebraic Manipulation Palette; highlight the expression to be manipu-

lated and click on the button corresponding to the command to be inserted. The screen shot below demonstrates how to enter the
Factor command.
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it Wolfram Mathematiea 6.0 - [Untitled-1*]
Fie Edit Insert Format Cel Graphics Evaluation Palettes Windon

B3 Untitled-1*

Expandlla]
Factor [w]
Togetherla]
Apartla]
Cancel[a]
smpify] [
Fullsmplfyra] |

Wolfr

Trigexpand[a]
o el
with Matl]  TricReduce[u]
ExpToTriglm]
wmeny  TrigToExpla]
PowerExpandfa]

B Y@ U % M 100AM

m EXxercises

1. Evaluate the following expressions:

a) 1034142076 b) &~ c) —L d) 206:10° €) What is the remainder of 1998 divided by 13?

Lt 1+ 0.99:10°®

1
1+—
@

2. Enter the following functions into Mathematica and evaluate each at x = 1.

afx=2x-6x2+x-5 b)g(x):ﬁ_i 9 hx = |[Vx - 3|
3. Evaluate the following functions using Mathematica:
a) f(x)=1001+ x*at x =25 b)1+VXx +Vx +Vx ax=n
4. Enter the following six expressions into Mathematica:
3 V80 b) %21‘_’? 9V V15
2 11y

d) /v 1087 b e)(x_3 ]_ f) M .

° 4n_§
5. Expand each of the following expressions:
a(xX+1H)(x-1 by x+y-20(2x-3)
6. Factor each of the following expressions:
ax3-2x2-3x b) 4x%° +8x¥3 + 3.6 0)6+2x-3x3-x

11

7. Simplify the following expressions using both of the commands Simplify and FullSimplify (the latter uses awider variety of

methods to simplify expressions).
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2

X244 x-12 (;—3)

q) XHax-12 b) ~X—
3x-6 1—

o) (x1-2x)"¥2+@-2x71

8. Perform the indicated operations:

1 2 1 5 6 5
a-—-=+ + b)[—— )+(—+4]
X X241 x3+x y 2y+1) \y

9. Solvethe following equations for x:

3 -x+1=0 b) x(1- 2% 2+ (1-2x 2 =0
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Chapter 2 Graphs of Functions, Limits, and Continuity

m 2.1. Plotting Graphs

Students should read Chapter 1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

m 2.1.1. Basic Plot

In this section we will discuss how to plot graphs of functions using Mathematica and how to utilize its various plot options. We
will discuss in detail several options that will be useful in our study of calculus. The basic syntax for plotting the graph of a
function y = f(x) with x ranging in value from ato b is Plot[ f, {X, a, b}]. On the other hand, Plot[{fy, fs, ..., fn}, {X, &, b}]

plotsthe graphs of f;, f,, ..., fy onthe same set of axes.
Example2.1. Plot the graph of f(x) = X2 — 3x+ 1 aongtheinterval [-2, 5].

Solution:

n@E2= Plot [x?-3x+1, {x, -2, 5}]

10fF

Out[32]=

-2 -1 r 1 2 3 4 5

Example 2.2. Plot the graph of y = cos(3 x) along the interval [—4, 4].

Solution:
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in33= Plot [Cos[3x], {Xx, -4, 4}]

OUI[S?}]: L L L L L L L L L L L L
-4 -2 . 2 4

-10+

Example 2.3. Plot the graphs of the two functions given in Examples 2.1 and 2.2 prior on the same set of axes to show their
points of intersection.

Solution:

4= Plot [{x?-3x+1, Cos[x]}, {x, -3, 6}]

out[34]=

, | | , . . | . %
I == 6
Example 2.4. Plot the graphs of f(x) = xle* Landg(x) = w on the same set of axes.

Solution:

nEsi= Plot [{(X"2+X +2) / (x+1), Sin[4x]/4}, {X, -4, 4}]

L L L
out[ssl= _, ) [ 5 4
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Note that the graph of y = (sin4x)/4 is displayed poorly in output above since its range (from -1 to 1) is too small compared to
the range of y=(x®+x+2)/(x+1). We can zoom in using the PlotRange option. The syntax for PlotRange is
PlotRange — {c, d} (the arrow is generated by entering a minus sign (-) followed by greater than sign) where [c, d] is the
interval on the y-axis to be displayed. More generaly, PlotRange —> {{a, b}, {c, d}} specifies the interval [a, b] on the x-axis
while [c, d] specifies the interval on the y-axis.

n@el= Plot [{(X*"2+Xx+1)/ (x+1), Sin[4x]/4}, {x, -4, 4}, PlotRange » {-4, 4}]

4-

out[36]= —~ . { ) . | . \ . . |
4 T I 2 4

N

Example2.5. Plot the graphs of the following functions.

a) f(x):xjf4 b)  f(X)=sinx +cosx Q)  f(x)=xe+Inx

Solution: We recall that the natural base e is entered as E or e (from the Basic Math Input Palette) and that Inx is Log[x]. Note
aso that sinx and cosx are to be entered as Sin[x] and Cos[x] (see Chapter 1 of this text for a discussion of Mathematica's
notation). We leave it to the reader to experiment with different intervals for the domain of each graph so as to capture its salient
features.

a)
2
in371:= Pl ot , {X, -5, 5}
[4 _ X2 ]

4,
Al

out[37]= -4 12 [ : 4
L
_al

b)
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inz8l= Pl ot [Sin[x] +Cos[x], {X, -2Pi, 2Pi}]

out[38]z ———+ I N
-6 - -2

c)
o= Plot [x EX -Log[x], {x, -3, 3}]
60
sof
40f
out[39]= 30§
2|

10f

NOTE: The above graph needs to be read carefully. First of al, it is clear from the graph above that f(x) = xe*— Inx tendsto oo
as xtendsto 0. Itisalso clear from the graph that f(x) tendsto co as x tendsto o Note, however, that the graph suggests
(incorrectly) that the domainis [0, o). If wezoomin on the graph near x = 0, then we see that the domain does NOT include the
point x = 0.

infa0):= Pl ot [x EAx -Log[x], {x, 0, 0.1}]

50F
45F
Out[40]=
35F

30F
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2.1.2. Plot Options

Next we will introduce various options that can be specified within the Plot command. To begin with, evaluating the command
Optiong[Plot] displaysthe following options:

In[41]:=

Out[41]=

Options [Pl ot ]

{AI i gnnent Poi nt —» Center, AspectRatio - ; Axes - True, AxeslLabel - None,
CGol denRati o

AxesOrigin - Automatic, AxesStyle - {}, Background - None, Basel i nePosition — Automati c,

BaseStyle — {}, dippingStyle - None, Col or Functi on - Aut omati c,

Col or Functi onScal i ng - True, Col or Qut put - Aut omati c, Content Sel ect abl e - Automati c,

Di spl ayFuncti on :» $Di spl ayFunction, Epilog —» {}, Eval uated - Aut onati c,

Eval uati onMoni t or - None, Excl usions —» Autonatic, ExclusionsStyle - None,

Filling - None, FillingStyle - Autonmatic, Fornmat Type > Tradi ti onal Form

Frame - Fal se, FraneLabel - None, FraneStyle - {}, FraneTi cks - Autonati c,

FrameTi cksStyle - {}, GidLines - None, GidLinesStyle - {}, | mageMargi ns - 0.,

| mmgePaddi ng -» Al |, | mageSi ze - Autonatic, Label Style » {}, MaxRecursion - Autonati c,

Mesh - None, MeshFunctions - {1 &}, MeshShadi ng - None, MeshStyl e - Autonati c,

Met hod - Aut omati c, Perfor manceGoal :» $Perfor nanceCGoal , Pl ot Label - None,

Pl ot Poi nts - Automati c, Pl ot Range » {Full, Automatic}, Pl otRanged i pping - True,

Pl ot RangePaddi ng - Aut omati ¢, Pl ot Regi on - Automatic, PlotStyle —» Autonmati c,

Preservel mageOpti ons —» Autonmatic, Prolog - {}, Regi onFunction - (True &),

Rot at eLabel — True, Ticks > Automatic, TicksStyle - {}, WirkingPrecision - Machi nePreci si on}
PlotStyle

PlotStyle is an option for Plot that specifies the style of lines or pointsto be plotted. Among other things, one can use this option
to specify a color of the graph and the thickness of the curve. PlotStyle should be followed by an arrow and then the option:
PlotStyle —» {option}. For example, if we want to plot a graph colored in red, we evaluate

In[42]:=

Out[42]=

Plot [x% {x, -3, 3}, PlotStyle ->Red]

The next example shows how to use PlotStyle to specify two styles: a color and thickness.
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inpaz= Plot [x?, {x, -3, 3}, PlotStyle -> {Blue, Thickness[0.02]}]

out[43]=

-3 -2 -1 1 2 3

PlotStyle can also be used to specify options for two or more graphs. Here are two examples to demonstrate this:

inj441:= Pl ot [{Xz, X3—X—1}, {x, -3, 3}, PlotStyle -> {Geen, YeIIOW}]

20F
15F
10F

out[44]= 5 g

-10F

nesi= Plot [{x? x®-x-1}, {x, -3, 3}, PlotStyle ->

{{Magenta, Thi ckness[0.01]1}, {Cyan, Thi ckness[0.001], Dashing[{0.01, 0.01, 0.01}] }}]
20;
15?—
10?—

Out[45]=
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= PlotRange

We have aready used the PlotRange option in Section 2.1 of this text (see Example 2.4 prior). This option specifies the range of
y-values on the graph that should be plotted. As observed in the same example in Section 2.1, some points of a graph may not be
plotted unless we specify the y-range of the plot. The option PlotRange - All includes al y-values corresponding to the
specified values of x. Hereisan example.

inj46]:= Pl ot [X5 -2x-1, {x, -5, 5}]

1000

500

oujaglz ———t—— e L —_—

-500F

~1000}

na7= Plot [x*-2x -1, {x, -5, 5}, PlotRange -> All ]
3000 F
2000 F

1000}

OUI[47]: L L | L L L |
~1000 F

~2000 F

-3000 F

= AXes
There are several options regarding axes of plots. We consider four of them.

1. Axes. The specification Axes - True draws both axes, whereas Axes —» False draws no axes and Axes—{True,False}
draws the x-axis only. An example of the last case is given below.
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nsel= Plot [ x Sin[3x], {x, -10, 10}, Axes -> {True, Fal se}]

A L)
V\/ \/\/\/

2. AxesLabdl: The default specification AxesL abel - None leaves the axes unlabeled. On the other hand, AxesL abel — expr
will only label the y-axis as expr and AxesLabel —» { "exprl", "expr2" } labels both the x-axis and y-axis as expr 1 and expr 2,
respectively. Examples of both cases are given below.

inja9:= Pl ot [x Cos[x], {X, -10, 10}, AxeslLabel ->y]

y

out[49]=

-10 - F 5 10

ins01:= Pl ot [x Cos[x], {X, -10, 10}, AxeslLabel -> {"x", "y"}]

y

Out[50]=

-10 - F 5 10

3. AxisOrigin: The option AxesOrigin specifies the location where the two axes should intersect. The default value given by
AxesOrigin - Automatic chooses the intersection point of the axes based on an internal (Mathematica) algorithm. It usually
chooses (0,0). The option AxesOrigin - {a,b} allowsthe user to specify the intersection point as (a,b).
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4. AxesStyle: This option specifies the style of the axes. Here is an example where we specify the thickness of the x-axis and
color (blue) of the y-axis. We also use the AxesOrigin option.

ins1:= Pl ot [x Cos [x], {X, -10, 10}, AxesOrigin -> {-10, 10},
AxesStyl e -> { Bl ue, Thickness[0.01]},
AxesLabel -> {"x", "y"}]

out[51]=

m Frame

There are several optionsregarding the frame (border) of a plot. We show these optionsin the following examples:

ins21:= Pl ot [x Cos[x], {X, -10, 10}, Franme -> True ]

Out[52]=
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ins3:= Pl ot [x Cos [x], {X, -10, 10}, Franme -> True,

FrameLabel -> {"The graph of y = x cos x", "y-axis", None, None}]
5L 1
@
8 o0
ous3= |
5l J
-10 -5 0 5 10

The graph of y = x cosx

ins4:= Plot [x Cos[x], {x, -10, 10}, PlotStyle » Red, Frane -> True,
FraneLabel -> {"The graph of y = x cos x", "y-axis", None, None},
FrameStyl e -> {{Bl ue, Thi ckness[0.005]},
{Yel  ow, Thi ckness[0.005]1}, {Green, Thickness[0.013]}, {Orange} }]

out[54]=

-10 -5 0 5 10
Thegraphof y=xcosx

We encourage the reader to experiment with this example by changing the color specifications to see which option controls which

edge color of the frame.

= Show

The command Show[graphics, options] displays graphics (consisting of possibly many different graphics objects) using the
options specified by options. Also Show[ plotl,plot2, ....] displaysthe graphics plotl, plot2, ... on one coordinate system.

insl= plotl =Plot [Sin[x], {x, -Pi, Pi}T];

ins6l:= plot2 =ListPlot [ {{0, 0}, {Pi /2, 1}, {Pi, 0}}, PlotStyle > {Red, PointSize[.02]}];
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n57:= Show[pl ot 1, pl ot 2]

10+

05

OU[57]z bt L 1 g L L 1 g
3 L

-05F

~10
Here is an option we can use to identify the sine curve by inserting the expression y = sinx near its graph.

ins8;:= Show[pl ot 1, pl ot 2,
Epi l og -> Text ["y=sin x", {2.7, 1}, {0, 1}]1]

10 .
L y=sinx
05
Oulfs8]= b L g 1
3 -2 -1 F 1 2 3
-051
-1.0r

= Animation

Animatefexpr, {t, a, b}] generates an animation of expr in which the parameter t varies from a to b.

Animatefexpr, {t, a, b, dt}] generates an animation of expr inwhicht variesfromato b in steps of dt.

Animatefexpr, {t, a;, @, as, ..., a8,}] generates an animation of expr in which t takes on the discrete set of values

&, @ ag, ..., @.

Animatefexpr, {t, a b}, {s, ¢, d}, ...]generatesan animation of expr in whicht variesfromatob, svariesfromctod, and
SO on.

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-
tions generated from the Animate command in this chapter. 1f you are reading the electronic version of this publication format-
ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation. Just click on the
arrow button to start the animation. To control the animation just click at various points on the sliding bar or else manually drag
the bar.

Example 2.6. Analyze the effect of the shift f(x+a), f(x)+a, f(bx) and b f(x) for various values of aand b for the fucntion
f(X) = cosx.

Solution:
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o= f [X_1: = Cos[x]

neo:= Ani mate [Pl ot [{f [x], f[x+al}, {X, -2Pi, 2Pi},
PlotStyl e - {Bl ack, Red}, PlotRange -» {-2, 2}], {a, 0, 81}]

out[60]=

Next we will animate the graphs of f(x+ a) (inred) and f(x) + a(inblue) :

ne1:= Animate[Pl ot [{f [x], f[x+a], f[x]+a}, {x, -2Pi, 2Pi},
Pl ot Styl e » {Bl ack, Red, Bl ue}, PlotRange » {-1, 5}1, {a, 0, 6}]

out[61]=

Here is the animation for the graphs of f(bx)andb f(x).

ine2):= Ani mate[
Plot [{f [x], f[b*xx], bxf[x]}, {X, -2Pi, 2Pi }, PlotStyle -» {Black, Red, Blue}], {b, 0, 81}]

out[62]=

Here is an animation that shows all four shifts at once. We can fix as many parameters as we want (just click on their pause
buttons) and analyze the behavior due to the remaining parameters.

3= Animate[Plot [{f [x], f[x+a], f[x]+b, flcx], d=*f[x]}, {x, 0, 10},
Pl ot Styl e - {Bl ack, Red, Blue, Geen, Brown, Yellow}, PlotRange -» {-5, 5}1,
{a, 0, 5}, {b, 0, 5}, {c, 0, 5}, {d, 0, 5}]

out[63]=

Example 2.7. Hereisan animated example of a graph that shows the behavior of a general quadratic polynomial as we vary its
coefficients.

Solution:

4= Ani mate[Plot [ax?+bx+c, {Xx, -3, 3}, PlotRange » {-10, 10}], {a, -3, 3}, {b, -3, 3}, {c, -3, 3}]

out[64]=

We suggest that you pause two of the parameters and vary the third one manually to see the change in the location of the zeros,
the vertex, the regions of concavity, and the regions on which the graph increases and decreases. Then make the necessary
changes to redo this problem for polynomialsof higher degree.

= Contour Plot

To end our discussion on graphics, we now consider plotting graphs of equations in two variables. Among such equations are the
famous family of eliptic curves that arise in number theory: y? = x3 + ax + b, where a and b are parameters. The command for

graphing equations implicitly in two variables x and y is Contour Plot[eqn, {x, a, b}, {y, c, d}], which displays the graph of eqn
for which x variesfrom atob and y varies from ctod.

Example 2.8. Plot the graphs of curves given by the equation y? = x3 + a x + b for various values of aand b.

Solution: First we define a function f[x, a, b] to represent the right-hand side of the equation y? = x® + ax+ b so that f isa
function of x as well as a and b. We then plot the equation y? = f[x, a, b], where we consider three different sets of values:
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a=1 b=1a=-4, b=0,anda=-3, b=3.

mesi= F[X_, a_, b_]:=x3+ax+b

ine6]:= Cont our Pl ot [y2 =f[x, 1, 11, {x, -10, 10}, {y, -10, 10}, Axes -» True, Franme -> Fal se]

10

out[ee]= —L— |
-10 -5

-10

ine7:= Cont our Pl ot [y2 =f[x, -4, 0], {x, -10, 10}, {y, -10, 10}, Axes - True, Franme -> Fal se]

10

(4]
=
o

out[67]= —L— ! [\ !

—-10+

25
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nes= ContourPlot [ y?==f [x, -3, 3], {x, -10, 10}, {y, -10, 10}, Axes - True, Frane -> Fal se]

10

-10 -5

OLJI[BS]C

-10

Discovery Exer cise: Evaluate the following table and discuss which pararemeters produce curves that are familiar.

ineo}= Tabl e[ContourPlot [y? =f [x, a, b], {x, -10, 10},
{y, -10, 10}, Axes »True, Frame ->False] , {a, -4, 4}, {b, -3, 3}];

m EXxercises

1. Plot the graphs of the following functions on the specified interval:

a fx)=x>+1on[-5,5] b) g(x) = é on [0, 4] ¢) h(x) = % on [-x, 7] d f(x=x2-5x+100n

[-5, 5] e f(x) =1+ 32-2x% on [-4, 4] f) f(x) = x+% for [-10, 10]

2. Plot the graphs of f(x) = x(x—3) (x+ 3) and g(x) = cos2 x together on the same set of axes and over the interval [—20, 20].
Use the PlotRange option to adjust the range of the viewing window so that their points of intersection are visible.

3. Plot the graphs of the following functions using at least one plot option discussed in this section.

NOTE: In x is one of the built-in Mathematica functions and is entered as Log[x]. The logarithmic function log,, x is entered as

Log[a,x]. For the natural base e you either type E or you can obtain e from the Basic Math Input Palette.
Afx=x"+2x3+1for —-3<x<3 b) f(x)=xInx for 0<x<4

c) f(x):l—i3+l for —20<x<20
X X

4. Plot the graphs of the following pairs of functions on the same axes. Use the Plot Style option to distinguish the graphs.
a) f(x) =e*and g(x) =Inx b)f(x):xz_—);andg(x)=)(2;)(5

¢) f(x= ¥*—snx and g(x)=\/x4+1 —\/x2+1
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5. Let f(x) = (- 1)*°.

a) Define f in Mathematica asit appears above and plot its graph.

b) Rewrite f as f(x) = | (x2 - 1)2 plotsits graph as it appears here.

¢) Explain why the graphs are not identical. Generalize this remark to general functions with rational exponents.

6. Let f(x) = ZCE;XZ c>0.

a) Graph f for various values of ¢. (Y ou may use the Animate command.)

b) Use the graph in part a) to sketch the curve traced out by the vertices of the highest point as ¢ varies. Can you guess what this
curveis?

7. Use the Animate command to plot the graph of f(x) by varying the parameters a, b, ¢, d, ande for each of the following
functions. Discuss how each parameter affects the shape of the graph.

afx=ax+bx¥+cx+d

b) f=ax*+bx3+cx2+dx +e

8. @) Use ContourPlot to plot the graph of the curve defined by the equation y(y2 - c) (y—d) = x(x—a) (x—Db) for various
valuesof a, b, ¢, d. (Hint: You may want to define g[y,c,d] as the left hand side and f[x,a,b] as the right hand side and then use
the command Contour Plot[f[X, &, b] == g[y, ¢, d], {x, -5, 5}, {Y, -5, 5}, Frame - False, Axes - Trug].)

b) For the parameters you selected in part @), at how many pointsis the slope of this curve equal to zero? Estimate the x-coordi-
nates of these points.
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m 2.2. Limits

Students should read Chapter 2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

m 2.2.1. Evaluating Limits
Limit[f, x —> &, Direction —> 1] computes the limit as x as approaches a from the left (i.e., X increases to a).
Limit[f, x —=> &, Direction —> —1] computes the limit as x approaches a from the right (i.e., x decreases to a).
Limit[ f, x —> a] finds the limiting value of f as x approaches a.

NOTE: Mathematica will use the right-hand limit when evaluating Limit. If the limit does not exist, then Mathematica will
attempt to explain why or else return the limit expression unevaluated if it has insufficient information about the function.

2
Example 2.9. Evauate lim (LXJFZ]
x-»1\ x+1

X2+ x+2

Solution: Here is atable of values of the function f (x) = 1

when x is sufficiently closeto 1.

X2+ X +2
nrop= f[x_1:=2 ——
X +1

n71:= (*From the |eft %)
Tabl e[ {x, f[x]}, {x, 0.8, 0.99, 0.01}] // Tabl eForm

Out[71]//TableForm=

0.8 1.91111
0.81 1.91497
0.82 1.9189

0.83 1.9229

0.84 1.92696
0.85 1.93108
0.86 1.93527
0.87 1.93952
0.88 1.94383
0.89 1.9482

0.9 1.95263
0.91 1.95712
0.92 1.96167
0.93 1.96627
0.94 1.97093
0.95 1.97564
0.96 1.98041
0.97 1.98523
0.98 1.9901

0.99 1.99503



n721= (*From the right %)

Tabl e[ {x, f [X]},

Out[72]//TableForm=

1.2

.19
18
17
16
15
14
13
12
11
1

09
08
07
06
05
04
03
02
.01

[N

PR RRPRRPRRPRPRPRRPRRPRRRPRRERRRPR

From the tables it is reasonabl e to expect that the limit is 2. Here is the graph of the function together with the point (1, 2).

in[73;:= plotl
pl ot 2

pl ot 3 = G aphi cs [ {Red,
Show[pl ot 1,

out[76]=

NN DNDNDNDNDNDNDNDNDNDDNNNMDNDNDNMNDNDMDNMNMNDMNMNDNDNDNODDN

. 10909
. 10324
. 09743
. 09166
. 08593
. 08023
. 07458
. 06897
. 0634

. 05787
. 05238
. 04694
. 04154
. 03618
. 03087
. 02561
. 02039
. 01522
. 0101

. 00502

Plot [(x"2+Xx+2)/ (x+1), {x, -1, 2}, PlotRange -» {0, 3}1;

Chapter 2

{x, 1.2, 1.01, -0.01}] // Tabl eForm

Graphi cs[{G een, PointSize[Large], Point [{1, 2}]1 1} 1;

30¢

25F

15
10}

05f

Line[{{1, 0}, {1, 2}, {0, 2}}1}1;

/

plot2, plot3]

-1.0

Evaluating the limit confirms this:

-05

0.0

05 1.0 15 2.0

7= Limt [(X*2+X+2) /7 (X+1), x =->1]

Out[77]= 2

29

Example 2.10. The height of a projectile, fired in the air with initial velocity 32 ft/s, is given by y(t) = —16t? + 64t + 3. Find the

average velocity of the projectile over the interval [1, t] for various values of t. Then find the instantaneous velocity at t = 1.
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Solution: We define

nrel= Y[t _1=-16t2+64t +3
y[tl-yIll]
V[t ]="—7"— "~
t-1

oui7gl= 3+64t -1612

-48 + 64t - 1612
-1+t

out[79]=

o= tt = {2, 1.5, 1.01, 1.001, 1.0001, 1.00001};

Table[{tt [[k]], v[tt[[k]111}, {k, 1, Length[tt]}] // Tabl eForm
out[81]//TableForm=

2 16

1.5 24.

1.01 31.84

1.001 31.984

1.0001 31.9984

1.00001 31.9998

Here tt isthe list of values for t and tt[[Kk]] refers to the kth element in the list tt (see Chapter 1 of this text for an explanation of
lists). Also Length[t] givesthe number of elementsin the list tt, which is 6 for our example.

The above table clearly suggests that the instantaneous velocity at t = 1 is 32 ft/s. The graph below also verifies this.

In[82]:=
plotl=Plot[v[t], {t, O, 2}, PlotRange -» {0, 50}];
y=Sinmplify[v[t]] /. t - 1;
pl ot2 = Graphi cs[{ Poi ntSi ze[Large], Point [{1, y}]11}1;
pl ot 3 = Gaphics[{Red, Line[{{1, 0}, {1, vy}, {0, y}3}1}1;
Show[plotl, plot2, plot3]
50,
a0
30,

Out[86]=

20f

10F

0.0 0.5 10 15 2.0

Example 2.11. Show that f(x) = cos(1/x) does not have alimiting value as x approaches 0.

Solution: We define

ing7):= f[X_1:=Cos[1/X]
f [{0.1, .05, 0.001, .0001, .000001}]

outss]= {-0.839072, 0.408082, 0.562379, -0.952155, 0.936752}
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These values suggest that the limit does NOT exist. To make this clear, we consider the following two tables. The first table uses
values of the form x = 2/(2n+ 1) n, where n is a positive integer, while the second table uses x=1/(2n+ 1) 7. Each of these

sets of values for x approach 0 asn - co.

In[89]:= tl =Table [ m,
| n+

(n, 1, 100, 10}];
frt1]

ouaoj= {-1.83697 x107'%, ~3.1847 x107°, -4.40935x10 *°, 1.47143x10*°, -2.10695x10 %,
1.3233x10 %, -9.30793x107"°, -3.42715x10 *°, -2.59681x107"*, -2.00873 x10 **}

In[91]:= t2 =Tabl e [ m,
| n+

(n, 1, 100, 10}];
f[t2]
oupz= {-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.}
The first table indicates that the values of f(x) approach 0 while the second table indicates the values approach -1. Recall that if

the limit exists, then it must be unique. Thus our limit does not exist because the values of f do not converge to a single value.
Next we analyze the graph of the function.

3= Pl ot [f [x], {x, -1, 1}]

out[93]= Lo N 1 P Y T R |
-10 -05 05 1.0

1.

This indicates that there is too much oscillation around x = 0. Let ustry zooming in around this point.

in4:= Pl ot [Cos[1/x], {x, -0.1, 0.1}]

i

H(’ )|

Note how zooming in on this graph does not help. This indicates that the limit does not exist.

outf94]s ——f—— b 4 |
—0.1 -0p0!

0/05 0.10
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Example 2.12. Consider the function f (x) = iﬁijz: Find limy_q f(X).
+
Solution:
21/x _ 9-1/x
In[os]:= Limt [—, X —>0]
21/x + 21/x
1
Out[95]= —
ut[95] 5

It may appear that the limit is % but the simplified form of f(x) (using the Simplify command) shows this not to be the case.
Instead we shall consider one-sided limits.

21/x _ 2-1/x

o= Sinmplify [W]
R

1
oueel= — (1 -47%)
2
21/x _ 9-1/x
ino7:= Limt|——————, x>0, Direction > l]
21/x 4 21/x
21/x _ 9-1/x
Limt [— X >0, Directi on->—1]
21/x 4 21/x
out[97]= —®
1
out[98]= —
u 2

Since the left- and right-hand limits are not the same we conclude that the limit does not exist.

21/x _ 2-1/x
s~ Pl ot [W {x, -1, 13}, PlotRange -> {-30, 1}]
+

-k -05 [ 0.5 1.0

_5}
—10?—
out[99]= -15}

-25F

_30L
NOTE: One needs to be careful when using Mathematica to find limits. If you are not certain that the limit exists, use one-sided
limits:

Example2.13. Evaluate lim %
x—5*

Solution:
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infroo)= Limt [Abs[x -5]/ (x-5), x ->5, Direction ->-1]

out[100]= 1

Note that Mathematica's convention for right-hand limits is "going in the negative direction." Thus the standard notation Iirg
X5

should be evaluated as Limit[ f [x], x = 5, Direction - —1]. A similar remark applies to the left-hand limit.

Again, we can check the answer by plotting the graph of the function:

inpo1):= Plot [Abs[x -5]/ (x-5), {x, 3, 7}]

10

051

Out[101]= L L L L L L L L L L L L L L L L L L L

-05

-1.0

Warning: This plot does not show the true graph of f(x) near x = 5. It may appear that f is continuous at x = 5 because of the
vertical line there but thisis not the case since f isundefined at x = 5 and its one-sided limits do not agree:

in[102]:= Abs[x -51/ (x-5) /. x=»5
Limt [Abs[x-5]/ (Xx-5), x-5, Direction - 1]
Limt [Abs[x-5]/ (x-5), x-»5, Direction--1]

Power::infy : Infinite expression — encountered. >
0

oo:lindet : Indeterminate expression 0 ComplexInfinity encountered. >

ouf102]= | ndet ermi nate
out[103]= -1
outf104= 1

Below isthe true graph of f, which shows the (non-removable) discontinuity at x = 5.
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1o} I,
LSS
; : ; :
o5t
-0 o

m 2.2.2. Limits Involving Trigonometric Functions

For trigonometric functions, Mathematica uses the same traditional notation in calculus except that the first letter of the trigono-
metric function must be capitalized. Thus, Sin[x] is Mathematica's notation for sin x (see Appendix A of this text for a descrip-
tion of notational differences).

Example 2.14. Evauate lim M.
Xx-0 X

Solution:

in[ros):= Limt [Sin[4x] /X, X ->0]

out[105]= 4

Let us check the answer by graphing the function up close in the neighborhood of x = O:

n[oe)= Plot [Sin[4x] /X, {X, -1, 1}]

out[106]=

-1.0 0.5 1.0

Example 2.15. Evauate lim sint,
t—0 |t

Solution: Wewill consider both the left- and right-hand limits.
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o Sinft] ! )
inf1071:= Limt [— t -0, Drection- —1]
Abs [t ]
out[107}= 1
Sin[t]

in[1og):= Limit [ t -0, Direction- 1]

Abs[t]’

outjr08= -1

Thus the limit does not exist. This can be clearly seen from the graph of the function below.

Si n[x
inf1091:= Pl ot [Ab E 1 {x, -2Pi, 2Pi }]
S [X
1.0
0.5;

Oullloglz L /\_\ L Il 1 Il Il Il Il Il Il 1 Il I Il 1 Il Il Il 1

-6 -4

Example 2.16. Find
cosx—l b)
sinXx

a) limy_o limy_o tan xcos(sin1/x)

Solution:

npr10)= @ =Limt [(Cos[x] -1) /Sin[x], x-»0]
out[110}= O

mp11)= b =Limt [Tan[x] Cos[Sin[l/Xx]], X » 0]
ou111]= 0

cosx—1
X

NOTE: In your textbook it is proven that lim,_,o

answer for part a) is valid by applying the quotient rule for limits. For the second limit in part b), we note that
—1 < cos(sin(1/x)) < 1and hence — |tanx| <tanxcos(sin(1/x)) <|tanx|. Since limy_gtanx = lim,_o(-tanx) = 0 we call

upon the Squeeze Theorem to conclude that lim,_,q tan x cos(sin(1/x)) = 0.

The following graphs verify both answers.

= 0and limy.,o 3 = 1. Writing <22 = (

35

), we see that the
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Cos[x] -1 )
inp121:= Pl ot [— {x, -2Pi,
Sin[x]

out[112]= -

in[113]:= Pl ot [Tan[x] #Cos [Sin[1 /X

6

Oul[113]:w\wwwww\www’www\www\
-6 - -2 r 2 4

6L
Example2.17. Find lim,.¢ %for valuesof c=0, /6, n/4, 7/3, /2.
Solution: We will use the substitution command /. to evaluate the limit for different values of c.

. Cos[x] -Cos[c]
inf114]= Limt [—

, x—»c] /. ¢->{0, Pi /6, Pi /4, Pi /3, Pi /2}

X-C
1 1 V3
out[114]= {0, Y= e —1}
V2

Can you guess a general formulafor the answer in terms of ¢? (Hint: What trigonometric function takes on these values?)

cos(mx)—1
2

Example 2.18. Find limy_,q for various values of m. Then make a general statement about this limit and prove your

X
assertion.

Solution: Hereisatable of limitsfor integer values of m ranging from 1 to 10.

In[L15]:= Table[Lim’t[w, x->o], m 1, 10}]

x2

1 9 25 49 81
Out[115]= {——, -2, - =, -8, ~—, -18, - —, -32, - —, —50}
2 2 2 2 2



Chapter 2 37

A reasonable guess at a genera formula for the answer would be lim,_,o (cosmx — 1) / X2 = — P / 2. We can check this with
values of mranging from 10 to 20.

.. rCos[mx] -1
In[116]:= Table[{let[x—z, x—»O], —m"2/2}, {m 10, 20}]
121 121 169 169 225 225
oufiel= {{-50, -503, {_T, _T}, (-72, -72}, {_7, _T}, (-98, -98}, {_T, _T},
{-128, -128} 289 289 (-162, -162} o1 se {-200, -200}
128 (- s h (162, 1162, (oo -] (2200, 200
For amathematical proof first take m= 1 and plot the graph
Cos[x] -1 - o
in[117):= Pl ot [—2 {x, -Pi, Pi}, AxesOrigin-> {0, 0}]
X
‘—3””-2‘H‘—1””;””1””2””3‘

_01-

Out[117]=

The graph above confirms that the limitis—1/2.

t2

For the general case, let t = mx so that x? = —- Then notethat x » 0 if and only if t - 0. Thus the limit can be evaluated in

termsof t as

cost-1
2/m?

H cosmx—1 H
IImXaO 2 = llrn'[ao

_ mzlimpo cost-1 _ —%.

2

m 2.2.3. Limits Involving Infinity

Example2.19. Evauate lim (3x —2)/\/ 2x2+1 and lim (8x —2)/\/ 2x%+1.

X—00 X—>—c0
Solution:

mprigl= Limt[(3x-2) /Sqgrt [2x"2+1], x ->Infinity]

3

out[118]= ——
V2

inf119:= N[%]

out119]= 2. 12132
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npzop= Limt [(3x-2)/7Sqgrt [2x"2+1], x> -Infinity]
3
out[120]= — ——
V2
Observe how the two limits differ. The following graph confirms this.
np21)= Plot [(3x-2) /Sgrt [2x"2+1], {x, -30, 30}]

2,

| L L L L | L L L L | L L L L
-30 -20 -10
out[121]=

Y

NOTE: Can you explain the cusp on the graph near x = 0?
. v 4-x2
Example2.20. Evaluate lim ———.
x-2~ X2
Solution:
in[122]= Limt [Sgrt [4-x"2]/ (X-2), X ->2, Direction ->1]
Out[122]= —©

We plot the function over two different ranges to visually understand why the answer is —co. Notice how the first range fails to
show this.

Sqrt [4 -xM2]
X -2

In[123]:= Pl Ot[ » XL, 3}]

out[123]=

25 3.0



inf124]:= Pl ot [

Out[124]=

Sgrt [4 -xM2]

X -2

» {x, 1, 3},

Pl ot Range - {-100, 10}]
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—40

-80

—100"

25

3.0

39

NOTE: The plot domain is specified to be [1, 3], but observe that this function is undefined for values of x greater than 2 because

this results in taking the square root of a negative number.

Example2.21. Evauatelim sinx.

Solution:

X—00

nrzs)= Limt [Sin[x], x =>Infinity]

oui2s= I nterval [{-1, 1}]

Here, Mathematica is telling us that the limit does not exist by returning the range of values for sin x as x approaches infinity.

Solution:

in[126]:= Limt [

out[126]=

We can verify this limit by using the Squeeze Theorem. In our case wetake f(x) = -1/ X[, g(X) =
f(X) = g(x) = h(x) (recall that —1 < sinx < 1 for al x).

0

Sin[x]

X

inp127]= Pl ot [{-1/ Abs[x],

Out[127]=

0.3F
0.2f

0.1Ff

nx

Example 2.22. Find limy_., S‘T

Sin[x]/x, 1/Abs[x]},

, x—»Infinity]

-01Ff
-0.2F

-03}

{x, 0, 30}, PlotStyle - {Red, Green,

and h(x) =1/| x|. Then
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Sincel/| x| and —1/| x| both approach 0 as x —» oo, we conclude that (sin x) / x approaches zero as well.
Example 2.23. Evaduate limy_,, (%) where nisany integer.

Solution:

inj12g]= Table[Limt [e*x /X", x - Infinity], {n, 1, 200, 10}]
out[128]= {o, o, o, o, @, @, ©, ©, ©®, ®, W, W, ©, ©, ©, ©, 0, ™, ©, ©}
This table suggests that the limit isinfinity. We confirm this with Mathematica:
In[129]:= Li mt [e™ (X) /X", X- >o0]

ou129= Conpl exI nfinity

NOTE: This example reveals that exponential functions grow more quickly than polynomial functions.

Example2.24. Evaluate  lim, (= — ).

Inx x-1
Solution:
inf130):= Limt[(1/Log[x])-(1/(x-1)),x->1,Direction->1]
1

out[130]= —
2

Again, we can graph the function near x = 1 to visually understand why the answer is 1/2 (we leave this to the student). Note,
however, that this example showsthat 1/Inx and 1/(x — 1) both grow to o at the samerate as x —» 1*.

X'—-1
xm-1"

Example2.25. Let f(x) =

Evaluate limity_,; f(x) by substituting in various values of mand n.

Solution:

m131= Table[Limt [(x"-1) / (x™-1), x-1], {m 1, 10}, {n, 1, 10}] // Tabl eForm

Out[131])//TableForm=
2

[N
o

P oo Nj©o vw ojo Ao W vjo ©

als ol P Njo ws ajo N woo 00
= = Ao P woa N N = O
“"o I “|o ‘ I “’|o

'5|"" Wk ®w NwWw NRFP W M P ooe W
GN OA NP NS v as Pows NS
N|R ©lol oo N[ oo P osja wa vja O
glw WIN Mw N P o aoeoNne N W O
5|“ O~ ®[~N P o~ 0N AN W[~ NN N

»5|,_‘ Ok @R N[F Ok R MEP WEF N|-
Uk ©ON MR NN WF GO NRFE wd P

=
o|‘°

Can you guess a formula for limit,_,1 f(x) in terms of m and n? Enter the command Limit[(x" — 1) /(x™ — 1), x = 1] into an
input box and evaluate it to verify your conjecture.

Let us end this section with an example where the Limit command is used to evaluate the derivative of a function (in anticipation
of commandsintroduced in the next chapter for computing derivatives).
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By definition, the derivative of afunction f at x (i.e., the slope of itstangent line at x) is

. f(x+A X)—f(X)
f'x= lim —— .
A x-0 AX

Example 2.26. Find the derivative of f(x) = 1 according to the limit definition.
X

Solution: We first examine the derivative by tabulating values of the difference quotient, W, for some arbitrarily

chosen values of A x:

npazp= fIX_]1:=1/x
delta={0.1, 0.01, .0001, .00001, .000001, .00000001};
Table[{delta[[k]], Simplify[(f [x+delta[[k]]]-f[x])/delta[[k]]]},
{k, 1, Length[delta]}] // Tabl eForm

Out[134]//TableForm=
1

0.1 "o 1>.<+x2
0.01 oL
0. 01 x+x2
0.0001 -—X
0. 0001 x+x2
0.00001 - 1
0. 00001 x +x2
-6 1.
1. x10 T 1 %108 xax2
1. x10% -t

1. x1078 x+x?
This table suggeststhat f'(x) = —1/x2 inthelimitas A x » 0. We confirm this with Mathematica:

nasi= Limt [(f [x +Deltax] -f [x]) /Deltax, Deltax -> 0]

1
out[135]= - —
X2

m Exercises

1. Compute the following limits:

a) lim x2 - L b) lim 1% o) lim

2 .
1+ X+X d) lim sinx
x-1 x-1 X——5 X+5 X—00 3 <10_y x-0 X

2. Evaluate each of the following limits. Verify your answers by plotting the graph of each function in the neighborhood of the
limit point.

2

a) |imxﬁz(if—;i) b) Iiquo+(1;1'/r:") 0) limeo (£ -1Inx) d) lim,_ - (sec3xcos5%) e

lim,., o(sin x) cos(3)

3. Use various values of a to find the following limits. Confirm your answers by plotting the graph of each function correspond-

ing to your chosen values for a. Make a conjecture for ageneral formula.

L xXC-axirax-1
b)lim —5—

L ox3-ad
a) lim
x-a X4 x-1

4. Consider the quadratic function f(x) = ax? — x+ 3. Plot the graph of f using small values of a. What do you observe about
the roots of f? What is the limit of the roots of f as a— 0? Hint: Use the command
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Plot|Evaluate[ Tablefax? — x + 3, {a, 0, .006, 0.001}]] {x, 0, 500}| to help you analyze the root and then change the values
of a aswell asthe plot domain. Then use the quadratic formulato prove your assertion.

m 2.3. Continuity

Students should read Section 2.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that a function is continuous at x = a if and only if limy_, f(X) = f(a). Graphicaly this means that there is no break (or
jump) in the graph of f at the point (a, f(a)). It is not possible to indicate this discontinuity using computer graphics for the
situation where the limit exists and the function is defined at a but the limit is not equal to f(a). For other cases of discontinuity,
computer graphics are very helpful.

To verify if agiven function is continuous at a point, we evaluate its limit there and check if thislimit is equal to the value of the
function.

Example 2.27. Show that the function f(x) = x® — 1 is continuous everywhere.
Solution: We could draw the graph and observe this fact. On the other hand, we can get Mathematica to check continuity:

mpsel= fIx_1:=x3-1
Limt[f[x], x-c]="F][c]

out[137]= True
This meansthat lim,_, . f(X) = f(c) and hence f is continuous everywhere.

Example 2.28. Find points of discontinuity for each of the following functions:
x2-1

gLet f9={ *T° ifx+1
2, ifx=1
-1 .
2l if v
b)Let g = { =1 X# 2L
6, ifx=1

Solution: The command If[cond, true, false] evaluates true if cond is satisfied and gives false if cond is not satisfied. This
command can be used to define piece-wise functions such as those in this example.

a) Wefirst check continuity of f at x = 1.

x2 -1
npag)= f[X_]:=1f [x #1, T 2]
X -

n39y= Limt [f [x], x->1]="f[1]
ouf[139]= True
Hence the function is continuous at x = 1. For continuity at other points, we observe that the rational function —Xi:ll simplifiesto

X + 1 in this case (factor the numerator!) and thusis continuous at any point except x = 1. Thus f is continuous everywhere. We
can aso confirm this by examining the graph of f below.
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inpa0)= Plot [f [x], {X, -6, 6}]

out[140]=

b) Asin part a) wefirst consider continuity of g at x = 1.

x2-1
na1)= gIX_1:=1f [x #1, T 6]
X -

n[142= Limt [g[x], X -1]=9[1]

out142]= Fal se

2_
1 _x+1land
x=1

Thus g is NOT continuous a x = 1. For continuity at other points, we again observe that the rational function
thusis continuousfor x + 1.

Caution: The plot of the graph of g given below indicates (incorrectly) that g is continuous everywhere! Care must be taken
when examining Mathematica plotsto draw conclusions about continuity.

inpa3)= Plot [g[x], {X, -6, 6}]

Out[143]=
‘ i 2 4 6
_2}
_4}
2X+c, if x=2
Example 2.29. Let f(x ={ )
xX+ex -1, if x<2.

For what values of cis f continuous over its entire domain?

Solution: For x > 2, we have f(x) = 2x+ ¢. Hence f is continuous on the interval (2, o) since the interval is open. For x < 2,
f(x)=x2+cx —1. Thus f is continuous on (—oo, 2) for the same reason. For f to be continuous at X = 2, we must have
limy_,» f(x) = f(2). Butthelimit existsif and only if
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limy,o- () =limy o+ f(X)
Note that lim,_,,+ f(X) =4 + c = f(2). Thusit suffices to find all values of ¢ for which the left-hand limit and the right-hand limit
are equal. This can be done using Mathematica's Solve command.

inf44:= Clear [c, ]
fx_1:=1f[x<2, x2+cx -1, 2x+c]

npae)= lhs = Limt[f[x], Xx-2, Direction-1]
rhs =Limt [f[x], x-2, Drection--1]

ouf146)1= 3+2C

out[147]= 4 +C

in[148):= Solve[l hs ==rhs , c]

out148)= {{C > 1}}

Thus f iscontinuousif ¢c = 1. We confirm this by plotting the graph of f corresponding to this c value.

inpuao)= Plot [f[x] /. ¢c=>1, {X, -5, 7}]

15+
10+

out[149]=

2 4 6

sin(3), if x#0

Example 2.30. Let f(x):{o g
\ if x=

. Provethat for any number k between —1 and 1 there exists a value for ¢ such that
f(c)=k.
NOTE: Observe that f isnot continuous at x = 0 so the converse of the Intermediate Value Theorem does not hold.

Solution: For k = 0, we choose ¢ = 0 so that f(0) = 0. For any nonzero k between —1and 1, define y = sntk (using the
principal domain of the sine function) and let c=1/y. Then f(c) =sin(1/c) = siny = k. The graph of f following shows that
there arein fact infinitely many choices for c.
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npsop= f[X_1:=Sin[l1/x]
Pl ot [f [Xx], {x, -Pi, Pi}]

out[151]= ~

m EXxercises

e, ifx<0

1 Let f(x)= .
* {Inx, if x>0
a) Graph the above function and discuss the type of discontiniuty at x = 0.

b) Repeat part a) for the function

cos(%), if |x] <1

f(x) = .
0 {lx—ll,if [x] >1

2. Find valuesfor cinwhich f (defined below) is continuous over its entire domain:

f(x)—{ X2 +c, x<1,
e, x=21
Plot the graph of f corresponding to these c vaues.
3. Let
; {x+l, if |xX] <2
X) = .
* x2—c, if x| >2

a) For what value(s) of c is the function continuous at x = 2? With this choice of ¢ does f have a discontinuity at any other
point? Plot the graph of the function.

b) For what value(s) of c isthe function continuous at x = —27? With this choice of ¢ does f have a discontinuity at any other
point? Plot the graph of the function.
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Chapter 3 Differentiation

m 3.1. The Derivative

Students should read Sections 3.1-3.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

m 3.1.1. Slope of Tangent
The derivative is one of the most fundamental conceptsin calculus. Its pointwise definition is given by
f(h+a) - f(a)
f"(@=lim———,
h-0 h

where geometrically f ' (a) is the slope of the line tangent to the graph of f(x) at x = a (provided the limit exists). We can view

this graphically in the illustration below where the tangent line (shown in blue) is viewed as a limit of secant lines (one shownin
red) ash - 0.

a a+h

Example 3.1. Calculate the derivative of f(x) = %2 at x = 1 using the pointwise definition of a derivative.

Solution: Wefirst use the Table command to tabulate slopes of secant lines passing through the pointsat a=1anda+h=1+h
by choosing arbitrarily small values for h (taken as reciprocal powers of 10):

n[s2= f[X_1 =x"2/3;

a=1,
h =107 (-n);
Tabl eForm[N[TabIe[{h, W}, {n, 1, 5}”]

Out[155]//TableForm=
0.1 0.7

0.01 0.67
0.001 0. 667
0.0001 0.6667
0. 00001 0.66667

Note our use of the TableForm command, which displays alist as an array of rectangular cells. From the table output we infer
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that f'(1) =2/3. A morerigorous approach isto algebraically simplify the difference quotient,w:
n[s6:= Cl ear [h]

N fla+h] -f[a]

Sinplify [f]

2+h

out[157)=

f(a+h)-f(a)

Itisnow clear that N

- %ash — 0. This can be checked using Mathematica's Limit command:

. fla+hy-f[a]
in[158:= Limt [—

, h-»O]

2
out[158]= —
! 3

Below isaplot of the graph of f(x) (in black) and its corresponding tangent line (in blue), which also confirms our answer:

npsor= Plot [{f [x], f' [a] (x-a) +f[al}, {X, -2, 2}, PlotStyle - {Bl ack, Blue}]

out[159]= -2 -1 L 1 2

NOTE: Recall that the tangent line of f(x) at x = aisgiven by theequationy = f'(a) (x—a) + f(a).

ANIMATION: Evaluate the following inputs to see animations of the secant lines approach the tangent line (from the right and
left).

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-
tions generated from the Animate command in this chapter. If you are reading the electronic version of this publication format-
ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation. Just click on the
arrow button to start the animation. To control the animation just click at various points on the sliding bar or else manually drag
the bar.

n[160:= (* Fromthe right =)
Animate [Pl ot [{f [x], f' [a] (x-a) +f[a], (f[a+h]-f[a])/h%(x-a) +f[a]}, {x, O, 2},
Pl ot Range -» {-0.5, 1}, PlotStyl e -» {Bl ack, Blue, Red}], {h, 0.5, 0.1, -0.05}]

Quieor _
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n61:= (* Fromthe left =)
Animate [Pl ot [{f [x], f'[a] (x-a) +f[a], (f[a+h]-f[a])/h* (x-a) +f[al}, {x, O, 2},
Pl ot Range -» {-0.5, 1}, PlotStyl e -» {Bl ack, Blue, Red}], {h, -0.5, -0.1, 0.05}]

ouiet _

m 3.1.2. Derivative as a Function

The derivative is best thought of as a slope function, one that gives the slope of the tangent line at any point on the graph of f(x)
where this slope exists:

o fx+h-1fX
f’(x)=LE27h )

Example 3.2. Compute the derivative of f(x) = sinx using the limit definition.

Solution: Wefirst simplify the corresponding difference quotient to obtain

in62):= Cl ear [h]
f[x_]=Sin[x];
Simplify[(f[x+h]-f[x])/h]
-Sin[x] +Sin[h+x]
h

out[164]=

Here it is not clear what the limit of the difference quotient isas h - 0. To anticipate the answer for the derivative without
algebraic manipulation, we first note that since sin x is periodic so should its derivative be. A plot of the difference quotient (asa
function of x) for several arbitrarily small values of h reveals the derivative to be cosx. Students should recognize from trigonom-

etry that the graph of cosx is merely aleft horizontal translation of sinx by %

npes)= plotl = Plot [{f [x], Cos[x]}, {X, -Pi, Pi}, PlotStyle - {Bl ack, Bl ue}]

Out[165]= -yttt /o
3

-05F

-10+
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inpe6:= Cl ear [h]
plot2 =
Pl ot [Evaluate[Tabl e[ (f [x +h] -f [x]) /h, {h, 0.1, 0.7, 0.3}11, {X, -Pi, Pi}, PlotStyle -» Red]

out[167]= !

-10F

in[168:= Show[pl ot 1, pl ot 2]

out[168]= —t————
3

-05F

-1.0+

Of course there are a number of methods to compute the derivative directly in Mathematica. One method is to evaluate the
command D[ f, x] for afunction f defined with respect to the variable x. A second method isto merely evaluate the expression
f'[x] using the traditional prime (apostrophe symbol) notation. A third method is to use the command 9, o. We shall only

discuss the first two methods since the third method is usually reserved for derivatives of functions depending on more than one
variable, atopic that istreated in the third volume of this publication.

Example 3.3. Compute the derivative of sin(x?) and evaluate it at x = / % .

Solution:

Method 1:

in69):= D[SIin[x"2], X]
D[Sin[x"2], x] /. x»>Sqgrt [Pi /4]

outfieg)= 2 X Cos [x?]

JT
out[170]= >

NOTE: Recall the substitution command /. x —> a was discussed in an earlier section.
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Method 2:

np71= f[X_] =Sin[x"2]
f'Ix]
f'[Sart [Pi /7411

oui71= Si n[x?]

oui72)= 2 X Cos [x?]

VS
Out[173]= E

Warning: Observe that the derivative of sin(x?) is NOT cos(x?) but 2 xcos(x?). Thisis because sin(x?) is a composite funct-

sion. A rule for differentiating composite functions, known as as the Chain Rule, is discussed in ection 3.7 of Rogawski's
Calculus.

o SNX i x % 0
Example 3.4. Compute the derivative of f(x) = { x .
0 ifx=0

Solution: To define functions described by two different formulas over separate domains, we employ Mathematica's | f[expr, p,
g] command:
mnp7ap= F[X_]1 =1f[x#0, Sin[x]/x, 0]

Sin[x]

out174)= | f {x + 0, , 0
X

n7s)= 1 O[X]

Sin[x] Cos[x]
ouf17s)= | f {x +0, - . N 0
X X

sinx COoS X

NOTE: Itisclear for x + 0 that the derivativeis — — t T ®sa result of the Quoatient Rule. For x = 0, Mathematica's answer

that f'(0) = Oisactualy incorrect! Don't be fooled by the fact that f(0) = 0. One cannot differentiate a formulathat is valid at
only asingle point; it is a so necessary to understand how the function behaves in a neighborhood of this point.

A plot of the graph of f(x) revealsthat it isdiscontinuousat x = 0, i.e. lim,_q f(X) # f(0), and thus not differentiable there.

n7e)= Plot [f [x], {x, -3Pi, 3Pi}]

Out[176]=

—02f

Observe that the point f(0) = 0 is not distinguished in the Mathematica plot above so that the (removable) discontinuity is
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detected only by examining the behavior of f around x = O (the true graph of f is shown following).

In particular, f(x) » 1asx — 0. We confirm this with Mathematica.

n77)= Limt [f [x], X » 0]

ou177}= 1

Of course it is aso possible to compute f ' (0) directly from the limit definition. Here the difference quotient behaves as T—zh as

the output below shows. Sinceitslimit does not exist ash — 0 we conclude that f ' (0) is undefined.

nr7el= Sinmplify[(f[0+h] -f[0])/h]
Limt[(f[0+h]-f[0])/h, h=0]

inth
out[178]= { S :2[ L h#0

Out[179]= o
NOTE: The discontinuity of f at x = 0 can be removed by redefining it there to be f(0) = 1. What is f ' (0) in this case?
Example 3.5. Find an equation of the line passing through the point P(2, —3) and tangent to the graph of f(x) = X + 1.

Solution: Let usrefer to Q(a, f(a)) asthe point of tangency for our desired tangent line. To determine Q, we compute the slope
of our desired tangent line from two different perspectives:

1. Slope of line segment PQ:

inf1s0i= Cl ear [a]
fIX_1]=x"2+1
m= (f [a] - (-3)) / (a-2)

ou181]= 1 + X2

4 +a?

out[182]= >
-2+a

2. Derivativeof f(x) at x = a:
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n1e3l= f[X_1 =x"2+1
f'[a]

ouszj= 1 + x2
ou[184]= 2 @
Equating the two formulas for slope above and solving for a yields

inies)= Sol ve[m==f"' [a], a]
N[%]

ounss- {{a2 (1-v2 )}, [as2 (1492}

ouigsl- {{a - -0.828427), {a > 4.82843})

Since there are two valid solutionsfor awe have in fact found two such tangent lines. Their equations are given by

7= Cear [yl, y2]
yl[x_]1=Si rrplify[f' [a] (x-a) +f[a]l /. a~»2 (l—\/?)]

y2[x_1=Sinplify[f' [a] (x-a)+f[a] /. a»2 (1+V2)]
oufisg- -11+8+2 -4 (71+\/27) X
oufisg= -11-8+/2 +4 (1+\/2_) X

Plotting these tangent lines together with the graph of f(x) confirms that our solution is correct:

nfrooi= Plot [{f [x], y1[x], y2[x]}, {X, -6, 6}, Pl ot Range » {-10, 40}, PlotStyl e » {Bl ack, Blue, Blue}]

401

out[190]=

NOTE: How would the solution change if we move the given point in the problem to P(2, 5)? Or P(2, 10)?

m Exercises

1. Compute the derivatives of the following functions:
a)f(x=3x+1 b)g(x):% 0 hx) = S

COs X

2. Evaluate the derivatives of the following functions at the specified values of x:
A F)=(X-D)(x+Datx=1 b) gy =Y g x=9
Vx -1
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3. Compute the derivatives of the following functions:
a) f(x) = |x+3] b) g(x) = | x* - 4|

X ifx=0

Hint: Recall the absolute value function: | x| = { . Use the If command to define these absolute functions (see

-x ifx<0
Example 3.4). Note that Mathematica does have a built-in Abs[x] command for defining the absolute value of x, but Mathemat-
ica treats Abs[x] as a complex function; thusits derivative Abs'[x] isNOT defined. The real derivative of Abs[x] for real values
of x can still be found using the numerical derivative ND command but we shall not discuss it here.

4. Find an equation of the line tangent to the graph of x — y? = 0 at the point P(9, —3).

5. Find an equation of the line passing through the point P(2, —3) and tangent to the graph of y = x2.

m 3.2. Higher-Order Derivatives

Students should read Section 3.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Suppose one is interested in securing higher order derivatives of afunction. Reasons for doing so include applications to maxi-
mum and minimum values, points of inflection, and physical applications such as velocity and acceleration and jerk, which all fit
into such a context.

Example 3.6. Compute the first eight derivatives of f(x) = sinx. What isthe 255th derivative of f?

Solution: Here are the first eight derivative of f:

npo1= f [X_] = Sin[x];
Tabl eForm[Tabl e[ {n, D[f [x], {X, n}1}, {n, 1, 8}1]
Out[192])//TableForm=
1 Cos[X]
-Sin[x]
-Cos [x]
Sin(x]
Cos [X]
-Sin[x]
-Cos [Xx]
Sin[x]

0O ~NO O WN

We observe from the output that the higher-order derivatives of f are periodic modulo 4, which means they repeat every four
derivatives. Since 255 has remainder 3 when divided by 4, it followsthat f @ (x) = f®(x) = —cosx. Of course Mathematica

can compute this derivative directly (see output below) but the pattern above gives us a more in-depth understanding of the
higher-order derivatives of sinx.

inpo3)= DIf [X]1, {X, 255}]

ou[193)= -Cos [X]

Example 3.7. Compute the first three derivatives of f(x) = xcosx .

Solution: We use the command D[ f, {X, n}] to compute the nth derivative of f. Herewesetn=1, 2, 3.
ino4]:= f [X_] = X » Cos [X]

out[194]= X Cos [X]
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inf1os):= D[ [X], X]

ouf195)= Cos [X] - X Si n[x]

inposl= DI [X], {X, 2}]

ou196)= -X Cos [X] -2 Sin[Xx]

In[197]:= D[f [x], {X, 3}]

ou197)= -3 Cos [X] + X Si n[X]

A quicker way to generate alist of higher-order derivativesisto use the Table command. For example, here isalist of the first
five derivatives of f:

npog)= Tabl e [DIf [x], {X, n}], {n, 1, 5}]

ou19g)= {Cos [X] -x Sin[x], -xCos[x] -2Sin[x],
-3Cos[x] +xSin[x], xCos[x] +4Sin[x], 5Cos[x] -xSin[x]}

Discovery Exercise: Find aformulafor the nth derivative of f based on the pattern above. What is the 100th derivative of f in
this case? Can you substantiate your claim?

m Exercises

1. Let f(X)=1/x.

(a) Compute the first five higher-order derivatives of f.

(b) What isthe 10th derivative of f?

(c) Obtain a general formula for the nth derivative based on the pattern. Then use the principle of mathematical induction to
justify your claim.

2. Consider f(x) = xsinx. Determine the first eight derivatives of f and obtain a pattern. Justify your contention.

m 3.3. Chain Rule and Implicit Differentiation

Students should read Sections 3.7-3.8 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

In this section we demonstrate not only how Mathematica uses the Chain Rule to differentiate composite functions but also to
compute derivatives of functions defined implicitly by equations where solving for the dependent variable is not feasible.

Example 3.8. Find all horizontal tangents of f(x) =

Solution: Wefirst compute the derivative of f, which requires the Chain Rule.
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x4 - x +1
npog)= f[Xx_1 i= 4—1 ;
X7+ X +

Sinplify[f' [Xx]]
-1 +3x*

Out[200]=

1-x+x4 4\ 2
1+x+x4 (1+X+X >

Horizontal tangents have zero slope and so it suffices to solve f ' (x) = 0 for x.

in201]= Sol ve [f ' [x] =0, X]
1 i 1 1
Outf201}= {{X e 31/4 }, {X e 31/4 }’ {X - 31/4 }' {X - 31/4 }}
Observe that the solutions above are nothing more than the zeros of the numerator of f'(x). We ignore the second and third

solutions listed above, which are imaginary. Hence, x=vV1/3 ~ 0.76 and x=-V1/3. A plot of the graph of f below
confirms our solution.

inoz;= Plot [f [x], {X, -2, 2}]

Out[202]=

08

-2 -1 i 1 2

Example 3.9. Find all horizontal tangents of the lemniscate described by 2 (x? + y2)2 =25(x2 - y?).

Solution: Implicit differentiation is required here to compute z—i which involvesfirst differentiating the lemniscate equation and

then solving for our derivative. Observe that we make the substitution y — y(x), which makes explicit our assumption that y
depends on x.

inzo3;:= Cl ear [X, Y]
eq=2 (X"2+y"2)"2=25 (x"2-y"2)

out[204= 2 (x2 + yz)2 - 25 (XZ _ y2)
inos:= deq =D[eq /. y » y[Xx], X]

ouposl= 4 (X2 +y [X]2) (2x +2y[X]y'[x]) =25 (2X -2y [x] Y [X])
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in2os:= Sol ve [deq, y' [X]]

25x -4x3-4xy[x]?

J)

To find horizontal tangents it suffices to find where the numerator of y'(x) vanishes (since the denominator never vanishes

Out[206]= Y [X] >
) H yIx] (25+4x2+4y([x]?)

except when y = 0). Thus, we solve the system of equations 25x—4x3 - 4xy? =0 and 2(x* + yz)2 = 25(x? - y?) since the
solutions must aso lie on the lemniscate.

ino7)= Solve[{eq, 25x -4x"3-4x%xy"2 =0}, {X, y}]

Out[207]= {{Xe—?, ya—%}, {Xe—?, y - ;}, {x% Sf, y%_z}’
{XeS\/?,yeE}, {y->0, x>0}, {y->0, x>0}, {ye—Si,XAO}, {yesj,XeO}}
a7 V7 7

From the output we see that there are four valid solutions at (5\/3/4, 5/4) ~ (217, 1.25), (—5\/?/4, 5/4),
(5\/?/4, —5/4), and (—5\/§/4, —5/4), which can be confirmed by inspecting the graph of the lemniscate below. Observe

the symmetry in the solutions.
in208:= N[5 *Sqrt [3] /4]

out208)= 2. 16506

njzogj= ContourPlot [2 (X"2+y"2)"2==25 (x"2-y"2), {X, -4, 4}, {y, -2, 2}]

o T T T T T T T T T T T T T T T N

Out[209]=

m Exercises

N
1. Find all horizontal tangents of g(x) = (x—) .

X+1
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2. Find al tangents along the curve h(x) = V x+ V' x whose slope equals 1/2.
3. Find all vertical tangents of the cardioid described by X2 + y? = (2x2 + 2 y? - x)z.
4, Compute the first and second derivatives of

{xcos% ifx+0

f(x) = .
ifx=0

5. Compute the first and second derivatives of

{xzcos% if x+0

X) = .
9 ifx=0

How do these derivatives at the origin compare with those in the previous exercise?
6. Based on your investigations of the previous two exercises explain the behavior of higher-order derivatives of

x“cos% if x+0

h(x)={ 0 ifx=0

at the origin for positive integer values of n.

m 3.4. Derivatives of Inverse, Exponential, and Logarithmic Functions

Students should read Sections 3.9-3.10 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

Exponentia functions arise naturally. For example, mathematical models for the growth of a population or the decay of a radioac-
tive substance involve exponentia functions. In this section we will explore exponential functions and their inverses, called
logarithmic functions, using Mathematica. We begin with areview of inverse functionsin general.

m 3.4.1. Inverse of a Function

Recall that a function g(x) isthe inverse of agiven function f (x) if f(g(x)) = g(f(x)) = x. Theinverseof f(x) isdenoted by
f~1(x). We note that a necessary and sufficient condition for afunction to have an inverse is that it must be one-to-one. On the
other hand a function is one-to-oneif it is strictly increasing or strictly decreasing throughout its domain.

Example 3.13. Determine if the function f(x) = X2 — x+ 1 has an inverse on the domain (-0, o). If it exists, then find the
inverse.

Solution: We note that f(0) = f(1) = 1. Thus f is not one-to-one. We can aso plot the graph of f and note that it fails the
Horizontal Line Test since it isnot increasing on its domain.
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nz1op= f[X_1 =X"2-x+1;
Pl ot [f [x], {X, -1, 2}]

30F
25

20[
out[211]= -

-05 r 0.5

-10

However, observe that if we restrict the domain of f to an interval where f is either increasing or decreasing, say [0.5, o), then
itsinverse exists (see plot below).

in212)= plotf =Pl ot [f [x], {X, 0.5, 5}]

20
15

Out[212]= 10 I

To find the inverse on this restricted domain, weset y = f~1(x). Then f(y) = x. Thus we solve for y from the equation f(y) = x.

in213]:= sol =Sol ve[f [y] =X, Y]
out[213]= Hye% (1—\/—3+4x )}, {ye% (1+m)}}

Note that Mathematica gives two solutions. Only the first one is valid, having range [0.5, ), which agrees with the domain of f.
Thus

f1(x) = %(1+ V-3+4x )
To extract this solution from the above output we use the syntax below and denote the inverse function in Mathematica by g(x)

(Mathematica interprets the notation f ~1(x) as % the reciprocal of f).

n141= 9[x_]1 =sol [[2, 1, 2]]

out[214]= % (1 +\/W)
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To verify that f(g(x)) = x, we use the Simplify command.

ineisi= Sinplify[f [g[x]] =X]

out[215]= True

NOTE: One can attempt to verify g(f(x)) = x. However, Mathematica cannot confirm this identity (see output below) because it

is unable to simplify the radical, which it treats as a complex square root. Students are encouraged to algebraically check this
identity on their own.

inz1el= Simplify[g[f [X]] == X]
oupie= 1+ (-1+2x)2 =2x

Lastly, aplot of the graphs of f(x) and g(x) (in black and blue, respectively) shows their expected symmetry about the diagonal
liney = x (inred). Observe that the domain of gis[3/4, ), whichistherangeof f.

inp171:= plotg =Pl ot [g[x], {X, 3/4, 5}, PlotStyle » Red, AspectRati o -» Automatic]

25f
20}

outp17)= 157

10f

2 3 4 5

in218]:= Show[pl ot f, plotg, G aphics[{Dashing[{0.05, 0.05}], Line[{{O0, 0}, {5, 5}}1}1,
Pl ot Range -» {0, 5}, AspectRati o - Autonatic]

out[218]=
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Example 3.14. Determineif the function f(x) = x® + x has an inverse. If it exists, then compute ( f ‘1)' (2.

Solution: Since f'(x) = 3x?+ 1> Ofor al x, we see that f isincreasing on its domain. Thus it has an inverse. Again, we can
solvefor thisinverse as in the previous example:
inp1o)= Cear [f, g, X, sol ]

fIX_]:=x"3+X

sol =Solve[f [y] ==X, VY]

(3>1/3 (9x+\/3_\/4+27X2
3

J1/3

out[221]= Hy%— + }
1/3 21/332/3
(9X+\/3_\l4+27X2]
1/3
_ i 2
{ N (1 1\/3_) (9x+\/3_x/4+27x ) }
y -~ - :
1/3 221/3 32/3
22/3 3113 (9x+\/3_\/4+27x2 )

1/3
, (1+]'m/3) 9x +/3 \/4+27x2
1—1\/? }}
N _
1/3 221/332/3
22/3 3173 (9X+\/3 \ 4+ 27 x? )

Only the first solution listed above isvalid, being real valued. Thus

(3)1/3 (9 x+V'3 V 44272 )1/3

{y

3

(9 x+V'3 V 442752 )

fix= -

1/3 + 21/332/3

Again we denote our inverse by g(x):

ne221= g[x_]1 =sol [[1, 1, 2]]

1/3
)1/3 (9x+\/3_\/4+27xz)

+
]1/3 21/3 32/3

(
(9X+\/?\/4+27X2

Lastly we compute g' (2).

w|N

Out[222]= -

in223;= Sinplify[g' [2]]
N[%]

31/3 (l4+3\/f) (31/3+ (9+2\/E)2/3)

out[223]=

28 (9+2+V21

)4/3

out224]= 0. 25

NOTE: The easier approach in computing g'(2) without having to explicitly differentiate g(x) is to instead use the relation
(f71)' (0 =1/ f'(f-(x), which shows that the derivative of f at apoint (a, b) on its graph and the derivative of f~* (or g in our
case) at the corresponding inverse point (b, @) on its graph are reciprocal. In particular, since f(1) =2 and f~1(2) = 1, we have
(fY)@=1/f(f12)=1/f"D=1/4
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neesi= 1/F" [9[21]

N[%]
1
Out[225]= 2
) 178 (5 (184421 ))m
1+3 |- + 3
3 (18+4 V21 ) 3%
out[226]= 0. 25

NOTE: The plot below illustrates how the slopes of the two tangent lines, that of f at (1, 2) and that of g at (2, 1) (both in blue),
are reciprocal.

in271:= Plot [{f [x], g[x], f'[1] (x-1) +f[1], g' [2] (x-2) +Q[2]}, {Xx, -1, 5},
Pl ot Range -» {-1, 5}, PlotStyl e » {Bl ack, Red, Blue, Blue}, AspectRati o - Automatic]

5

out[227)= 2

m 3.4.2. Exponential and Logarithmic Functions

One of the most important functions in mathematics and its applications is the exponential function. In particular, the natural
exponential function f (x) = €%, where

e=limo(l+xY*~ 2718

In Mathematica we use the capital letter E or blackboard bold letter e from the Basic Math Input submenu of the Palettes menu
to denote the Euler number.

inezgl= Limt [(1+x)"(1/Xx), Xx->0]
Out[228]= €
Every exponential function f(x) =a*, a+ 1, a> 0, wherea# 1 and a > 0, has domain (— oo, o) and range (0, o). It is aso one-

to-one on its domain. Hence it has an inverse. The inverse of an exponential function f(x) = a*is called the logarithm function
and is denoted by g(x) = log, x. The inverse of the natural exponential function is denoted by g(x) = Inx and is called the natural
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logarithm. In Mathematica, we use Log[a,x] for log, x and Log[x] for Inx. Below isaplot of the graphs of € and Inx in black
and red, respectively. Observe their symmetry about the dashed line y = x.

5-

/

Please refer to Section 3.10 of Rogawski's Calculus textbook for derivative formulas of general exponential and logarithmic
functions.

Example 3.15. Compute derivatives of the following functions.
a f(x) =2 b) f(=6x*+4€e c) f(x) =log,yx*  d) f(x)=In(coge**))

Solution: We will input the functions directly and use the command D to find each derivative. Thus for a) we will evaluate
D[2%, x]. Again notethat Log[2] should beread asIn2.

a)

in[229:= D[27X, X]
outz29)= 2* Log [2]

b)

nzop= D[6 X2 + 4 EX, X]

outz3oj= 4 € + 12 x

c)
in[231:= D[Log[10, x"2], X]
2
Out[231l] ———
x Log[10]
d)

ine32)= = D[Log[Cos[E“]], x]

ouesz)= -3 €3* Tan [e®* |
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Example 3.16. Find points on the graph of f(x) = x?€3**> + 3x where the tangent lines are parallel totheliney = 3x — 1.

Solution: Since the slope of the given line equals 3 it suffices to solve f ' (x) = 3 for xto locate these point(s).

in[233):= Cl ear [f, sol ]
fIx_1=x2E3%*543x
sol =Solve[f' [Xx] ==3, Xx]

outaa= 3 X + e>3% x2

out[235]= HX - ,2} {x %0}}

Thus there are two solutions: (—2/3, -2+ 4€*/9) and (0, 0).

in23e):= X0 =sol [[1, 1, 2]]
x1l=sol [[2, 1, 2]]
f [x0]
f [x1]

2
Out[236]= — —
3

outj2371= 0

4 &8

out[238]= -2 +
out[2391= 0

The plot below confirms that the two corresponding tangent lines (in blue) are indeed parallel to the given line (in red).

infza0)= y1 =f [x0] +f " [X0] (X -xO0)
y2 =f [x1] +f"' [x1] (X -x1)
Pl ot [{f [x], V1, y2, 3x -2}, {x, -1, 13},
Pl ot Range -» {-5, 15}, PlotStyle » {Bl ack, Bl ue, Blue, Red}]

4 &8 2
out[240]= -2 + 5 +3 [g +X]

out[241]= 3 X

10+
out[242)= 5-

\““\““7““\‘%

-10 -05 s 10

-
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NOTE: One would expect the tangent line at the origin to be horizontal based on a visual inspection of the graph of f, but this
demonsgtrates the pitfall of using a graphing approach.
m Exercises

1. Compute derivatives of the following functions.
a) f(x) = x2 e’4x b) f(x) = X2+ &

) (0 =In(x—1)+In(x+ 1) d) f(x) = Ioglo(x( X3—3x+1)3/2)

X2-2x-3
2. Find the second and third derivatives of f(x) = €*Inx.

3. Let f(x) =cosx +Inx. Plotthe graphsof f and f ' on the same set of axes.

Inx

4. Find an equation of the line tangent to the graph of f(x) = =z that is paralldl to the x-axis.

5. Discovery Exercise: Define sinhx = (€ — e€7%)/2 and coshx = (e* + € %)/ 2. These functions are called the hyperbolic sine
and hyperbolic cosine of x, respectively.

a) Determine theinitial eight derivatives of each of these two hyperbalic functions.

b) Determine general formulas for the nth derivatives of these functions based on the pattern and verify your contentions via
mathematical induction.

¢) How do the higher-order derivatives of sinh x and cosh x compare with those of the trigonometric functions sin x and cosx?
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Chapter 4. Applications of the Derivative

We have seen how the derivative of afunction isitself a function. This idea leads to many possible applications, some of which
we will now explore with Mathematica to demonstrate its ability to manipulate and cal culate complicated or tedious expressions.

m 4.1. Related Rates

Students should read Section 3.9 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Example4.1. Let usassume arubber ball is sitting out in the sun and that the heat causes its surface area to increase at the rate
of 1.5 square centimeters per hour. How fast isthe radius increasing when the radius is 2 centimeters?

Solution: To solve this problem we will need the formula for the surface area of a sphere: S=4xr?. Here, the surface area S and
theradius r are expressed as functions of t (time).

inf243:= Cl ear [S]
sa = S[t] =4nr[t]"2

Out2aa= S[t] =4 r [t]2

in[245):= dsa = D[sa, t]

outzasl= S’ [t ] =8mr [t]r’[t]

Now differentiate this formulaand solvefor r' (t):
in[246):= sol = Sol ve[dsa, r' [t]]

St ]

out[246]= {{r [t] > m}}
Since the output above is a nested list (each set of curly braces denotes a list; see Chapter 1 of this manual for a description of
S(t)

nested lists) and our solution, o—-=-,
ar(t)

represents the second element of the first (inner) list, we can extract it in order to define r' (t)
asfollows:
npa7;= ' [t] =sol [[1, 1, 2]]

St

out47]= ———————
8r[t]

Since we are given that S' (t) = 1.5 and r(t) = 2, we substitute these into the formulafor r' (t):
nzagl=r'" [t1 /. {S" [t]1->1.5 r[t]-»2}

out[24g)= 0. 0298416

Therefore, when theradiusis 2 cmiit isincreasing at the rate of about .0298 cm per hour.

m Exercises

1. If the volume of a cube isincreasing at the rate of 2 cubic inches per minute, how fast is the length of one of its sides increas-
ing when that side is 8 inches?
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2. A particle ismoving along a parabola y = 2x? + 3x — 1 in such away that the rate of change of its x-coordinate is constant,
namely x' (t) = 3. Find the rate of change of its y-coordinate when the position of the particle is (1,4).

m 4.2. Extrema

Students should read Section 4.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Next, let us consider finding critical points and inflection points to determine extrema. Remember that critical points of a
function are those for which f'(x) = 0 or for which f'(x) does not exist. Similarly, inflection points occur where either

f"(x) = 0orwhere f"(x) does not exist. Extrema occur at critical points, but not al critical points are extrema (consult your
calculus text). An inflection point is a point (c, f (c)) where concavity changes; this occurs where f"(c) = 0 or where
f " (x) does not exist, and like critical points, not all pointswhere f " (x) = 0 (or where f " (x) does not exist) are inflection points.

Example4.2. Find all local extrema and inflection pointsof f(x) =1/(x?+ 3).

Solution: Wefirst define f in Mathematica:
inf2a9)= Clear [f, X]
nsop= fIX_] 1= 1/ (X"2+ 3)
mesi:= Plot [f [x], {x, -4, 4}]
0.30
025}F
0.20f
out[251]= r
015

010

-4 -2 2 4

To find extrema of f we locate its critical points, i..e those pointswhere f'(x) = 0or f'(x) isundefined. We can solve the first
case using Mathematica:

inf2s2):= ' [X]
Sol ve[f' [x] = 0, X]
2 X
Ouf252)= ~ —————
(3 + x2)

out2s3= {{Xx »0}}

Since f ' (x) isdefined everywhere, it followsthat there is exactly one critical point at x = 0 and at that point there is a maximum,
as can be seen from the graph above. We could & so have used the second derivative test to confirm this:
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in[2s4:= ' [0]

2
out[254]= - —
' 9

Since the second derivative is negative at x = 0, the curve is concave down there. This, of course, means that we have alocal
maximumat X = 0.

To find the points of inflection, we locate zeros of the second derivative:

in2ss)= Sol ve [f'' [x] = 0, X]

outessl= {{X » -1}, {x->1}}

To determine if these solutions are indeed inflection points we need to check if there isasign changein f " (x) on either side of
each (at x=-1and x = 1):

npsel= Plot [f'' [X], {xX, -2, 2}]

Out[256]=

Notice from the graph above that f " (x) changes from positive to negative at x = —1 and from negative to positiveat x = 1. Thus
both points (-1, f (-1)) and (1, f (1)) areinflection points.

m EXxercises

1. Find all critical points and inflection pointsfor:
af=x3-3x%+1 b) f(x) = (x® - 3) e c) f(x) =sinxon|[0, 2x]

m 4.3. Optimization

Students should read Section 4.6 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Extreme values of a function occur where f'(x) = 0 or where f'(x) does not exist. This idea alows us to find maxima and
minima— concepts which are crucial in many applications. For instance, in business, one wants to minimize costs or maximize
profits. In government, one wants to track the flow of money in an economy, and when that flow is a minimum or a maximum. In
engineering design, we may want to know what shape of a conduit will generate maximum flow. Similar problems exist in many
other fields. Wewill now look at some of these applications.
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m 4.3.1. Traffic Flow

Example 4.3. Traffic flow along a major highway in Boston between 6 AM and 10 AM can be modeled by the function
f(t) = 20t— 40Vt +50 (in miles per hour), where t = 0 corresponds to 6 AM. Determine when the minimum traffic flow
occurs.

Solution: Let usfirst plot the graph of f(t).

in2s71:= Clear [f, t]

mesel= f[t_1 := 20t - 40Vt + 50
ineso;= Plot [f[t], {t, 0, 4}]
50
45

outfzsgl= 401

35

1 2 3 4

Note from the plot above that the average speed is decreasing between 6 AM and 7 AM and increasing after 7 AM.

At 6 AM the average speed is
in260):= f [0]

out[260]= 50

or 50 mph. At 6:30 AM the average speed is

in261]:= f [. 5]

outz61]= 31. 7157

or 31.7 mph. To see how the average speed varies throughout the day we make a table of these values at each half hour from 6
AM to 10 AM:
in262):= Tabl eForm[ Table[{t, f[t]}, {t, O, 4, .5}]]
Out[262]//TableForm=
0. 50.
31. 7157
30.
31. 0102
33. 4315
36. 7544
40.718
45. 1669
50.

(&)]

a1

PWwwOwNdDNDPERO
o1 o1
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You can see from the table that the average speed quickly drops from 50 mph to 30 mph in the first hour and then gradually
increases back up to 50 mph during the next 3 hours. |f we want to verify that the minimum occursat 7 AM (or t = 1), we can

use calculus. Since extrema occur where the derivativeis 0, we set the derivative equal to zero and solve for t:
inze3;= Solvel[f' [t] = 0, t]
ourze3l= {{t - 1}}

Therefore the minimum does occur when t = 1 (7 AM) and from the table we see that the minimum average speed at thistimeis
30 mph.

m 4.3.2. Minimum Cost

Example4.4. A friend of one of the authors owns some land on Long Island off the coast of Portland, Maine. He wants to build
a house there, but there is no electricity. Heis considering laying an underwater cable to connect up with the mainland. After a
while | convince him of the ridiculousness of that idea. The cost is far more than he can afford, but it does get me thinking about
mathematics. What would be the cheapest way of hooking up a cable to the municipal electrical system? Let us consider the
following scenario:

k= -
0 [ 10000 O 1
10,000 METERS

Imagine the island connection point at (0, 3000) and the mainline connection point at (10000, 0) where the units are in meters.

Assume it costs $36 per meter to lay cable underwater and $24 per meter to lay cable on land. You can lay cable underwater
from (0, 3000) to (x, 0) and then lay cable on land from (x, 0) to

(10000, 0). The variable x can vary between 0 and 10000. What value of x would minimize the cost for laying this cable and
what would that minimum cost be?

Solution: First we need to determine the cost. There are two parts: the underwater part and the overland part. The cost of the
underwater part isjust $36 times the distance D1 from (0, 3000) to (x, 0). Wewill call that cost c1:

nea= €1[X_] := 36 %1 30002 + x2
The overland cost is $24 times the distance D2 from (x, 0) to (10000, 0). We will call that cost c2:
In[265:= C2[X_] := 24 % (10000 - x)

The total cost isthen:
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In[266]:= COSt [X_] = c1[x] + Cc2[X]

outzesl= 24 (10000 - x) + 36 1/ 9000 000 + x2

We need to minimize this cost function. First we graph it to seeif it has a minimum.

in2671:= Pl ot [cost [x], {x, O, 10000}]

370000}
360000}
350000
out[267]=

340000

330000}

2000 4000 6000 8000 10000

Notice that this cost function has its minimum somewhere between 2000 and 4000. Also, you will note that as x gets close to that
minimum the tangent lines of cost x are getting close to horizontal. In other words, the minimum will occur at a point x for which
the derivativeis zero or horizontal (i.e., the derivative at a point gives the slope of the tangent line at that point). Thisis a calculus
problem that we can solve.

in[268]:= Sol ve[cost ' [X] == 0, X]

Out[268]= Hx - 1200 \/5_}}
In[269]:= N[cost [1200 «/?”

out[269]= 320 498.

Therefore, the minimum occurs at x = 1200V'5 ~ 2683.28 meters and the minimum cost is approximately $320,498.
NOTE: Another method in finding the minimum is to use the command FindM inimum. We will start our search near x = 2000:
inf270]:= Fi ndM ni mum[cost [x], {x, 2000}, Wbrki ngPreci sion - 8]

ouz70- {320498. 45, (x - 2683. 2816} }

Again, we get an answer that corroborates the previous answer.

m 4.3.3. Packaging (Minimum Surface Area)

Example 4.5. A major concern in business is to minimize the cost of packaging. This cost is related to the surface area of the
package. If we can minimize that surface area, then we can minimize the cost. Let us assume that a company has a certain
product that needs to be packaged in a rectangular box having a square base. If the volume of the box is required to be 1 cubic
meter, then find the dimensions of the box that will minimize its surface area.

Solution: If the length of the sides of the sguare base is x and the height of the box is y, then the volume of the box is given by
x? y and must equal 1 cubic meter (thisis our constraint):

n71= Cear [X, VY, S]
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In[272]:= constraint =X"2xy =
ouz72]= X2y =1
The surface area of our package (box) isS=4xy + 2 (xz) and is the quantity that must be minimized (recall that the top and

bottom sides each have area x? and the 4 sides each have area x y). Using our volume constraint, x2y = 1, we can solvefor yin
terms of x:

in[273:= sol = Sol ve[constraint, y]

1

Out[273]= {{y - —2}}

X
The surface area function can then be expressed as a function of x only:
S0 = 4xy + 2x% = 4x(1/x?) + 2X% = 4/x + 2%?

n74]= S[X_] =4Xx*y +2x"2 /. y-sol [[1, 1, 2]]
ou27a]= — + 2 X2
X

Using the idea again that extrema occur at points where the derivative is zero, we calculate:

in[275:= Sol ve[S' [Xx] = 0, X]

oursl= {{x > 1}, {x>-(-1)*?}, {x> (-1)*?}}

This equation has 1 real and 2 imaginary solutions. We need only the real solution of x = 1. To see that this corresponds to an
actual minimum, we plot the curve:

in27e)= Pl ot [S[x], {X, 0, 5}]

80
700
60,
50|
Out[276]= 0
30/

20}

Alternatively, we could have used the second derivative test to show that a minimum occursat x = 1.
in2771:= S" "' [1]
out277}= 12

Since f " (1) > 0, we know that the graph is concave up at x = 1 and hence must have a minimum there. Sincey=1whenx=1,
we conclude that the box with minimum surface area is a cube with sides of 1 meter.



72 Mathematica for Rogawski's Calculus

4.3.4. Maximize Revenue
The following application concerns optimizing group fares for charter flights.

Example 4.6. Suppose atravel agency charges $600 per person for a charter flight if exactly 100 people sign up. However, if
more than 100 people sign up, then the fare is reduced by $2 per person for each additional person over the initial 100. The
travel agency wants to know how many people they should book to maximize revenue. Also determine what that maximum
revenue is and what the corresponding fare is for each person.

We let x denote the number of passengers above 100. Keep in mind that revenue is the product of the number of people multi-
plied by the cost (fare) per person. If R(x) is defined as the revenue function, then R(x) = (100 + x) (600 — 2 x). To determine
the maximum value of R(x) for x = O, let usfirst examine its graph:

inz7el:= R[X_] := (100 + x) (600 - 2x)

nz7o;= Plot [R[X], {x, 0, 200}]

SOOOOj
75000}
out279]= 70000:’
65000}

50 100 150 200

From the plot above we see that a maximum occurs at about x = 100. To confirm this, wefirst solve for the critical points:
in2so)= Sol ve [R' [x] == 0, Xx]

out280]= {{X - 100} }

Therefore the maximum does indeed occur at x = 100, and the maximum revenue is

in[281):= R[100]

out2s1]= 80000

or $80,000. Since 100 + x represents the number of customers, this occurs when 200 customers sign up for the flight. In this
case, the cost per person is

In[282}= 600 - 2x /. x ->100

out[282]= 400

or $400 per person.

m Exercises

1. Assume traffic flow is given by a speed function f (t) = 25t — 45yt + 55. Analyze speed changes between 6 AM and 10
AM and calculate when traffic flow is minimized. What is that minimum speed?
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2. Find the minimum value of f(x) = 3x* + 4.

3. Assume that the average cost of producing compact discsisgivenby c(x) = —.0002x + 3 + 2000/ x. Show that the average
cost is aways decreasing for x between 0 and 4000.

4. Suppose the population of acity is modeled by

p(t) = 4456t% + 8939 t? + 23463t + 25528
where t ismeasured in years from 1990 to 2000.
a) Show that the population was alwaysincreasing in this decade.

b) Show that the population was increasing at its slowest rate in August of 1990. Hint: The population is increasing at its
slowest rate when p" (t) = 0.

5. Given that the total cost for manufacturing x units of a particular product is described by the function
C(x) = 0.0025 x2 + 80 x + 10000, find the level of production that minimizes the total cost of manufacturing.

6. The total population of the planet is forecast by the function P(t) = 0.00074t% — 0.07t? + 0.89t + 6.04 where t is measured in
decades, t = 0 corresponds to the year 2000, and P(t) is measured in billions of people. In what year will the population peak
over the next 200 years?

7. A book designer has decided that the pages of a book are to have 1.5 inch margins top and bottom and 1 inch margins on each
side. If each page isto have an area of 100 square inches, what are the dimensions of this page if its printed area isto be a
maximum?

8. The owner of a farm wants to enclose a rectangular region with 3000 m of fencing while dividing the region into two parts,
each of which is rectangular, by using part of the fencing to subdivide it and running a fence parallel to the sides (see figure
below). What should be the dimensions of the region in order to maximize its area?

y

¥

9. The owner of a cruise ship charges groups as follows: For a group of 40 people, the charge is $1,000 per person per day. If
more than 40 people sign up, the fare is reduced by $8 for each addtional person.

a) Assuming at least 40 people sign up, determine the number necessary to maximize revenue.
b) What is the maximum revenue?

¢) What would be the cost per person in this case?
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m 4.4. Newton's Method

Students should read Section 4.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.
m 4.4.1. Programming Newton's Method

Newton's Method is a technique for calculating zeros of a function based on the direction of its tangent lines. It isarecursive
routine that is rather tedious to do by hand or even with a calculator, but simple with Mathematica. To start the procedure one
should have an idea about the general location of each zero. This is because an initial approximation xq for that zero, say at

X =r, is needed to start the recursion. For example, one can specify Xg by examining the graph of the function to see where the
zeros are approximately.  Then the next approximation x; can be found by the recursive formula x; = Xg — f(Xg)/ f ' (Xg). This
process can be iterated using the general formula

Xne1 = Xn = FO6) / £ (%)
Under suitable conditions, the sequence of approximations {Xg, X1, X2, ...} (called the Newton sequence) will convergetor.
Example4.7. Approximate the zeros of the function f (x) = In(9 - x2) - X.
neeai= f[x_]1 @ = Log[9 -xz] - X

in[2s4):= Plot [f [x], {Xx, 0, 3}]

out2sdl= i

Clearly, there is one zero between 1.5 and 2 based on the plot above. To approximate this zero, we define a function newtn to
perform the recursion:

In[2ss)= newtn[x_] 1= x - f [x]/f" [X]
To generate the corresponding Newton sequence, we compute 8 iterates of this function starting with an initial guess of x = 1.6.

This iteration can be performed efficiently using the NestList[f,x,n] function, which is a recursive routine that outputs a list with
x asitsfirst value, followed by f[x], f[f[x]], f[f[f[x]]], etc., up to n iterates as shown in the example below:

In[286]:= approx = Nest Li st [newtn, 1.6, 8]
outzsel= {1.6, 1.77538, 1.76961, 1.7696, 1.7696, 1.7696, 1.7696, 1.7696, 1.7696}
From this we see that the root, accurate to 4 decimal places, is 1.7696. If greater accuracy is desired, say 12 decimal places, we

can redisplay the values of approx if it is aready accurate to 12 decimal places or else recalculate it using a higher number of
iterations if necessary.
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in287):= Number For m[appr ox // Tabl eForm 13]

Out[287]//NumberForm=

1.6

. 775382136758
. 769608467699
. 769601100211
. 769601100199
. 769601100199
. 769601100199
. 769601100199
. 769601100199

e e

Discovery Exercise: The function f(x) = In(9 - x2) — x discussed above has a second zero. Locate it on the graph of f(x) and

use Newton's method to approximate it to 12 decimal places. Hint: First plot the graph over awide interval to locate the zero and
then zoom in to obtain an initial approximation.

Warning: Be sure that your initial approximation is sufficiently close to your zero; otherwise the Newton sequence may diverge
or converge to another zero.

m 4.4.2. Divergence

One interesting point about Newton's Method is that it does not always work. For instance, the function y = x¥2 clearly has a

rootat X =

0:

in[288]:= Pl ot [wa/x_ {x, 0, 1}]

10

out[288]=

0.2

0.8
0.6

0.4

0.2 0.4 0.6 0.8 10

Y et Newton's Method fails for any guess x + O:

infzso;= Cl ear [f]
fIx_]1:= \/3 X

in291:= NestLi st [newtn, 0.6, 6]

outize1j= {0
9

.6, -1.2, 2.4-8.24861x101% i, —4.8+1.64972x107% 1,
.6-3.16674x107"° i, -19.2 +6.33348x10"° i, 38.4 - 4.98733x10 *° i}
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NOTE: The extremely small imaginary values that appear in the answers earlier should be ignored (or treated as zero) since we
expect our answers to be entirely real. Thisis due to Mathematica's default algorithm for computing radicals in the domain of
complex numbers, which may introduce extremely small numerical errors. To eliminate these imaginary parts, we use the
Re[expr] command to extract the real part of expr.

in292]:= Re [Nest Li st [newtn, 0.6, 6]]
ou2921= {0.6, -1.2, 2.4, -4.8, 9.6, -19.2, 38.4}

Question: Can you explain why Newton's Method fails in the above example?

m 4.4.3. Slow Convergence

Even when Newton's Method works, sometimes the Newton sequence converges very slowly to the answer. Consider the
following function:

in2o3):= Clear [f]

fIx_] :=x8

-x -1

inpos;= Plot [f [x], {x, -3, 2}]

Out[295]=

-20f

_o5L
Clearly, thereisaroot between 1.2 and 1.4. If we use the newtn function with our guessas x = 1, we get quick convergence to
theroot:

in296]:= Nest Li st [newtn, 1.0, 6]

outzo6)= {1., 1.5, 1.34783, 1.3252, 1.32472, 1.32472, 1.32472}

But if we choose our initial guess near 0.6, the convergence is much slower as discussed in the following exercises.

m Exercises

1. Compare the convergence in the above example (Section 4.4.3) for initial guesses of 0.5 and 0.6. Why does Newton's Method
converge so slowly for these values? (Hint: Consider the tangent lines to the curve f(x).)

2. Synthesizing the discussion in Sections 4.4.1 and 4.4.2 on the flaws in Newton's Method, can you come up with any general
criteria that will tell us when Newton's Method will converge or diverge?

3. Use Newton's Method to find the postive zero of f(x) = x? — 2 accurate to 5 decimal places. Note: This demonstrates how

Newton's Method can be used to approximate V2.

4. Use Newton's Method to find a solution (accurate to 5 decimal places) to the following equations:
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a) sinx = cos(2x) intheinterval [0, 7/2] (Hint: Define f(x) = sin X — cos(2 X))

b) eX = 5x

C) COSX = X

77
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Chapter 5. Integration

m 5.1. Antiderivatives (Indefinite Integral)

Students should read Section 4.8 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Integrate[ f, x] givesthe indefinite integral (or antiderivative) of f with respect to x. The command Integrate can evaluate all

rational functions and a host of transcendental functions, including exponential, logarithmic, trigonometric, and inverse trigono-
metric functions. One can also use the pal ette button f odo (BasicMathlnput Palette) to evaluate integrals.

Example5.1. Evaluate [x(x?+ 1)2 dx.

Solution:

Method 1: (Palette buttons)

In[297]:= JX (x? + 1) Z dx

x2 x* x5
out97) — + — + —
2 2 6

NOTE: Mathematica does not explicitly include the constant of integration C in its answers for indefinite integrals; the user
should always assume that thisisimplicitly part of the answer.

Method 2: (Integrate command)
infz9g= I ntegrate[x (x*2+1)"2, X]

x2 x* x5
out298l — + — + —
2 2 6

NOTE: Observe that if the substitution u=x?+1 is used to transform this integral, then the answer becomes

X(x®+ 1)2 dx= % fuwrdu= % (1+ x2)3. How does one reconcile this answer with the one obtained in the output above?

The following are examples of integrals that can be evaluated in a routine manner using the substitution method. The reader
should perform the integration by hand to check answers.

Example5.2. Evaluate X _dx.
g /=

x+1

Solution:

Out[299]= 5 (-2 +X) V1+X

Example5.3. Evaluate [x*sin(x®)d .

Solution:
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In[300]:= sz Sin[x3] dx
1
out[300]= — 3 Cos [x?]

Note: Mathematica can certainly integrate much more complicated functions, including those that may reguire using any of the
integration techniques discussed in your calculus textbook. We will consider these in Section 5.4 following.

m Exercises
1. Evauate the following integrals:

a) [(X+2)dx b) [cos3xdx c)f\/ 1-x2 dx d) [sin®xdx

2. Integrate each of the following. Simplify your answers.

X34+3 x4 -2 x+1 1
a) deX b) fl+sin2xdx

3. Evaluate the following integrals by first using Mathematica to decompose the integrand as a sum of partia fractions (using the
Apart[expr] command to perform this decomposition).

X242 x-1 1
@ f2x3+3 X2—2x dx (0) fx(x+l) (2x+3) dx

m 5.2. Riemann Sums and the Definite Integral

Students should read Sections 5.1 and 5.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

There are two basic integration commands in Mathematica to evaluate definite integrals:
Integrate[ f, {X, a, b}] calculates the definite integral (area under the curve) of f ontheinterval [a, b] using analytic methods.

NIntegrate[ f, {X, a, b}] calculates a numerical approximation of the definite integral of f on [a, b] using numerical methods.

Review of Riemann Sums: A partition of aclosed interval [a, b] isaset P = {Xg, X1, X2, ..., Xn} Of pointsof [a, b] such that
a=Xg <X <Xp < e <X, =h.
Given afunction f on aclosed interval [a, b] and a partition P = {Xg, X1, ...., Xn} Of the interval [a, b], recall that a Riemann

sumof f over [a, b] relativeto P isasum of the form
ity foan A x,

where AX =X — x_1 and X*is an arbitrary point in the ith subinterval [x_;, x]. For simplicity we shall assume that
AXi=AX = b;—"‘for al i. A Riemann sum is therefore an approximation to the (signed) area of the region between f and the x-
axisaong theinterva [a, b]. The exact areais given by the definite integral of f over [a, b], which is defined to be the limit of

its Riemann sums as n — oo and is denoted by fabf(x) d x. In other words,
fabf(x)dx: liMy e g FO6*) A X

This definite integral exists provided the limit exists. For a continuous function f it can be shown that fa b f(X) d X exists.
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m 5.2.1. Riemann Sums Using Left Endpoints

We can define a Riemann sum of f relative to a partition P by considering rectangles whose heights are based on the left end-
point of each subinterval of P. Thisisachieved by setting x* = x;, =a+i(b—a)/nfori=0, 1, ...n-1, sothat the correspond-
ing height of each rectangle is given by f(x;)). This leads to the following formula for the Riemann sum using left endpoints,
which we denote by LRSUM::

ino1:= C ear [f]
LRSUM[a_, b_, n_]:=Sum[f[a+i * (b-a) /n]x(b-a)/n, {i, O, n-1}]

Example5.4. Let f(x) =x?on[0,1] andletP={0, 1/n, 2/n, 3/n, ..., (n—-1)/n, 1} beapartition of [0, 1].
a) Approximate fol f (X) d x by computing the Riemann sum relative to P using the left endpoint method.

b) Plot the graph of f and the rectangles corresponding to the Riemann sum in part a).
¢) Find the limit of the Riemann sum obtained in part a) by letting n — co.

Solution: 8 We define f(x) = x? in Mathematica and evaluate LRSUM using a = 0, b = 1, and various values for n. In the table
below, the first column gives the value of n and the second column gives the corresponding Riemann sum.

o= f[Xx_]:=x2

Tabl e[ {n, N[LRSUM[O, 1, n]]}, {n, 10, 100, 10}] // Tabl eForm

Out[304]//TableForm=

10 0.285

20 0.30875
30 0.316852
40 0.320938
50 0.3234
60 0.325046
70 0.326224
80 0.327109
90 0.327798
100 0.32835

Thus folx2 dx ~ 0.30875 for n = 20 (rectangles). We leave it to the reader to use large values of n to investigate more accurate
approximations using left endpoints.

b) The following program gives a plot of the rectangles corresponding to the Riemann sum in part @) using left endpoints.

in[30s]:= LEPT[f _, {a_, b_, n_}]:=Mdule[
{dx, k, xstar, lrect, plot},
dx = N[(b-a) /n];
xstar = Table[a+i %= dx, {i, 0, n}];
I rect =Tabl e[Line[{{xstar [[i]], O}, {xstar [[i]], f[xstar [[i]]]},
{xstar [[i +1]], f[xstar [[i]11}, {xstar[[i +111, O}}1, {i, 1, n}I;
plot =Plot [f [x], {X, a, b}, Filling » AXis];
Show[pl ot, Graphics[{Geen, lIrect}]]]

To demonstrate this for our example, we evaluate L EPT by specifying f(x) = X%, a=0, b= 1and n = 20.
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inzoel= f[X_]:=x"2
LEPT[f, {0, 1, 20}]

os} y.
: yA
06 yd
Oout[307]= L
041
0.2 —
0.2 0.4 0.6 0.8 1.0

Here is a graphics animation of the plot above as n (humber of rectangles) increases from 1 to 50.

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-
tions generated from the Animate command in this chapter. 1f you are reading the electronic version of this publication format-
ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation. Just click on the
arrow button to start the animation. To control the animation just click at various points on the sliding bar or else manually drag
the bar.

in[308]:= Ani mate [LEPT[f, {0, 1, a}], {a, 1, 50, 5}]

Outsoer _

NOTE: The underestimation given by LRSUM in this example can be explained from the above graph: The sum of the area of
the rectangles is less than the area of the region under the graph of f since the rectangles are contained inside the same region.

Thisisduetothefact that f isincreasing on [0, 1].

¢) Weevauate LRSUM inthelimitasn — co.

in309:= Li mit [LRSUM[O, 1, n], n-Infinity]
1

Out[309]= —

ut[309] 3

Thus folxz dx=1/3=0.33....

m 5.2.2. Riemann Sums Using Right Endpoints

We can similarly define a Riemann sum of f relative to a partition P by considering rectangles whose heights are based on the
right endpoint of each subinterval of P. Thisis achieved by setting x* = x; =a+i(b—a)/nfori=1, 2, ...n, so that the
corresponding height of each rectangle is given by f(x;). Notethat i ranges from 1 to nin this case (as opposed to 0 to n— 1 for
the left endpoint method). This leads to the following formula for the Riemann sum using right endpoints, which we denote by
RRSUM:

inz101:= C ear [f]
RRSUM[a_, b_, n_]:=Sum[f [a+i *(b-a) /n]l*(b-a)/n, {i, 1, n}]
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Example5.5. Let f(x) =x?on[0,1] andletP={0, 1/n, 2/n, 3/n, ..., (n—1)/n, 1} beapartition of [0, 1].
a) Approximate fol f (x) d x by computing the Riemann sum relative to P using the right endpoint method.

b) Plot the graph of f and the rectangles corresponding to the Riemann sumin part a).
¢) Find the limit of the Riemann sum obtainded in part @) by letting n - .

Solution: @) We evaluate

np12)= f[x_]:=x2

Tabl e[ {n, N[RRSUM[O, 1, n]]}, {n, 10, 100, 10}] // Tabl eForm

Out[313]//TableForm=

10 0.385

20 0.35875
30 0.350185
40  0.345938
50 0.3434
60 0.341713
70 0.34051
80 0.339609
90 0.338909
100 0.33835

b) Similarly we can write a program that gives a plot of the rectangles corresponding to the Riemann sum in part &) using right
endpoints.

in314]= REPT[f _, {a_, b_, n_}]:=Mdule[
{dx, i, xstar, rrect, plot},
dx =N[(b-a) /n];
xstar =Table[a+i % dx, {i, 0, n}];
rrect = Table[Line[{{xstar [[i]], O}, {xstar [[i]], f[xstar[[i +1111},
{xstar [[i +1]]1, f[xstar [[i +1111}, {xstar[[i +1]11, O}}1, (i, 1, n}1;
pl ot =Plot [f [x], {X, a, b}, Filling -» Axis];
Show[pl ot, G aphics[{Blue, rrect}]]]

For our example, we have:

nE1s)= f[X_]:=x"2
REPT[f, {0, 1, 20}]

10} 7
0.8 f 7
i ]
06 ]
out[316]= ]
04f
0.2 —
0.2 04 06 08 10

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-
tions generated from the Animate command in this chapter. 1f you are reading the electronic version of this publication format-
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ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation. Just click on the
arrow button to start the animation. To control the animation just click at various points on the sliding bar or else manually drag
the bar.

nE171= Animate [REPT[f, {0, 1, a}], {a, 1, 50, 51}]

NOTE: The overestimation of the RRSUM can be explained analogously as with the underestimation obtained from LRSUM.
¢) We evaluate RRSUM inthelimitasn - co:

in[31g]:= Limt [RRSUM[O, 1, n], n-Infinity]

1
out[318]= —
3

NOTE: Here is a comparison between the two plots of the left-endpoint and right-endpoint rectangles:

nE1op= LREPTIf _, {a_, b_, n_}]1:=Mdule]

{dx, i, xstar, lrect, rrect, plot},

dx = N[(b-a) /n];

xstar =Table[a+i % dx, {i, 0, n}];

I rect =Tabl e[Line[{{xstar [[i]], O}, {xstar [[i]], f[xstar [[i]]]},
{xstar [[i +1]], f[xstar [[i]]11}, {xstar[[i +111, O}}1, {i, 1, n}I;

rrect = Tabl e[Line[{{xstar [[i]], O}, {xstar [[i]], f[xstar [[i +1111},
{xstar [[i +1]], f[xstar [[i +1]11}, {xstar[[i +1]1, O}}1, {i, 1, n}1;

plot =Plot [f [x], {X, a, b}, Filling » Axis];

Show[pl ot, Graphics[{Blue, rrect}], Gaphics[{Geen, Irect}]]

]

inE2op= f[X_]:=x2
LREPT[f, {0, 1, 20}]

10

0.8

0.6

out[321]=

04

0.2

0.2 0.4 0.6 0.8 1.0

in322;= Animate [LREPT[f, {0, 1, a}], {a, 1, 100, 51}]
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m 5.2.3. Riemann Sums Using Midpoints

The Riemann sum using the midpoints of each subinterval is given by the following formula. (We leave it to the student to verify
that the midpoint of ith subinterval isgivenby a+ (i — %)(b;—a) fori=1, ..,n)
in[323):= Cl ear [f]
MRSUW[a_, b_, n_]:=Sum[f[a+ (i -1/2)x(b-a)/n]*x(b-a)/n, {i, 1, n}]
Example5.6. Let f(x) =x?on[0,1] andletP={0, 1/n, 2/n, 3/n, ..., (n—1)/n, 1} beapartition of [0, 1].
a) Approximate fol f (x) d x by computing the Riemann sum relative to P using the midpoint method.

b) Plot the graph of f and the rectangles corresponding to the Riemann sumin part a).
¢) Find the limit of the Riemann sum obtainded in part @) by letting n — .

Solution: @) We evaluate

inEes)= f[x_]:=x2

Tabl e[ {n, N[MRSUM[O, 1, n]1}, {n, 10, 100, 10}] // Tabl eForm

Out[326]//TableForm=

10 0.3325
20 0.333125
30 0.333241
40 0.333281
50 0.3333
60 0.33331
70 0.333316
80 0.33332
90 0.333323
100 0.333325

b) Again we can write a program that gives a plot of the rectangles corresponding to the Riemann sum in part @) using midpoints.

nE271= MDPT[f_, {a_, b_, n_}]:=Mdule[
{dx, i, xstar, nrect, plot},
dx = N[(b-a) /n];
xstar =Table[a+i % dx, {i, 0, n}J;
nrect = Tabl e[Line[{{xstar [[i 1], O}, {xstar [[i]], f[(xstar [[i]]+xstar [[i +111)/2]1},
{xstar [[i +1]], f[(xstar [[i]]+xstar [[i +111)/21}, {xstar[[i +111, O}}1, {i, 1, n}1;
plot =Plot [f [x], {X, a, b}, Filling » Axis];
Show[pl ot, Graphics[{Red, nrect}]]



Chapter 5 85

ina2g)= f[X_]:=x2

M DPT[f, {0, 1, 10}]

10

0.8

0.6~

out[329]=

041

021

0.2 0.4 0.6 0.8 1.0

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-
tions generated from the Animate command in this chapter. 1f you are reading the electronic version of this publication format-
ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation. Just click on the
arrow button to start the animation. To control the animation just click at various points on the sliding bar or else manually drag
the bar.

nEsop- Ani mate [M DPT[f, {0, 1, a}], {a, 1, 100, 5}]

o301 _

¢) The limit of the Riemann sum using the midpointsis given by
in[331]:= Limt [MRSUM[O, 1, n], n>Infinity]

1
out[33l= —
3

NOTE: Hereisavisua comparison of all three Riemann sumsin terms of rectangles:

in332)= ALL[f _, {a_, b_, n_}]:=Modul e[

{dx, i, xstar, lrect, rrect, nrect, plot},

dx = N[ (b -a) /n]J;

xstar =Table[a+i = dx, {i, 0, n}];

I rect =Tabl e[Line[{{xstar [[i]], O}, {xstar [[i]], f[xstar [[i]]]},
{xstar [[i +1]], f[xstar[[i]]1]1}, f{xstar[[i +111, O}}1, {i, 1, n}1;

rrect = Tabl e[Line[{{xstar [[i]], O}, {xstar [[i]], f[xstar [[i +1111},
{xstar [[i +1]], f[xstar [[i +1]11}, {xstar[[i +1]1, O}}1, {i, 1, n}I;

nrect = Table[Line[{{xstar [[i 1], O}, {xstar [[i]1], f[(xstar [[i]] +xstar [[i +111)/2]},
{xstar [[i +1]]1, f[(xstar[[i]]+xstar[[i +11]1)/21}, {xstar[[i +111, O}}1, {i, 1, n}l;

pl ot =Plot [f [x], {X, a, b}, Filling -» Axis];

Show[pl ot, Graphics[{Blue, rrect}], G aphics[{Geen, Irect}], Gaphics[ {Red, nmrect }]]
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inz33= O ear [f]
fIx_1:=x°
ALL[f, {0, 1, 10}]

10+

0.8

out[335]=

04+

0.2

02 o4 06 o8 10
Here is how all three Riemann sums behave when we increase the number of rectangles.

n3361= Animate[ALL[f, {0, 1, a}], {a, 1, 100, 5}]

outsser _

NOTE: All three limits from the left-endpoint, right-endpoint, and midpoint methods are equal. This is not surprising since each
isequal to f01x2 d x (remember that the existence of a definite integral requires that all Riemann sums converge to the same limit).
However, the midpoint method tends to converge faster to the limit than the other two methods (discussed in your calculus text).

Example5.7. Let f (x) =x3+x2+1on[0, 1] andletP={0, 1/n, 2/n, ..., n/n= 1} beapartition of [0, 1].
a) Find the Riemann sum of f relative to P using the |eft endpoints of the partition.

b) Find the Riemann sum of f relative to P using the right endpoints of the partition.

¢) Show that the difference between the two sumsgoestoO at h - oo.

d) Find the limit of the Riemann sumsin parts @) and b). Is this consistent with part c)?
€) What do you conclude from part d)?

Solution: a) The Riemann sum using left endpointsis given by

in[3371:= C ear [f]
LRSUM[a_, b_, n_]:=Sum[f[a+i * (b-a) /n]+«N[(b-a)/n], {i, 0, n-1}]

mpag)= FIx_]:=x3+x%+1
LRSUM[O, 1, n]

Lcrtim?nZents Y (c14nmyn2 (-1+2n)
4 6

out[340]=
n 4

inz41)= Sinplify[%]
5-12n+19n?

out[341]=
12 n2

b) The Riemann sum using right endpointsis given by

in[z421:= C ear [f]
RRSUM[a_, b_, n_]:=Sum[f [a+i *(b-a) /n]*N[(b-a)/n], {i, 1, n}]
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npag= FIx_]:=x3+x2+1
RRSUM[O, 1, n]

n4+%n2 (1+n)2+%n2 (L+n) (1+2n)

Out[345]=
n4

in[346):= Si nplify[%]
19 5 1

out[a4el= — + +—
12 12n2 n

¢) We now evaluate and simplify the difference between the two Riemann sums:
In347= Si mpl i fy [RRSUM[O, 1, n] - LRSUM[O, 1, n]]

2
Out[347]= —
n

Asn - oo, Observe that this difference goesto zero.
d) Next we use the limit command to evaluate the limit of the two Riemann sums:

in[34g):= Limt [LRSUM[O, 1, n], n>Infinity]

19
Out[348]= ——
12

in[349]:= Limit [RRSUM[O, 1, n], n>Infinity]
19
out[349]= —
12
Inlight of c), we should not be surprised that the two limits are the same. After all, their difference was seen to converge to zero!
e) By definition of a definite integral, we conclude from d) that fol(x3 + %2+ 1) dx = 19/12. We confirm this by evaluating
1
In[350]:= j (x* +x? +1) ax
0

19
out[350]= —
12

m Exercises

1. Let f(x)= “forO<x<1landletP={0/n, 1/n, 2/n, ..., n/n= 1}beapartition of [0, 1].

X+1

a) Find the Riemann sum of f using the left endpoints of P and plot the rectangles that approximate the integral of f over [0, 1].
Also use the Animate command to see if the total area of the rectangles converges to the area of the region under the graph of f
and above the x-axis.

b) Repeat &) using right endpoints of P.
¢) Repeat @) using midpoints of P.

2. Let f(x) =xsinxon [0, n]. Useauniform partition P and repeat Exercise 1 (immediately above) for this function.
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5.3. The Fundamental Theorem of Calculus

Students should read Sections 5.3 and 5.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

The crowning achievement in calculus is the Fundamental Theorem of Calculus (FTC), which reveals that integration and
antidifferentiation are equivalent. This can be expressed in two parts:

FTC - Part I: Given a continuous function f(x) on [a, b], we have
f0dx=F(b)-F@).

Here, F(x) isany antiderivative of f(X).

FTC-Part 112 1f F(x) = [*f(t) dt, then F' (x) = f(x).

NOTE: Physically the Fundamental Theorem of Calculus tells us that the area under a velocity curve of an object is the same as
the change in position of the object.

Mathematica naturally uses FTC to evauate definite integrals whenever it is able to find an antiderivative. Of course there are
examples where it is not able to do this, asthe latter examples following demonstrate.

X

Example5.8. Evauate fls— dx.
2x-1
Solution:
5 X
In[351]:= J ——dx
1 42x-1
16
Out[351]= —
3

/x*-3 dx.

X

Example5.9. Evauate ﬁ?

Solution:

in[3s21= I ntegrate[Sqrt [x*2-3]/x, {X, Sqrt [3], 2}]

s

2+/3

in353):= N[%]

out3s2)= 1 -

out3s3)= 0. 0931003

Example5.10. Approximate foltan X2 dx.

Solution: Here is an example of an integral that Mathematica cannot evaluate exactly but returns the integral unevaluated
because the precise answer is not expressible in terms of elementary functions.
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n[3s4)= I ntegrate[Tan[x”2], {x, 0, 1}]
1

out[354]= J Tan [Xz} dx
0

However, a numerical approximation is still possible through the command N.
In355]:= N[%]

outzssj= 0. 398414

Or we could use the command NI ntegr ate to perform both steps at once:
n3s6:= NIl ntegrate[Tan[x”2], {x, 0, 1}]

outzsej= 0. 398414

Example 5.11. Use the fact that if m< f(x) <M for al x € [a, b], then m(b-a) sfabf(x)dxs M (b — a) to approximate
2 y
fO\/ X +1 dx.

Solution: We note that the function f (x) = \/ x3+1 isincreasing on [0, 2]. This can be checked by finding f ' (x) and observing
that f'(x) > Ofor all x (or by simply drawing the graph of f). Thus1= f(0) < f(x) < f(2) =3and so

12-0)= [P\ 1+x dx=32-0)

or

2= PV 1+ dx=<6

We can confirm this by evaluating

inEs7)= | Nt egrate[\/x3+1, {x, 0, 2}]

1
out[3s57)= 2 Hyper geonet ri c2F1 [— > —8}

wW| =
w| s

Since the function Hyper geometric2F1 is not known to us, we use

inzsel= NI nt egrate[‘\/x3 +1, {x, O, 2}]

out[3sg)= 3. 24131

Example5.12. Let f(x) = cos(x?) on [0, 2] and define g(x) = foxf(t) dt = foxcos(tz)dt.
a) Plot the graph of f.

b) Find the value(s) of x for which g(x) starts to decrease.

c) Estimate g(x) for x= 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1,4, 1.6, 1.8, 2.

d) Draw the graphs of g(x) and g’ (x).

€) How do the graphs of f(x) and g' (x) compare?

Solution: @) We plot the graph of f.
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in3se)= O ear [f]
f [x_] = Cos [x?]

grx_1 =jf[t]d1t
0

outzeoj= Cos [x?]

7T 2
out[361]= — FresneIC[ — x]
2 s

NOTE: The function FresnelC is caled the Fresnel Cosine function and plays an important role in physics and engineering. The
Fresnel sine function is defined in the obvious manner.

nez)= Plot [f [x], {x, 0, 2}]

10

oU1[362J:7““\““\““\““\
3 05 1.0 15 20

—10}

b) We note that the graph of f is above the x-axis (positive area) for x between 0 and v /2 and below the x-axis for x between

V7/2 and 2. Thusthe graph of g starts to decrease after V /2 . The following table of the Riemann sumsof f on [0, x] (for x
varying from 0 to 2) showsthis point.

in363= LRSUM[a_, b_, n_]:=Sum[f [a+i * (b-a) /n]*N[(b-a)/n], {i, 0, n-1}]



in364]:= Tabl e [{x, LRSUM[ O,

Out[364]//TableForm=
0

. 099999
. 199969
. 299763
. 399003
. 496961
. 592462
. 683788
. 768634
. 844106
. 906809
. 953042
. 979133
. 981926
. 959393
. 911352
. 840164
. 751263
. 653331
. 557883
. 478099

0.

© 00 ~NO O~ WNPRP

NPEPRPRPRRPRPPRERPRPPREPREOOOOCOODOOCO
© O ~NOUOhA®WN R

O O O O O 0O 0000000000 OoOOoOOoOOo

x, 10013,

{x,

Chapter 5

0, 2, 0.1}] // Tabl eForm

91

NOTE: Since g isthe integral, it should start to decrease at x = V7/2 ~ 1.25. We can confirm this by examining the values of g

in the neighborhood of this point:

in[365):= Tabl e[ {x, LRSUM[ O,

Out[365]//TableForm=

1.2

21
22
23
24
25
26
27
28
29
3

=

P R R R RR R R R

From the above table, we see that the function g doesindeed start to decrease at approximately x = 1.25:

O O O O O 0O OO0 o o o

. 979133
. 980506
. 981641
. 982538
. 983193
. 983603
. 983768
. 983684
. 98335

. 982765
. 981926

x, 1007},

¢) Hereisthetable of values for g(x):

{x,

1.2,

1.3, 0.01}] // Tabl eForm
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inBee):= Tabl eForm[Tabl e[ {x, g[x]1}, {x, 0.2, 2, 0.2}1]1]
Out[366]//TableForm=
0.2 0.199968

0. 398977
0. 592271
0.767848
0. 904524
0. 973945
0
0
0
0

o o b

. 949779
. 825517
. 635365
. 461461

NP PP PRRPROOO
o o hN

d) The graphs of the function f (x) and g' (x) are given below

ne7)= Plot [{g[x], g' [X]}, {X, 0, 2}, PlotStyle -» {Red, Blue}]

10

051

oufzer: L o 0 N
F 0.5 1.0 15 20

_10-
€) The graphs of the function f(x) and g' (x) are given below

inzes)= Plot [{f [x], g' [X]}, {X, 0, 2}, PlotStyle -» {Red, Blue}]

10

ousesls o 0 N
F 0.5 1.0 15 20

-05

-10F

This means that the two graphs are the same. In fact, from the Fundamental Theorem of Calculus, we know that g' (x) = f(X).

m Exercises

1. Evauate the following integrals:
a) fol(x2+ 2)dx b) J; cos3xdx 0) fol\/ 1-x2 dx d) [7 sin® xdx
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2. Evaluate the following integrals.

z Ve
a)LS(X3_4X2+X)dX b)£4(%+2\/7)dx C)L“SBCXCIX d)j(')T 2 dX

1-4%2
3. Let S() = [7'sin(3 7 t?) dt (S(x) is called the Fresnel sine)
a) Plot the graph of S and approximate the value of Sas X — co. Confirm your approximation by evaluating the limit as x - oo.

b) Find S'(x) and use it to find the interval(s) on whcih S(x) increase and decrease. Hint: Apply the Fundamental Theorem of
Calculus.

¢) On what intervalsis S concave up? Concave down?

d) Find the value of x for which §(x) = 0.7.

4. Find an explicit formulafor a continuous function f such that

x f(t)

X
o fodt=xe + [7——

dt

(Hint: First take the derivative of both sides and then solvefor f(x).)

m 5.4, Integrals Involving Trigonometric, Exponential, and Logarithmic Functions

In your calculus text you will learn how to evaluate integrals using different techniques. In Mathematica we do not need to
specify the technique. It chooses the technique appropriate for the problem. However, there are some integrals that cannot be
evaluated in terms of elementary functions. In such cases, Mathematica will return the integal unevaluated or gives us a name for
the integral.

Below we will consider some examples of integrals that involve trigonometric functions, exponential, and logarithmic functions.
If done by hand, some of these integrals require integration by parts, partial fraction decompositions, or trigonometric substitu-
tions.

Example5.13. EvaJuatef £ dx.
(x*+1)

Solution: If done by hand this integral involves using the substitution method.
in[3e9= I ntegrate[x”~2/ (x*3+1)"2, x]

1

out[369)= - —————
3 (l + Xs)

Example5.14. Evaluate [ )@'XX;—:“Z dx.

Solution: Thisintegral involveslong division and partial fraction decomposition.
X2+ x24X+2
In[370]:= J— dx

x2-1

x2 x* 5 1
out370]= X + — + — + — Log[-1 +Xx] - — Log[1 + X]
2 4 2 2
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Example5.15. Eval uaIef&”Z+1 dx.
(x*+1)

Solution: Thisintegra involveslong division, partial fraction decomposition, and inverse trigonometric functions.

x*+x3ex+1
In[371]:= S — dx
(X2 + 1)

1
- ArcTan[x] + 5 Log|[1 +x?]

Oout[371]= X +
1 +x2

NOTE: All functions that appear as output are written in Mathematica's notation. To convert the output to a more familiar form

the command TraditionalForm can be used. Here isthe "traditional” form of the output below (note that log x means the same
asInxinthiscase).

x4 +x3ex+1 o
In[372):= —_— dx // Tradi ti onal Form
(x2 + 1)

Out[372])/[TraditionalForm=
X

1
+Xx—tan (%) + — log(x® + 1
X2 +1 2 d )

Example5.16. Evaluate [x*sinxd x.
Solution: Thisintegral involvesintegration by parts (twice).
In[373]:= sz Si n[x] dx

ouazal= - (-2 +x?) Cos [x] +2x Sin[x]

Example5.17. Evaluatef L _ax.

1-x2
Solution: Thisintegral involvestrigonometric substitution.

in[3741= I ntegrate[-1/Sqrt [1-x"2], X]

out[374]= -ArcSi n[X]

NOTE: Your calculus textbook may give arccosx for the answer, as opposed to —arcsin x as above. Can you explain how the
integration constant resolves the difference in these two answers?

Here are some examples of integrals that are important in applications but do not have an elementary antiderivative.

In[375]:= jSi n[xz] dx

7T 2
out[375]= — FresneIS[ — x]
2 7T
_x2
In[376]:= E™ dx

1
Out[376]= 5 Vo Erf [x]
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nB77)= I ntegrate[Sin[x] /X, X]

out377)= Si nl ntegral [X]
We can use NIntegrate to evaluate these integrals over any finite interval. For example:

ina7e= NI nt egrate[E‘Xz, {x, 0, 10}]
outz7ej= 0. 886227

in[3791:= NI ntegrate[Log[x] /X, {X, 2, 100}]
outz79]= 10. 3636

m Exercises

1. Evaluate the following integrals:

a) [xV2-x dx b)fx3\/1+x2 dx c) [tan? xsec* xd x
2
d) (=21 gx e)chlx
f X V ¥+x-1

2. Use various values of a, b, and n to evaluate the following integrals. Then make a conjecture for a general formula and prove
your conjecture.
a)fmdx b) [cos(ax)sin(bx) dx o) [X"Inxdx

d) [X"e*dx e) [x"sin(x)d f) [€#X costbx) d x
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Chapter 6. Applications of the Integral

Evaluating integrals can be tedious and difficult. Mathematica makes this work relatively easy. For example, when computing
the area of aregion the corresponding integral can be difficult to set up because the limits of integration are not known. Mathe-
matica, with its powerful plotting capability, can turn this job into a very doable one. We will examine several applications that
demonstrate this.

m 6.1 Area Between Curves

Students should read Section 6.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let us consider the problem of finding the area between two curves.

Example 6.1. Determine the area of the region bounded between the curves f (x) = sinx and g(x) = csc® xon [r/4, 37/ 4.
Solution: To find the area here, we first plot the graphs of f and g.

inzso)= C ear [f, g]

Sin[x]
Csc[x]"2

nzs1= fI[X_] :
g[x_]:

in3s3)= Plot [{f [X], g[x1}, {X, =/4, 3x/4},
PlotStyle - {Red, Blue}, PlotRange -» {-.5, 2.5},
Filling » {1 - {2}}]

251
20{
15}

ouf3s3l=  1.0f

05f

1.0 15 2.0

—os5h

Looking at the plot above and recalling that csc x is always greater than or equal to 1 on this interval, it follows that csc? x is
aways greater than or equal to sin x, which is less than or equal to 1 on the same interval. Hence calculating the area between
these two curves between x = /4 and x = 37 /4 is straightforward:

3 /4
In[384]:= J (9[x]1 - f[x]) dx

/4
out[3saj= 2 -V 2
in[38s:= N[%]

outzssj= 0. 585786
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Example 6.2. Determine the area of the region enclosed between the curves f (x) = x(x? — 3x+ 3) and g(x) = X°.

Solution: To find the area between these two curves, we will need to see if they intersect and if so where by plotting their graphs.
inzse)= Cear [f, g, X]

nEeri= fIX_] t= x (x* = 3x + 3)

2

n@Essl= g[X_] = X

inso= Plot [{f [X], g[x1}, {x, -2, 4},
PlotStyle -» {Red, Blue}, PlotRange -» {-2, 11},
Filling » {1 - {2}}]

10}

out[389]=

oL
Notice that f(x) is graphed in red, while g(x) is graphed in blue. Also, the "Filling" option in the Plot command fills in the

region between the two graphs (functions 1 and 2 in the Filling command) in gray. The bounded region between the two curves
seemsto lie between x = 0 and x = 3. To ascertain this we solve for the intersection points:

inzooj= Sol ve [ f [X] = g[x], X]

ouzoo)= {{X >0}, {x->1}, {x->3}}

Hence the intersection pointsare at x = 0, 1, and 3. Noting that f(X) is greater than g(x) on [0, 1] and g(X) is greater than f(x)
on [1, 3], we need two integrals to calculate the (physical) area between the two curves since areas are aways calculated by

subtracting the smaller function from the larger one. In particular, on [0, 1] the areais given by fol[ f(x)—g(x)]dxandon |1, 3]

the areais given by fls[g(x) - f(X]dx

1 3
In[391]:= J; (f [X] - g[x]) dx + J; (g[x] -f [x]) dx

37
Out[391]= ——

12
in392):= N[%]

out[392]= 3. 08333
Example 6.3. Determine the area of the region bounded between the curves f(x) = | x| and g(x) = cosxon [-n/2, n/2].

Solution: To find the area here, wefirst plot the graphs of f and g.

inzez;= O ear [f, g]
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Abs [x]
Cos [X]

inoa= f [X_1 :
g[x_] :

inpoe)= Plot [{f [x], 9[X]1}, {X, -=n/2, x/2},
PlotStyle -» {Red, Blue}, PlotRange -» {-1, 2},
Filling » {1 > {2}}]

Out[396]= 05

-15 -10 -05 [ 0.5 10 15

-05f

-10L

From the picture above, we will need to consider the total area as a sum of three separate regions. To this end we first find the
intersection points of these two curves in order to obtain the limits of integration. Make note of the fact that the Solve command
does not work here, because it is only able to solve algebraic equations. Instead we use the FindRoot command to solve the
equation f(x) — g(x) = O using an initial guess of x = 0.75 (based on the plot above):

in3o71:= Fi ndRoot [f [x] -g[x], {X, 0.75}]

out397]= {X - 0. 739085}

Thus our root is approximately x = 0.739085. By symmetry we see there is another root at x = —0.739085. Hence the area
between these two curves is the sum of the three integrals:

-0. 739085 0. 739085

-0. 739085 0. 739085 /2

m[398]::j , (f [x1 - g[X])le+f (9Ix1 - f[x]) dx +J (f [x] - gx]) dx
-/

out[398]= 2. 06936

Hence the area of our bounded region is 2.06936.

NOTE: Observe that our region is symmetric about the y-axis and thus the same answer could have been found by computing the
area of only half the region (the right half, say) and doubling the result.

m Exercises
1. Find the area between the curvesy = sinxand y = sin(2x) between x = 0and x = 7.
2. Find the area between the graphsof x = sshnyand x = 1 — cosybetweeny=0and y=n/2.

3. Findtheareaabovey = 1 — x/7 and below y = sinx.



Chapter 6 99

m 6.2 Average Value

Students should read Sections 6.2 and 6.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

Remember that the average value of afunction f(x) on [a, b] is defined as

b
fave = o [, T(X) d X

Related to this notion is the Mean Value Theorem for Integrals (MVTI), which states that for any continuous function f(x) on
[a, b] there existsavalue ¢ € [a, b] such that

f(C) = fave

Example6.4. Let f(X) = 2cosx — X.

a) Find the only positive root « of f.

b) Calculate the average value of f on [0, a].

c¢) Determine avalue c that satisfies the Mean Value Theorem for Integralson [0, «].

Solution:
a) To calculate a, wefirst plot the graph of f and then use the FindRoot command with x = 1 as our initial guess:

in[zoo;= Cl ear [f]
inool= f [X_] 1= 2Cos[Xx] -X

no1:= Plot [f [x], {X, -m =7}]

out[401]=

in402):= root = Fi ndRoot [f [x], {X, 1}]

out402]= {X - 1. 02987}

Therefore, a =1.02987 accurate to 5 decimal places.
b) We next calculate the average value of f on [0, «]:

inf403:= a = root [[1, 2]]

out403)= 1. 02987
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1 a
In[404]:= fave = J‘ f [X] dx
a-0 Jo
outfa04]= 1. 14981
Thus the average value is approximately fae = 1.14981.
c) By MVTI there existsavalue c € [0, o] such that f(c) = fae. Tofind c, we solvethis equation for c, or equivalently,
f(C) - f«51\/e =0

in4o0s):= Fi ndRoot [f [c] -fave, {c, .5}]

out405]= {C - 0. 55256}

m EXxercises
1. Whichof f(x) = xsin?xand g(x) = x2sin? x has alarger average value over [0, 2]? Over [2, 4]?

2. Let f.e denote the average value of f(x) = X3 + X2+ 50n[0, 4]. Find avaluefor cinside[0, 4] such that f(c) = fae.

m 6.3. Volume of Solids of Revolution

Students should read Sections 6.2-6.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Werecall that a definite integral can be evaluated by employing the definition
fabf(x)afx = lim [ZLy f ) Ax]
nN—>+oco

Another application of the definite integral involvesfinding the volume of a solid of revolution, i.e., a solid obtained by revolving
aregion in the plane about one of the coordinate axes.
m 6.3.1. The Method of Discs

Let Sbe a solid of revolution obtained by revolving the region bounded by the graphs of y = f(x), y = 0, and the vertical lines
x = aand x = b, about the x-axis. To obtain the volume of S we can approximate Shy discs, i.e., cylinders obtained by revolv-
ing each rectangle, constructed by a Riemann sum of f relative to a partition P = {Xg, X1, X2, ...., Xn} Of [@, b], about the x-axis.
Using the fact that the volume of a cylinder with radius R and height his given by

V =1 R2h,

it followsthat the volume of the ith cylinder (corresponding to the ith rectangle) isV; = x| f (xi*)]2 A X. Hence an approximation to
the volume of Sis given by the Riemann sum

Vol(9 ~ Y, Vi =23, [f (x)]2Ax.
Inthelimit asn - oo, we obtain the exact volume of S
VoI(S) = xlimye I, [F GO Ax =7 TP dx.

NOTE: If the region isrevolved about the y-axis, then the volume of Sis given by
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VoS = [*Tf(yIdy.

Example 6.5. Find the volume of the solid of revolution obtained by rotating the region bounded by the graph of f(x) = Vx , the
x-axis, and the vertical line x = 3.

Solution: We define f(x) in Mathematica and illustrate both the region and rectangles that are rotated to obtain the solid and
discs, respectively. For thiswe recall our program from Chapter 5 of this manual that was used to draw these rectangles.

inoel:= LEPT[f_, {a_, b_, n_}]:=Mdule[
{dx, k, xstar, lrect, plot},
dx =N[(b-a) /nJ;
xstar =Table[a+i » dx, {i, 0, n}];
Irect =Tabl e[Line[{{xstar [[i]1], O}, {xstar [[i]], f[xstar[[i]]]},
{xstar [[i +1]], f[xstar [[i]11}, {xstar[[i +111, O}}1, {i, 1, n}1;
pl ot =Plot [f [x], {X, a, b}, Filling » Axis];
Show[pl ot, Graphics[{Geen, Irect}]]
1

no7;= fIX_]:=VX
pl ot = LEPT[f, {0, 3, 20}]
L //
15 //
| ///
//
10+
Out[408]= : //
- A
05+ /
““0.5”“1.0”"1.5””2.0”“2.5””3.0

The plot above shows our region shaded in gray and our rectangles outlined in green. We now rotate this shaded region about
the x-axis to obtain a solid of revolution called a paraboloid. This is achieved in Mathematica using the RevolutionPlot3-
D[{f.x},{x,a,b}] command, which generates a surface of revolution having radius f at height x. This means that the vertical axis
shown in the plot below is actually the x-axis.
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inf409]= S = Revol uti onPl ot 3D[{\/x_, x}, {x, 0, 3}]

Out[409]=

The exact volume of the paraboloid is then given by

3
n = V= f Zdl
In[410] NJ;( [x])" dx
9
Out[410]= 7
m 6.3.2. The Method of Washers

For a solid of revolution S generated by revolving a region bounded between two curves f(x) and g(x) on [a, b] about the x-axis,
we employ washers (rings) instead of discs. Refer to your calculus textbook for a detailed treatment. The corresponding volume
of Sisgiven by (let's assume g(x) = f(x))

Vol = {9012 - [ (912} dx.

Example 6.6. Find the volume of the solid generated by revolving about the x-axis the region enclosed by the parabola y = x2 + 1
and the straight liney = x + 3.

Solution: Our initial goal isto find the points of intersection and secure the limits of integration.
in411)= Cear [f, g, X]

fIx 1:=x?+1
g[x_1:=x+3
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ina141= Plot [{f [x], g[x1}, {X, -2, 4}, PlotStyle » {Red, Blue}, PlotRange » {-2, 8}, Filling > {1- {2}}]

8,

out[414]=

oL
We noticethat f(x)isgraphed inred, while g(x) isgraphed in blue. The following command solves for their intersection points:
infa15:= Sol ve [f [x] = g[Xx], X]

outa1sl= {{X » -1}, {x->2}}
One can easily verify that the intersection pointsare (-1, 2)and (2, 5). Thusour limitsof integrationare x = -1 and x = 2.

Let P and Q denote the solids of revolution by revolving each of the regions lying under f and g, respectively, along the interval
[-1, 2]. Our solid S obtained by rotating the region between f and g on [—1, 2] about the x-axis, can then be viewed as the
difference of Q and P, i.e,, the solid Q with the solid P removed from it. Following are surface plots of the three solids P, Q, and
S. Again, note that the vertical axis shown in each of the plots below is actually the x-axis.
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Revol uti onPl ot 3D[ {f [Xx], X}, {X, -1, 2}, AspectRati o » Automatic]
Revol utionPl ot 3D[{g[x], X}, {X, -1, 2}, AspectRati o -» Automatic]

P
Q

In[416]:

o
©
—
o
=
5
o

il
T

W

IS

out[417)=
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in418:= S = Show[P, Q]

Out[418]=

Sincethe curve y = f(x) = x + 3islower than the curve y = g(x) = X? + 1, it follows that the volume of Sis given by

2
In@419):= V = ﬂf ((Q[X])2 - (f [X])Z) dx
-1

117

out[419]=

Observe that in the above discussion, the methods for calculating volumes of solids of revolution were via discs and washers. In
other words, the element of volume is obtained by taking the rectangular element of area whose height is perpendicular to the
axis of revolution and revolving it to construct a disc or washer.

m EXxercises

1. Plot the solid of revolution obtained by rotating the region enclosed by the graphs about the given axis and calculate its
volume.

a y= % y = 10 — x? about the x-axis
b) y=16- x4 y=0, x = 2, x = 3 about the y —axis
2. Plot the hypocycloid x%/3 + y?3 = 1 and find the volume of the solid obtained by revolving the region enclosed by the hypocy-

cloid about the y-axis. |s the volume of the solid obtained by revolving the same region about the x-axis the same? Justify your
answer. (Hint: Use the Contour Plot command.)

m 6.3.3. The Method of Cylindrical Shells

Students should read Section 6.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Another approach to finding the volume of a solid of revolution is to approximate it using cylindrical shellsin contrast to discs
(or washers). Recall that a cylindrical shell element is one that is obtained by revolving a rectangular element of area whose
height is parallel to the axis of revolution.
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A cylindrical shell is by definition a solid contained between two concentric cylinders having the same axis of rotation. Suppose
acylindrical shell hasinner radiusry, outer radiusr,, and altitude h, then itsvolume V is given by

V=rrih-rrlh=27h(52) (1) =277hAx,

wheret = (r, +ry)/2istheaverageradiusand A X =r, —ry.

Let S denote denote the solid obtained by revolving the region bounded between a function f(x), the x-axis, x=a, and x = b,
about the y-axis. The volume of the ith shell corresponding to the ith rectangle is defined to be V; = 27 X' f(X") A X, where
X = (X + Xi—1)/ 2. Hence an approximation to the volume of Sis given by the Riemann sum

Vol(§) =YL Vi=2a3, % f (X)AX
Inthelimit asn - oo, we obtain the exact volume of S
VoI(S) = 27 limye Sy X f (6) Ax = 27 [PX f(x) dx

NOTE: If theregion is revolved about the x-axis using cylindrical shells, then the volume of Sis given by

Vol(S) = Znﬁ:dy f(y)dy.

Example 6.7. Consider the region bounded by the curve y = x?, the x-axis, and the line x = 2. Find the volume of the solid
generated by revolving this region about the y-axis using the method of cylindrical shells.

Solution: Let usfirst plot the region bounded by the given curves (shaded in the plot below):

infa20:= f [X_] =x"2;
Pl ot [f [x], {x, 0, 2}, Filling -» Axis]

4,

Out[421]= 2?

0.5 10 15 2.0

We then revolve this shaded region about the y-axis to obtain our solid S (parabolic bowl). This can be seen in the three plots
following, which illustrate S as the difference of the solids Q (cylinder) and P (paraboloid), i.e., Q with P removed from it.
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in4221= P = Revol utionPl ot 3D[{f [X]}, {X, 0, 2}]
Q=Revol utionPl ot3D[{{2, Y}}, {y, 0, 4}]

out[422]=

out[423]=
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in424:= S = Show[P, Q]

out424]=

The volume of Sisgiven by

2

Infazs)= V= 2 "j X % f [X] dx
0

out[425]= 8 71

NOTE: The volumein this example can aso be calculated using the washer method. However, one would first have to solve the
equation y = X2 for x, yielding x = \/7 . Moreover, the limits of integration (with respect to y ) would have to be determined,
whichin thiscasewouldbey = Oand y = 4 correspondingtox = Oand x = 2, respectively. Hence,

in426)= V = nJ: (22 - (\/y_)z] dy

out[426]= 8 7
The two answers from both methods agree as they should.

Example 6.8. Sketch the ellipse X—z + ﬁz =1 and find the volume of the solid obtained by revolving the region enclosed by the
a b

ellipse about the x-axis.

Solution: We will use the ContourPlot command to plot the ellipse for a=2 and b = 3. The reader should experiment with
other values of aand b.
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In[427]:= a = 2;
b= 3;

X2 2
Cont our PI ot [—2+—2== 1, {x, -a-1, a+1},
a b

{y, -b-1, b+1}, AspectRatio -» Automatic, Axes - True, Frane -> Fal se]

a4

Out[429]= ——
3

-4+

y

7 = 1fory.

To plot the corresponding solid of revolution (ellipsoid), we first solve :—z +

in430)= C ear [a, b]

X2 2
sol = Sol ve[— L 1, y]
a? b?

b2 x?

out[431]= Hy - | b%- =

The positive and negative solutions above correspond to the upper half and lower half, respectively, of the ellipse. We shall
consider the upper half in plotting the ellipsoid and computing its volume by defining

fo=[2-22 —p [1-2
a a
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n@3zi= f[X_1 =sol [[2, 1, 2]]

b2 x2
ouasz= | b? -

aZ
Hereisaplot of S(rotated 90 degrees about the x-axis).

In433:= a = 2;
b= 3;
Revol utionPl ot 3D[{f [x], X}, {X, -a, a}]

out[435]=

To find the volume of the ellipsoid, we can employ either method, disc or shell, but in this case the disc method is preferable
from a computational standard. Thisis because the disc formulafor volume contains the square term [ f (x)]? which lets us avoid

having to deal with radical terms if the shell method were used. Since the ellipsoid is defined along the integral [—a, a], its
volume based on the disc method is therefore

a

In43e)= V= nJ (f [x1)2 dx
-a

out[43el= 24

More generally, the volume of the ellipsoid for arbitrary positive values of a and b is given by
in4371:= Cl ear [a, b]

a
V= nj (f [x1)2 dx

a

42
out[438]= 3 ab“

ThusV = %nabz.
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NOTE: If we let a= b, then the ellipsoid becomes a sphere and the formula above reduces to the classic formula V = ;—‘ nad,

where a isthe radius of the sphere.

m EXxercises

1. Use the Shell Method to find the volume of the solid obtained by rotating the region enclosed by the graphs in each part below
about the y-axis.
a y=x3,y=8-x3,andx=0

b)y= % x?and y = sin(x?)

2. The solid generated by revolving the region between the two branches of the hyperbola y? — x? = 1 from x = —a to x = a about
the x-axisis called a hyperboloid. Find the volume of the hyperboloid for a = 2 and then for any arbitrary value of a.
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Chapter 7 Techniques of Integration

m 7.1. Numerical Integration

Students should read Section 7.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Numerical integration is the process of approximating a definite integral using appropriate sums of function values. We already
saw in Chapter 5 of this text formulas for Right, Left, and Midpoint Rules and their subroutines LRSUM, RRSUM, and
MRSUM, respectively. In this section, we will develop two additional rules. the Trapezoidal Rule and Simpson's Rule.

m 7.1.1. Trapezoidal Rule
The Trapezoidal Rule approximates the definite integral fa i (X) dx by using areas of trapezoids and is given by the formula:

Ty = -5((b_a)/n)(y0 +2y1 + ..+ 2yn—l + yn)

where n is the number of trapezoidsand y; = f(a+i(b—a)/n). Thisformulacan be found in your calculus text. Hereisa
Mathematica subroutine, called TRAP, for implementing the Trapezoidal Rule:
in430;= Clear [f, a, b, n]

in440)= TRAP[a_, b_, n_]1 := (f[a] + 2Sum[f [a+i *» (b-a) /n], {i, 1, n-1}] + f[b]) (.5 (b-a)/n)

Example 7.1. Calculate the area under the function f(x) = x2 on [0, 1] using the Trapezoidal Rule for various values of n.

Solution: The following output gives a table of approximations of folx2 d x based on the Trapezoidal Rule for n = 10, 20, ..., 100.

npaat)= F[X_]:=x2
Tabl e[{n, N[TRAP[O, 1, n]]}, {n, 10, 100, 10}] // Tabl eForm

Out[442]/[TableForm=

10 0.335

20 0.33375
30 0.333519
40 0.333438
50 0.3334
60 0.33338
70 0.333367
80 0.333359
90 0.333354
100 0.33335

Itisclear that these values are converging to 1/3, which is the exact value of our definite integral :

1
In[443]:= J x? dx
0

out[443])=

W] P
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m 7.1.2. Simpson's Rule

One difference between Simpson's Rule and al the other rules we have developed so far (TRAP, LRSUM, RRSUM, and
MRSUM) is that the number of partition points, n, in this case, must be even. The other difference is that Simpson's Ruleis a

quadratic approximation based on parabolas whereas the other rules are linear approximations based on lines. The formula for
Simpson's Ruleis given by (refer to your calculus text for details):

S=A/3Yo+4y1+2Y2+4y3+2Ya+..+4Yn3+2Y¥n2+4Yn1+ Ynl(D-a)/n

=(1/3(Yo+ 4y1+Y2) + (Y2 +4Yz+Ya) + ..+ (Yn-2+4Yn1+ V)] (b-a)/n
wherey; = f(a+i(b-a)/n). HereisaMathematica subroutine, called SIMP, for implementing Simpson's Rule:
in444)= C ear [a, b, n]

inf44s)= SIMP[a_, b_, n_] :=
(1/73) Sum[f[a + (2i -2) (b-a)/n] + 4f[a + (2i -1) (b-a)/n] + f[a + 2i (b-a)/n],
{i, 1, n/2}1 (b-a)/n

Example 7.2. Calculate the area under the function f(x) = x% on [0, 1] using Simpson's Rule for various values of n.

Solution: We use the same set of values of n asin the previous example. This will allow us to compare Simpson's Rule with the
Trapezoidal Rule.

inaasl= f [X_] : = X2

Tabl e[{n, N[SIMP[O, 1, n]]}, {n, 10, 100, 10}] // Tabl eForm

Out[447]/[TableForm=
10 0.333333

20 0.333333
30 0.333333
40 0.333333
50 0.333333
60 0.333333
70 0.333333
80 0.333333
90 0.333333
100 0.333333

Notice how fast SIMP convergesto the actual value of the integral (1/3) compared to TRAP.

Example 7.3. Calculate the definite integral of f(x) = sin(25 x2) on [0, 1] using Simpson's Rule and approximate it to five
decimal places. What is the minimum number of partition points needed to obtain thislevel of accuracy?

Solution: Wefirst evaluate SIMP using values for n in increments of 20.
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In[448]:= f [X_] :=8Sin [25 XZ]
Tabl e[{n, N[SIMP[O, 1, n]]}, {n, 20, 200, 20}] // Tabl eForm

Out[449]//TableForm=
20 0.0958943

40 0.10526

60 0.105526
80 0.105566
100 0. 105576
120 0. 10558

140 0. 105582
160 0.105582
180 0.105583
200 0.105583

Based on the output our approximation, accurate to five decimal places, is 0.10558. This first occurs between n = 100 to
n = 120. We evaluate SIMP inside this range to zoom in on the minimum number of partition points needed.

nsop= f[x_]:=Sin[25 xz]
Tabl e[{n, N[SIMP[O, 1, n]11}, {n, 100, 120, 2}] // Tabl eForm

Out[451)//TableForm=
100 0. 105576

102 0. 105577
104 0. 105577
106 0.105578
108 0. 105578
110 0.105579
112 0. 105579
114 0. 105579
116 0.10558

118 0. 10558

120 0. 10558

Thus we see that the minimum number of points needed is n = 116. How does this compare with the minimum number of points
needed by TRAP to obtain the same level of accuracy?

NOTE: Observe that SIMP does not converge as fast in this example as in the previous example. This is because the function
f (%) = sin(25 x?) is oscillatory as the following graph demonstrates:

ins2;= Plot [f [x], {x, 0, 1}]

1.0 i
out[452]= S
-05 ; v v d\/
-1.0 i
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Try increasing the frequency of this function, say to sin(100 x?), to see how well SIMP performs.

= 7.1.3. Midpoint Rule

Since most calculus texts include again the Midpoint Rule in the section on numerical integration, for completeness, we will too.
The Riemann sum using the midpoints of each subinterval is given by the following formula:

in4s3)= Cl ear [f]
MRSUM[a_, b_, n_]:=Sum[f[a+ (i -1/2)x(b-a)/n]*x(b-a)/n, {i, 1, n}]

Example 7.4. Calculate the area under the function f(x) = x% on [0, 1] using the Midpoint Rule for various values of n.

Solution:

inassj= f [X_] @ = X2

Tabl e[ {n, N[MRSUM[O, 1, n]1}, {n, 10, 100, 10}] // Tabl eForm

Out[456]//TableForm=

10 0.3325
20 0.333125
30 0.333241
40 0.333281
50 0.3333
60 0.33331
70 0.333316
80 0.33332
90 0.333323
100 0.333325

m Exercises

1. Consider the definite integral flzl n(x) d x.

a) Using the Trapezoidal Rule, Simpson's Rule, and Midpoint Rule, approximate thisintegral for n = 10, 20, ..., 100.

b) Compare how fast each subroutine (TRAP, SIMP, MRSUM) converges to fa bIn(x)a? xand decide which of these rules is
"b&,"

2. Repeat Exercise 1 for the following definite integrals:
2 1
a) [ X‘f—ldx b) |, cosx?)dx
Can you make any general conclusions about which rule (Trapezoidal, Simpson, Midpoint) is best?

3. For each of the functions given below, set up a definite integral for the volume of the solid of revolution obtained by revolving
the region under f (x) along the given interval and about the given axis. Then use the subroutines TRAP, SIMP, and MRSUM
to approximate the volume of each solid accurate to 2 decimal places (use various values of n to obtain the desired accuracy).

a) f (x) = cosx; [0, n/2]; x-axis b) f(x) = e [0, 1]; y-axis

m 7.2. Techniques of Integration

Students should read Sections 7.2-7.4 and 7.6 of Rogawski's Calculus [1] for a detailed discussion of the material pre-
sented in this section.

All calculus texts have at least a chapter devoted to "Techniques of Integration.” When using Mathematica, these techniques are
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usually not necessary, since Mathematica automatically gives you the answer.

m 7.2.1. Substitution
On occasion, we do need to use techniques of integration, even when using Mathematica.

Example 7.5. Evauate the following integral: fzxv 9% -1 dx

Solution: We evaluate thisintegral in Mathematica:

In[457]:= jZ" V(2% -1 dx
1 Log[2 Log[8
out[457)= (2X [21+2x Log[2] -Log[4] -+/1-4* Hypergeonetric2F1 X 9] , 98] , 4*} Log[4] ]] /

Log[4] Log[4]
(x/71+4" Log[2] Log[lG})

To students in a first-year calculus course, this answer makes no sense. There are many integrals that Mathematica cannot
evauate at al, or cannot evaluate in terms of elementary functions (such as the integral above). Some of these integrals are
doable in terms we should understand, once we first use an appropriate technique of integration. In the above example, al we
need to do isfirst make the following substitution: u=2* and du = (In 2) 2% dx, which transforms the integral to:

|.og[2]f‘u -t au
Suq/-1+u? 7%Log[u+«/71+u2]

Log [2]

In[458]:=

Out[458]=

Thisisthe correct answer. All we need to do is substitute 2% for u, and add the arbitrary constant of integration, getting:

2Log[2] SToqa me - Log[2* + m] y+C

Note that the Mathematica function Log[X] is equivalent to the standard form In x.

m 7.2.2. Trigonometric Substitution

Example 7.6. Evaluatef L dx

X2y x*-9

Solution: By hand, the integral f dx would normally be evaluated with a trigonometric substitution of the form
2

x = 3secd. But with Mathematica, we can do this directly:

o

out[459]= 5
X

This, of course, is the correct answer, when we remember that Mathematica does not add an arbitrary constant to indefinite
integrals.
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7.2.3. Method of Partial Fractions

Integrals of rational expressions often require the Method of Partial Fraction Decomposition to evaluate them (by hand). For
example:

(x+4)°
(x+1)?

[ ax= [(-2 - Z)dx=5In|x+4[-2In|x+1|=In

X245 x+4 X+4  x+l

On the other hand, Mathematica will give us essentially the same answer for this integral, but does its work behind the scenes
without revealing its technique:

3x-3

inj460):= Sinplify [J.ﬁ
X+ 909X +

dlx]
out460]= -2 Log[1 +X] +5 Log[4 + X]

3x-3
X2+5x+4

If we would like to see the partial fraction decomposition of the integrand, Mathematica will also do that for us without

strain by using the Apart command:

3x-3 ]
x2+5Xx +4
2 5

¥
1+Xx 4+X

Inf461):= Apart [

out[461]= -

253+X2-2 x+2

dx.
()(24-1)2

Example7.7. Eva uatef

Solution: We simply evaluate this integral using Mathematica:

2x3 4+ x2 -2x + 2
In[462]:= 5 dx
(x2+ 1)

4 + X 3 ArcTan [X] )
out[462]= + +Log[1 +x?]
2 (1+x2) 2

But again, if we would like to see the partial fraction decomposition of the integrand, M then this is straightforward

(x®+1)

with Mathematica:

2x34+ X2 -2x + 2]
(x2+ 1)°
1-4x 1+2X

Out[463]= 2 + 2
(l + X2> 1+x

In[463):= Apart [

m EXxercises

1. Try to evaluate f(l +Inx)V 1+ (xln(x))2 dx with Mathematica. If it doesn't give an understandable answer, use a tech-
nique of integration that changes the integral into one that Mathematica will evaluate.

2. Use Mathematica to find the partial fraction decomposition of the following functions and then integrate them:
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X2+3x— 44 3x2-4x+5 25
A Zoraca P e 9 m oo
(X=3) (x+5) (3%-2) (x-1) (x?+1) X(X2+2 x+5)

m 7.3. Improper Integrals

Students should read Section 7.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that there are two types of improper integrals.

Typel: If weassumethat f (x) isintegrable over [a, b] for al b = a then the improper integral of f (x) over [a, ) isdefined as
[P fodx = Iimt%‘x,f;f(x)dx,

provided this limit exists. Similarly, we define
f_boof(x)dx = Iimt_>_mftbf(x)clx,

provided this limit exists.

Typell: If f (x)iscontinuouson [a, b) but discontinuous at x = b, we define

fabf(x)de = Iirntﬁb,fatf(x)dx,
provided thislimit exists. Similarly, if f (x) iscontinuouson (a, b] but discontinuous at x = a,

fabf(x)afx = Iimtﬁmftbf(x)clx,
provided thislimit exists. Finaly, if f (x) iscontinuousfor all x on [a, b] except at X = c wherea < ¢ < b, we define
b . . b
N f(x)clx:Ilmac_fatf(x)dxﬂlmpwﬁ f(X)dx,
provided both of these limits exist.

By using the Limit command in Mathematica along with I ntegrate, Mathematica eliminates the drudgery of having to evaluate
these integrals by hand.

Example 7.8. Evauate the following improper integrals:
3 fyydy

b) fzme‘zxdx

0 folxln xd x

d [T =5 dx

1+%?

Solution:

a) Weevaluate

o 1
In[464]:= J. —dy
20y

1
Integrate::idiv : Integral of — does not converge on {20, co}. >

y
@1
Out[464]= J —dy
20y

Thus, evaluating thisintegral directly using Mathematica tells us it does not exist. Alternatively, we could have used the limit
definition:
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t 1
inf46s]:= Limt [J. —dy, t » oo]
20y

Out[465]= o

Observe the difference in the two outputs above. Both correctly express the answer as divergent; however, the second answer is
better since it reveals the nature of the divergence (infinity), which is the answer we would expect if solving this problem by hand.

b) Weevaluate

In[466]:= j e 2% dx
2

1
out[466]= ——
2 et

Again we obtain the same answer using the limit definition (as it should):

t
in467):= Limt [J e?Xdx, t - oo]
2

1
outj467]= ——
2 e*

Mathematica will similarly handle discontinuities. In the following example, the function has a discontinuity at x = 0.

¢) We evaluate

1
In[468]:= j x Log [x] dx
0

1
out[468]= - —
4

1
inf460):= Limt [J x Log[x]dx, t » 0, Direction- —1]
t

1
Out[469]= — —
4

d) Weevduate

o 1
In[470]:= f dx
-0 1+ X2

Out[470]= 7T

Note that Mathematica does not require us to break the integral up into two integrals, which would be required according to its
definition, if evaluated by hand. On the other hand, there is nothing wrong with dividing thisintegral into two in Mathematica:

01 @ 1
In[471]:= dx + dx
—o 1+ X2 0 1+x2

outf471]= 7T

NOTE: Observe that it does not matter where we divide the integral. It is valid to express f_amﬁ dx+ [~ 1X2 dx for the

a 1+

integral f_ °; ﬁ dx for any real value a as long as they are convergent. However, evaluating this sum in Mathematica yields
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different expressions for the answer, which depend on the sign of a and whether it is real or complex. Thisis shown in the
following output:

ina72)= C ear [a]
a1 S
j dx + j dx
—o 1 + X2 a 1+x2

1
outfa73)= | f {a>0, ArcTan{;}, Integrate{

1
, {X, a, o}, Assunptions aasOH +
1+x2

If[—1<lm[a]<l|\Re[a} <0,

1 i i =
_(7“1'_09[1_16}_j({Conjugatle[Log[1+1a}] Re [a] O&&Im[a]>1)]'
2 Log[l+1ia] True
1
Integrate[ , {X, -, a}, Assunptions - Re[a] >0&& (Im[a] <-1|]|Im[a] zl)”
1+X

If instead, a is given afixed value, then Mathematica will give us our answer of 7:

n474i= a=1

a1 o ]
j dx +j dx
—o 1 + X2 a 1+x2

outj474]= 1

out[475]= 7T

m Exercises

1. Evauate the following improper integrals:

.01 © 1 1 00 2 3 1
a [ e%tat b f_g—(x+4)3/2dx 0) fz—(x+2)1/sdx d [T xe™Xdx e J, = 4%

2. Find the volume of the solid obtained by rotating the region below the graph of y = ¢™* about the x-axisfor 0 < X < co.

3. Determine how large the number b hasto bein order that [~ —*~ d'x < .0001.

xX+1

dx.

4. Evaluate the improper integral f_ 11 L
X

V]

5. Determine how large the number b should be so that [ ﬁ dx < .000L.
+

6. Consider the function defined by
G = [ttetdt

a) EvauateG(n) forn=0, 2,,3, 4, ..., 10. Make aconjecture about these values. Verify your conjecture.
b) Evaluate G((2n-1)/2),forn=1, 2, 3, ...10. Make a conjecture about these values. Verify your conjecture.
c¢) Plot the graph of G(x) ontheinterval [0, 5].

NOTE: The function G is called the gamma function and is denoted by I'[X]. In Mathematica it is denoted by Gamma[x]. The
gammafunction wasfirst introduced by Euler as a generalization of the factorial function.
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m 7.4. Hyperbolic and Inverse Hyperbolic Functions
Students should read Section 7.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

m 7.4.1. Hyperbolic Functions

The hyperbolic functions are defined in terms of the exponential functions. They have a direct connection to engineering
mathematics, include bridge construction. For example, cables from suspension bridges typically form a curve called a catenary
(derived from the Latin word catena, which means chain) that is described by these functions.

The six hyperbolic functions are denoted and defined as follows

. _ e-e* _ 4 _ X

sinhx = ——, coshx = ——, tanh x = =
_ e+eX _ 2 _

cothx = et sechx = Fiew cschx = -

The reason these functions are called hyperbolic functions is due to their connection with the equilateral hyperbola x — y? = 1.
Here one defines x = cosht and y = sinht. Hence one obtains the basic hyperbolic identity cosh?t — sinh?t = 1, much the same

manner as the corresponding trigonometric identity cos?t+ sin’t = 1, when one considers the unit circle x2 + y2 = 1 with
X = costand y = sint.

In Mathematica, we use the same notation with the obvious convention that the first letter of each function is capitalized and
square brackets must be used in place of parentheses. Thus sinh x will be entered as Sinh[X].

Example 7.9. Consider the hyperbolic sine function f (x) = sinh x.
a) Plot the graph of f.

b) From the graphs deduce the domain and range of the function.
¢) Is f bounded?

d) Does f attain an absolute minimum? Maximum?
€) Repeat a) through d) for the hyperbolic function g(x) = cosh x
f) Repeat @) through d) for the hyperbolic function h(x) = tanh x.

Solution: We begin by defining f in Mathematica:

inave)= Clear [f, X]
f [X_] = Sinh[x]

outf477)= Si nh [Xx]

a) We next plot its graph on the interval [-3, 3].
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ina7el= Plot [f [x1, {X, -3, 3}]

10+

out[478]=

b) The preceding graph indicates that the domain and range of sinh x is (— oo, o). To convince yourself, you should plot the graph
over wider intervals. We should also expect this from the definition of sinhx itself. Can you explain why?

¢) The function sinh x is not bounded. The graph earlier should not be used as a proof of this. However, we can evaluate its limit
at — oo and oo to see that thisisindeed true.

ina79)= Limt [f [X], X » -]
Limt [f [X], X - ]

Out[479]= -

Out[480]= o

d) The limitsjust computed show that sinh x has no absolute maximum or minimum since it is unbounded.
€) Next we consider the hyperbolic cosine function denoted by cosh x.

ins1= Cl ear [g, X]
g[x_] = Cosh[x]

outf482)= Cosh [x]

inae3)= Plot [g[x], {X, -3, 3}]

Out[483]=

The preceding graph indicates that the domain of cosh X is (— oo, o). The range appears to be [1, o). Can you prove this?

The hyperbolic cosine function, cosh x, is not bounded from above. This can be seen from the following limits:
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in4g4l:= Limit [Cosh[X], X » -]
Limt [Cosh[X], X » o]

Out[484]= o
Out[485]=

Again, since cosh x is not bounded from above, it follows that cosh x has no absolute maximum. As we have observed in part b)
of this example, cosh x has absolute minimum value 1, attained at x = 0.

f) Finally we consider the hyperbolic tangent function, tanh x:

in[4s6:= Cl ear [h, x]
h[x_] = Tanh[x]

out[487)= Tanh [Xx]

insg)= Plot [h[x], {x, -3, 3}]

05+

OBl v v v e Y
3 L

-05F

-1.0+

Again the preceding graph indicates that the domain of tanhx is (—co, o0). The range appears to be (-1, 1). This can be seen
from the following limits:

infg9:= Limit [Tanh[X], X » -]
Limt [Tanh[X], X - o]

out[489]= -1

out[490]= 1

The graph of tanh x also indicates that it is strictly increasing on its domain. This can be proven by showing that its derivative,
which we will calculate later, is strictly positive. It is clear that tanh x has no absolute extrema.

NOTE: The reader will notice some similarities between the hyperbolic functions and the associated trigonometric functions.
Moreover, if one studies the theory of functions of a complex variable, the relationship between these classes of transcendental
functions becomes even more transparent; for numerous identities exist between the classes of functions.

m 7.4.2. ldentities Involving Hyperbolic Functions

It isimmediate that the ratio and reciprocal identities for the hyperbolic functions coincide with their trigonometric counterparts.
In fact for each trigonometric identity there is a corresponding (not necessarily the same) hyperbolic identity. Here are some
examples.

Example 7.10. Show that the following identities hold true.
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a) 1 - tanh? x = sech? x b) cosh(x + y) = coshxcoshy + sinhxsinhy
Solution:
a) We use the definitions for tanh x and sech x to express each side of the identity in terms of exponentials:

ine1)= Simplify[(1-Tanh[x] ) /. Tanh[x] » (E"x - EM (-x)) / (EMXx + EN (-x)) ]
4 2%

Out[491]=
(1+e2%)?

n[492]: Slrrpllfy[Sech[x] /. Sech[x] -2/ (E*x + E* (-x)) ]

Out[492]=

4e2%

We leave it for the reader to verify that both of these outputs agree, i.e., > =
(L) e

> (cross-multiply and then simplify).
The identity can aso be confirmed in Mathematica by evaluating the difference between its left- and right-hand sides, which
should equal zero:

inpaes)= Simplify[1- Tanh[x]? - Sech [x] ]

out[493]= 0

NOTE: We can aso confirm the identity graphically by plotting the graphs of each side of the identity, which should coincide.

in941:= Plot [{1-Tanh[x]”"2, Sech[x]"2}, {Xx, -2, 2}]

Out[494]=

-2 -1 1 2
b) We again evaluate the difference between the |eft- and right-hand sides of the identity:

naos)= Sinplify[Cosh[x +y] - (Cosh[x] Cosh[y] +Sinh[x] Sinh[y])]

out[495]= O

m 7.4.3. Derivatives of Hyperbolic Functions

We next contrast the formulas for the derivatives of the trigonometric functions versus the formulas for the derivatives of the
companion hyperbolic functions.

Example 7.11. Compare the derivatives of the given pair of functions.
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a) sinhx and sinx b) coshxandcosx  c)tanhxand tan x
Solution: We use the derivative command, D, to evaluate derivatives of each pair.
a)

in496):= D[SI nh[x], X]
D[Sin[x], X]

outf496)= Cosh [x]
out497)= Cos [X]
b)

in498]:= D[Cosh [x], X]
D[Cos [X], X]

outj498]= Si nh [x]

out[499]= - Si N [X]
b)

inso0):= D[Tanh [x], X1
D[Tan[x], X]

outs00]= Sech [x}2

ous01)= Sec [x]2

Itisclear that derivatives of hyperbolic and trigonometric functions are quite similar.

m 7.4.4. Inverse Hyperbolic Functions

In light of the fact that hyperbolic functions are defined in terms of the exponentia functions, it is readily apparent that the
inverse hyperbolic functions are defined in terms of the natural logarithmic function. The inverses of the hyperbolic functions

have notation similar to those of inverse trigonometric functions. Thus the inverse of sinh x is denoted by arcsinhx or sinh™ x.
In Mathematica, the notation issinh™* x is ArcSinh[x].

Example 7.12. Plot the graphs of sinh™* x and sinh x on the same axis.

Solution: Recall that the graph of a function and the graph of its inverse are reflections of each other acrosstheline y = x. This

is confirmed by the following plot of sinh™* x (in blue) and sin x (in red).
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inso2):= Plot [{Sinh[x], x, ArcSinh[x]}, {x, -3, 3},
Pl ot Styl e » {Blue, Green, Red}, AspectRatio -» Automatic, PlotRange » {-3, 3}]

3

Oout[502]= —1— T - [ [ I
-3 -2 -1 1 2 3

-3

Example 7.13. Show that tanh™* x = 2 In($2%) for -1 < x < 1.

Solution: We plot the graphs of y = tanh ™ x and y = % In(%) on the same axes. Note that Mathematica's notation of tanh™ x is
ArcTanh [x] and Iny isentered as L og[y]:

ins03)= Pl oot [{ArcTanh[x], %Log[iii]}, {x, -2, 2}]

3

out[503]= —
2

The fact that there is only one graph indicates that the functions are the same. We prove this by letting y = tanh™ x and solving

ey
eV+e

for y asfollows. Fromy = tanh ™t x we get x = tanh y = . Now solving this last equation for y in Mathematica yields:
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ins04:= Sol ve [X = (EMy - E” (-y)) / (EMy + EM (-Y)), Y]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

PRy oves R

out[504]= {{y - Log {—
V-1+X V-1+X
The first solution in the preceding output is imaginary, which we ignore, and consider only the second solution. Hence,

vV -1-x =In 1+x :%ln(l+><)

tanh 1x = y=In 122X
Y= = X

NOTE: The message in the previous output refers to the fact that when solving equations involving inverse functions, not all
solutions are necessarily found by Mathematica since there may be infinitely many of them or they depend on the domain of
definition. For example, the equation sin x = 1 has infinitely many solutions, in particular all values of the form x=7/2+2xn,
where nisany integer. On the other hand, solving this equation in Mathematica yields only the solutionin its principal domain,
e, Xx=mx/2

infs05):= Sol ve [Si n[X] =1, X]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

Out[505]= {{X - g}}

m Exercises

1. Verify the following hyperbolic identities using the Simplify command. In addition, confirm the identities in parts b) and c) by
plotting each side of the identity. Also state the corresponding trigonometric identity.

2tanh x

a) sinh(x+ y) = sinhxcoshy + coshxsinhy b) cosh2x = cosh? x + sinh? 0) tanh2x= =20
+tann™ X

2. Determine the first few positiveintegral powers of cosh x + sinhx. Can you form a general conjecture for the nth case, namely
(coshx + sinhx)", where nis any natural number? Then justify your conclusion via mathematical induction.

3. Determine the derivatives of the following functions and simplify your answers where possible. Compare your solution via
paper and pencil methods with the one generated by Mathematica.

1+tanhx
1-tanhx

a f(x =tanh(1+x?) b) f(x)=xsinhx — coshx ) f(x) =

d) f(x) =x2sinh (2x) e f(x=xtanh™ x+ In(\/ 1-x2 )

4. The Gateway Arch in St. Louiswas designed by Eero Saarinen and was constructed using the equation
y = 211.49 — 20.96 cosh (0.03291765 x)

for the central curve of the arch, where x and y are measured in metersand | x| < 91.20.

a) Plot the graph of the central curve.
b) What isthe height of the arch at its center?
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¢) At what pointsisthe arch 100 metersin height?
d) What is the dlope of the arch at the pointsin part (¢)?

5. A flexible cable aways hangs in the shape of acatenary y = ¢ + acosh(x / a) where cand aare constantsand a > 0. Plot
several members of the family of functionsy = acosh(x / a) for various values of a. How does the graph change asavaries?

6. Evaluate each of the following integrals:

cosh? x—1 2+tanh x

8 [sinhxcosh” xdx b) fﬂdx o [ =X 4y

7. Lett=In[ 2= ) and define
2 cosh(tny, if nisodd

f(n):{ °
2 . . .
= sinh(tn), if niseven

Evaluate f(n) forn=1, 2, 3, ..., 20. Do these values seem familiar? If not, we highly recommend the interesting article by

Thomas Odler, Vieta-like products of nested radicals with Fibonacci and Lucas numbers, to appear in the journa Fibonacci
Quarterly.
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Chapter 8 Further Applications of Integration

m 8.1. Arc Length and Surface Area

Students should read Section 8.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

= 8.1.1 Arc Length

The integrals for calculating arc length and surface area are generally difficult to do by hand. Thus Mathematica is the appropri-
ate tool for evaluating these integrals.

If yisafunctionof x,i.e, y = f (x), and f'(x) exists and is continuous on [a, b] then the arc length of the graph of f (x) over
theinterval [a, b] is

L:fab\/1+ fr(%? dx

If xisafunctionof y,i.e, x = g(y), and g'(y) existsand is continuous on [c, d] then the arc length of the graph of g (y) over the
interval [c, d]is

L= [V w?+1 dy.

Example8.1. Estimatethe arc length of y = % over theinterval [1, 2].

1

Solution: Finding the arc length of this simple rational function by hand is virtually impossible. Thisisbecause f'(x) = — Z and

thus the arc length integral isL = flz / 1+ % dx, which cannot be evaluated in terms of elementary functions, as the following

answer illustrates.

[T

V2r Gamma[l] 1 _ 1
out[506] —————— - E Hyper geonetri c2F1 |- —, -

1
— -16
SGarma[%] 2 4

Slw

However, there are numerical techniques that we can use. For example, the Mathematica command NI ntegrate uses sophisti-
cated algorithmsto gives us a good estimate for this definite integral :

[ 1
in[s07:= NI nt egrate[ 1+ - {x, 1, 2}]
X

outs07]= 1. 13209

A more elementary method of estimating this arc length is Simpson's Rule as shown in Section 7.1 of this text.
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nisog)= C ear [f, a, b, n]
SIMP[a_, b_, n_, f_] :=

(1/3) Sum[f[a + (2i -2) (b-a)/n] + 4f[a + (2i -1) (b-a)/n] +f[a + 2i (b-a)/n],
{i, 1, n/2}] (b-a)/n
1
o= F[X_]:= 1+ —
x4
Tabl eFor m[Tabl e[{n, N[SIMP[1, 2, n, f]]}, {n, 10, 100, 10}],
Tabl eHeadi ngs » {{}, {"n", "Sx"}}]

Out[511])//TableForm=

n Sh

T10 1.1321
20 1.13209
30 1.13209
40 1.13209
50 1.13209
60 1.13209
70 1.13209
80 1.13209
90 1.13209
100 1.13209

Thus, we see that Simpson's Rule gives us as accurate an estimate of the arc length, as does the NIntegrate command for n as
small as 20.

Example 8.2. Consider the the ellipse whose equation is given by

2
X, Yy

a2 P

=1
Assumethat a > b. Find the arc length of the upper half of the ellipse.

Solution: To plot the ellipse for various values of a and b, we define a plotting command plot[a,b] as follows.

nis121= Clear [a, b, X, y, eq, plot]
X2 y2
eq[x_, y_, a_, b_1:= a—2+b—2—1
plot [a_, b_]:=ContourPlot [eq[X, ¥, a, b] =0, {x, -a, a}, {y, -b, b},
Aspect Rati o » Automatic, Axes -» True, Frane - Fal se]

Hereisaplot of theellipsefora=2and b = 3.
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in[s15]:= pl ot [2, 3]

out[515]=

On the upper half of the ellipse, we have y = 0. Thus we can solve for y and and take the positive solution. We will denote this
positive solution as a function of x, a, and b.
X2 y2
in[516]:= sol = Sol ve a_z + b_2 =1, y],
fIx_, a_, b_1=sol[[2, 1, 2]]

b2 x?2

ouisi7)= | b? -
22

Clearly the domain of f is[—a, a]. The natural thing to do would be to evaluate the integral f_aa\/ 1+(f '(x))2 dx. Try this
yourself, but be prepared to wait awhile. Moreover, Mathematica will give the following output:

1
f[Ima] =0&& a|m[7] > 1
—a? + h?
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1 1 1
1+a|m[7] SOHaIm{i] ::0||aRe{7} +0],
-a? +b? -a%+b? \ -a% + b2

2 (-a)%?+/b% El lipticE[1- 2—2} Signia]

b2X2
, Integrate[ 1+ ——, {x, -a, a},

4 a2 2
a*-a?x
A/ -ab?

Assunptions - (Re[b] - 0& Re[a] + 0&&Im[a] = 0&Imb] #0) || Ima] <0 ||| ma] >0H

To understand this output, let us make a change of variable x = asin t. Then theintegral becomes (verify this):

a o2 _ /2 b?sin’t
LN L1+(F () aﬂx_afﬂ/2 /1+azcoszt costdt

The latter integral can be expressed as

/2 b? sin’t _ /2 2 [ 22\ a2 _ /2 2 cin?
2a " |1+ = costdt =2a ] \/w52t+(b /a?)sin’t dt =2a "\ 1-c?sin’t dt,

where c=V 1- (b/a)2 and we have used the identity cos?t = 1 — snt.

To simplify our notation, let us define the integrand in the preceding far left integral as

wsie= glt_, a_, b_1=+/1-(1- (b/a)?) (Sin[t])?

b2
out[518]= 1- (1 -
a

Here are some values of the arc length of the upper half of the ellipse.

Sinfti?

/2
in[s19]:= Tabl eForm[TabIe[Z af g[t, a, byat, {a, 1, 3}, {b, 1, 3}],
0

Tabl eHeadi ngs » {{"a=1", "a=2", "a=3"}, {"b=1", "b=2", "b=3"} }]

Out[519]//TableForm=

|b-1 b=2 b=3
a=1 | 2El lipticE[-3] 2EllipticE[-8]
a=2 [4EBllipticE[S] 2n 4B lipticE[-2]
a=3 |6EllipticE[S] 6B lipticE[3] 3

Observe that we obtain exact values for the arc length when a = b. Can you explain why?

The approximate values of the numbers appearing in the preceding table are:
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/2
infs201= Tabl eForm[N[Table[Zaf glt, a, b1dt, {a 1, 3}, {b, 1, 3}], 10],
0
Tabl eHeadi ngs - {{"a=1", "a=2", "a=3"}, {"b=1", "b=2", "b=3"} }]

Out[520]//TableForm=
| b=1 b=2 b=3
a=1 | 3. 141592654 4.844224110 6.682446610
a=2 | 4.844224110 6.283185307 7.932719795
a=3 | 6. 682446610 7.932719795 9.424777961

NOTE: The integra f\/ 1-c2sin*t dtisknown asan elliptic integral. It isvery useful in mathematics and has many applica-

tions. In Mathematica it is denoted by Elliptic[t,c*2]. The command Elliptic[x,m] givafoxxj 1-msin’t dt while Elliptic[m]

gives 0”/2\1 1-msin’t dt.

m 8.1.2. Surface Area

If f'(x) exists and is continuous on [a, b] then the surface area of revolution obtained by rotating the graph of f (x) about the x-
axisfora < x < bis

S=2rx [Pf0y 1+ [f' (0] dx

Similarly, if x=g(y) and g'(y) exists and is continuous on [c, d], then the surface area of revolution obtained by rotating g (y)
about they-axisforc < y < dis

s=2r Yoy VIg' WP+ 1 dy.

Again, evaluating these complicated integrals is what Mathematica does best, as the following examples illustrate.

Example 8.3. Determine the surface area of revolution obtained by rotating the region under y = ¢™* along the interval [0, 2]
about the x-axis.

Solution: We calculate

ins21:= O ear [f, X]
fIx_1 := e

2
S-= 27rJ-f[X]\/1+f' [x]1% dx
0

1
out[523]= E n|l4+2V2 -

2 2 +Log{3+2¢2_]-Log{2+e4+2x/1+e4}
A1+ et e*/1+et

inf5241:= N[%]

out[524]= 6. 35887

Here is the corresponding surface of revolution (rotated 90 ° about the y-axis):
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in525):= Revol utionPl ot 3D[E™, {x, 0, 2}]

NOTE: Observe in this case that Mathematica was able to find an anti-derivative of the integrand. However, not all integrals of
this form can be evaluated analytically as the next example illustrates.

Example 8.4. Determine the surface area of revolution obtained by rotating the region under y = tan x along the interval [O, %]
about the x-axis.

Solution: Asin the previous example, we evaluate

ins26):= Cl ear [f, X]
f[x_] := Tan[x]

NI ntegrate[27rf [X]V1+f' [X1%2, {x, 0, Pi /4}]

outs28]= 3. 83908

To appreciate the complexity of the integral and understand why we used the command NI ntegrate, we advise the reader to
define the anti-derivative F[t] below and evaluate F[x/4] (be prepared to wait awhile).

in[529):= F[t _1] :=Integrate[f [X]V1+f" [x]2 , {x, O, t}]

Here is the corresponding surface of revolution:



Chapter 8 135

in5301:= Revol utionPl ot 3D[Tan[x], {x, 0, Pi /4}]

out[530]=

m EXxercises

1. Calculate the arc length of the given function over the given interval:
a) y=x4 over[l, 2] b) y=sinx, over[0, ]

2. Calculate the arc length of the astroid x%3 + y?3 = 1. Below isaplot of itsgraph. Hint: By symmetry it suffices to calcul ate
only the portion in the first quadrant.

ins311:= ContourPlot [ (x"2)M (1/3) + (y*2)~(1/3) ==1, {x, -1, 1}, {y, -1, 1}]

10F T T T m
051 -
00 -

out[531]=

-05F =

-1.0p, I I I —

-10 -05 0.0 0.5 1.0

3. Show that the circumference of the unit circle is 2x by calculating its arc length. Use the fact that the equation of the unit
circleisgivenby x2+y?=1.

4, Compute the surface area of the following functions rotated about the x-axis over the given intervals:
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a) y=x3+2 over[1,4] b) y= (4- x2/3)2/3 over [0, 8] ¢) y=cosx,over [0, r]

X

5. Show that the surface area of the unit sphere is 4r by rotating the top half of the unit circle x2 + y? = 1 about the x-axis.

m 8.2. Center of Mass

Students should read Section 8.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A lamina is athin plate whose mass s distributed throughout a region in the plane. Suppose a lamina has a constant density p and
that the lamina occupies a region in the plane under the graph of a continuous function f over the interval [a, b], where f(x) = 0
for al x.

The mass of the laminais given by
M :pfabf(x)dx.

Then the moments of the lamina with respect to x-axis and y-axis are denoted by M, and My and are defined by

Mi= 30 [TF 00 dx

My = pfabx f() dx.
The center of mass (also called the centroid) of the laminais defined to be (X, y), where

— My — My
X—Vandy—v

NOTE: If the lamina described above as a density p that continuously depends on x, that isif p = p(x) for x in the interval [a, b],
then the moments, the total mass, and the center of mass are given by

M = [Pp(x) f (0 dx.

M= 3 [ p0OLF (01 d x

My = fabXp(X) f(X) dx.

— — My
X—Vandy—v

Example 8.5. Suppose alaminalies underneath the graph of y = 16 — x? and over the interval [—4, 4].
a) Assumethe density of the laminais p = 3. Find the mass, moments, and the center of mass of the lamina.

b) Assume the density of the laminaisp = g + 2. Find the mass, moments, and the center of mass of the lamina.

Solution:

a) We use the above formulaswith p = 3:
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insaz)= f[Xx_] =16 - x2

ous32)= 16 - x?

The massisgiven by

4

In[533]:= M= SJ f [x] dx
-4

out[533]= 256

The moment with respect to the x-axisis

4
ns3ar= MK = (372) f (f [x1) 2% ax
-4

8192
Out[534]= ——
5

The moment with respect to the y-axisis

4
in[s35:= My = 3j x f [x] dx

-4

out[535]= 0

The coordinates for the center of mass are

in[s36):= Xbar =My /M
ybar =Mk /M
out[536]= 0
32
out[s37]= —
5

137

Observe that the region of the laminais symmetric with respect to the y-axis. Hence the fact that X = O is aso clear from the fact

that the density is a constant.
Below isthe plot of the lamina and its center of mass:

ns3s= plotl =Plot [f [x], {x, -4, 4}, Filling » AXis];

plot2 =ListPlot [{{xbar, ybar}}, PlotStyle - {PointSize[0.02], Red}];

Show[pl ot 1, plot2]

Out[540]=
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b) Here p = x + 4. With the above notation we have

nsat= f[X_] = 16 - x2
[x_1 .2
p[X = — +
- 2

outfsa1]= 16 - x2

X
out[s542]= 2 + —
2
The massis
4
In[543]:= M/ =f p[x] f [X] d@x
-4

512
out[543)= ——
3

The moment with respect to the x-axisis

4
nsaa1= MKV = (1/2) f pIx1 (f [x1)? dx
-4

16384
15

out[544]=

The moment with respect to the y-axisis

4

In[545:= Myv =J p[x] xf [x] dx

-4

2048
Out[545]= ———
15

The coordinates for the center of mass are

in[s46]:= Xbarv = Myv / M
ybarv = Mkv / M
8
Out[546]= ——
15
64
out[547]= —
15

Here is a plot of the lamina showing the center of masses with the uniform density of p = 3 and variable density of p = g +2
represented by the red and green dots, respectively.
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ins48:= plot3 =ListPlot [{{xbarv, ybarv}}, PlotStyle - {Geen, PointSize[.02]}];
Show[pl ot 1, plot2, plot3]

out[549]=

2 4

NOTE: Observe that the center of mass with variable density (green dot) is shifted to the right, as expected, since the density is
more weighted to the right.

Example 8.6. Suppose alamina coversthe top half of the ellipse

Y
; + E = 1
a) Assume the density of the laminais p = 1. Find the mass, moments and the center of mass of the lamina.

b) Assume the density of the laminais p = e *. Find the mass, moments and the center of mass of the lamina.

Solution: To distinguish between the uniform and variable density cases in parts @) and b), respectively, we attach the letter u and
v to the notation in this solution. Thus Mu will be the mass corresponding to the uniform density while Mv is the mass correspond
ing the variable density.

a) We solve the equation of the ellipse for y:

insso)= Cl ear [a, b, X, Y]
2

X2
sol = Sol ve[—2+ y_2 =1, y]
a b

ouss2l= b [1- —

L et the mass, the moment with respect to the x-axis, the moment with respect to the y —axis, and the center of mass be denoted by
M(a, b), My(a, b), My(a, b), and (X(a, b).y (a, b), respectively. We now compute these quantities assuming p = 1.
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inss3)= C ear [a, b, Mu, Mku, Myu, xbaru, ybaru]

Mifa_, b_] =J f [x, a, b] dx
-a

a
Mkula_, b_] = (1/2)J (f [x, a, b1)?dx
-a
a
Mula_, b_] =J x f [x, a, b] dx
-a
abr
Out[554]=
2
2ab?
out[555]=
3
out[s56]= 0
Myufa, b]
in557:= Xbarula_, b_] = ——8 —
Mi[a, b]
Mku[a, b]
ybarufa_, b_] = ———
Mi[a, b]
outs57}= 0
4b
out[s58]= ——
37

That X = 0isalso clear from the fact that the density is a constant and the upper half of the ellipse is symmetric with respect to
the y —axis.

The mass of the lamina, the moments of the lamina with respect to the x- and y-axis for various values of a and b are as follows:

in[s50]:= umass = Tabl eForm[Tabl e[Mu[a, b], {a, 1, 3}, {b, 1, 3}1,

Tabl eHeadi ngs -» {{"a=1", "a=2", "a=3"}, {"b=1", "b=2", "b=3"}}1;
uxnmonment = Tabl eForm[ Tabl e[Mku[a, b] , {a, 1, 3}, {b, 1, 3}],

Tabl eHeadi ngs -» {{"a=1", "a=2", "a=3"}, {"b=1", "b=2", "b=3"}}];
uynonent = Tabl eForm[ Tabl e[Myu[a, bl , {a, 1, 3}, {b, 1, 3}1,

Tabl eHeadi ngs -» {{"a=1", "a=2", "a=3"}, {"b=1", "b=2", "b=3"}}1;
Tabl eFor m[ {umass, uxnmonent, uynonent },
Tabl eHeadi ngs -» {{"Mass", "x-nmonent", "y-nonment"}, {}}]

Out[562]//TableForm=

b=1 b=2 b=3
7 3
a=1|: s =
Mass 2 g
a=2 | 27 3
3 9
a=3 > 37 >
b=1 b=2 b=3
a=1 |2 & 6
X -nmoment j is
a=2 3 3 12
a=3 |2 8 18
b=1 b=2 b=3
a=1 |0 0 0
y -nonent
a=2 |0 0 0
a=3 |0 0 0
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The corresponding y-coordinate of the center of massin each caseis (recall that X = O for al cases)

Mula, b]
Mi[a, b]
Tabl eFor m[cent er massu,

Tabl eHeadi ngs -» {{"a=1", "a=2", "a=3"}, {"b=1", "b=2", "b=3"}}]

In[563]:= cent er massu =Tab|e[ , {a, 1, 3}, {b, 1, 3}];

out[564]//TableForm=

|b=1 b=2 b-=3
A
a2 |5 3 o
a3 |5 3 o

The following animation shows how the center of mass changes as a and b varies.

inses):= Cl ear [pl ot4, plot5]

plot4[a_, b_]:=Plot[f[x, a b], {x, -a, a}, PlotRange » {{-5, 5}, {-15, 15}}, Filling » Axis];
Myula, bl Mula, b]
Mi[a, b] = Mi[a, b]
plotufa_, b_]:=Show[plot4[a, b], plot5[a, b]]

plot5[a_, b_]:=ListPlot [{{ }} Pl ot Styl e - {Red, Poi nt Si ze[0.02] }]

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-
tions generated from the Animate command in this chapter. 1f you are reading the electronic version of this publication format-
ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation. Just click on the
arrow button to start the animation. To control the animation just click at various points on the sliding bar or else manually drag
the bar.

ins69:= Ani mate[plotufa, b], {a, 1, 8}, {b, 1, 10}]

Outlsear _

b) Here p = e *. With the above notations modified to reflect variable density, we have

ns70= C ear [a, b, M, Mkv, Myv, xbarv, ybarv]
p[x_] =E™

a
M [a_, b_] =j oIx]f [X, a, b]dx
-a

a
Mvia_, b_1=(1/2) -J- o[x] (f [x, a, b])zdlx
-a

a

Myvia_, b_] =j p[x] xf [x, a, b]dx

-a

outs71= e

ous72]= b I f [a>0, nBessel | [1, a], Integrate|e™ , -a, a}, Assunptions »asoH

2 b2 (aCosh[a] -Sinh[a])

out[573]=
a2

X2

oups74= b1f |a >0, -axBessell [2, a], Integrate|e™x , {X, -a, a}, Assunptions easOH
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Myv[a, bl
ns75= Xbarvia_, b_] = ————
M/ [a, b]
Mkv [a, b]
ybarvia_, b_.] = ———
X2
ous7s)= | f {a>0, -anBessel | [2, a], Int egrate[e’xx 1- - {x, -a, a}, Assunptions eaSOH/
a

| f [a>0, nBessell [1, a], Integrate[e’x {x, -a, a}, Assunptions »asO”

ous7e- (2b (aCosh(a] - Si nh[a}))/

a’lfla>0, rBessell [1, a], Integrate|e™

J]

Observe that the formulas for the mass and moments of the lamina are no longer elementary. Here is atable of numerical values
for these quantities assuming various choices for a and b:

in[s77):= Tabl eForm[N[{t1, t2, t3}], Tabl eHeadi ngs -» {{"Mass", "x-nmoment", "y-noment"}, {}}]

Out[577]/[TableForm=

Mass 0. 212207 0.0276791 0. 0148051 0.0101051 0.00767012 0. 00618077
X-monent 0.106103 0. 0138396 0. 00740256 0. 00505254 0. 00383506 0. 00309039
y -nmoment t3

The coordinates for the center of mass are

Myvia, bl MvIa, b]
M/ [a, b]  M[a, b]

outs78)= {{{-0.240194, 0.414395}, {-0.240194, 0.828791}, {-0.240194, 1.24319}},
{{-0.866255, 0.389977}, {-0.866255, 0.779953}, {-0.866255, 1.16993}},
{{-1.70377, 0.361161}, {-1.70377, 0.722323}, {-1.70377, 1.08348}}}

In[578]:= cent er mssv =N[Tab|e[{ } {a, 1, 3}, {b, 1, 3}”

Here is a plot showing the two centers of mass with for uniform and variable density.

ins791:= Cl ear [pl ot 4, plot6]
plotdfa_, b_1:=Plot[f[x, a bl, {x, -a, a},
Pl ot Range -» {{-8, 8}, {-1, 8}}, AspectRatio-» Automatic, Filling - Axis];
Myva, bl Mkv[a, b]
M [a, b] = Ma, b]
plotv[a_, b_]:=Show[plot4[a, b], plot5[a, b], plot6[a, b]]

plot6[a_, b_]:=ListPlot [{{ }} Pl ot Styl e » {G een, PointSize[0.02] }]

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-
tions generated from the Animate command in this chapter. 1f you are reading the electronic version of this publication format-
ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation. Just click on the
arrow button to start the animation. To control the animation just click at various points on the sliding bar or else manually drag
the bar.
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n83:= Ani mate[plotv([a, bl, {a, 1, 8}, {b, 1, 8}]

ouieea _

m Exercises

1. Suppose alaminais lying underneath the graph of y = 1+ x? over the interval [0, 2] .

a) Assume the density of the laminais p = 3. Find the mass, moments, and the center of mass of the lamina.
b) Assume the density of the laminais p = 2 x. Find the mass, moments, and the center of mass of the lamina.
¢) Plot the lamina and the center of mass on the same axes for both parts a) and b) above.

2. Suppose alamina of constant density p = 2 isin the shape of the astroid x?® + y?® = 1. Find its mass, moments, and center
of mass. Plot the laminawith its center of mass.
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Chapter 9 Introduction to Differential Equations

m 9.1. Solving Differential Equations

Students should read Section 9.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

An ordinary differential equation is an equation that involves an unknown function, its derivatives, and an independent variable.
Given adifferential equation, our objectiveisto find all functionsthat satisfy it.

Mathematica's command for solving a differential equation is DSolve[eqn,y[x],X] where eqgn is the differential equation to be
solved, y isthe dependent variable, and x is the independent variable.

If the differential equation has initial condition(s) we use braces {} and enter the equation as well as the initial condition(s)
separated by a comma: DSolve[{egn,condl,cond2,...,condn},y[x],x] where condl, cond2,...,condn are initial conditions.

Example9.1. Solvethe given differential equation and plot the graph of the solutions.

a y=24-y, y0=1 b) V1-x% y'=xy c)yi—i +5x =0

Solution:

a) Thisisan initial value problem. When entering a differential equation in Mathematica, we write y[x] instead of y to make
explicit the dependence on x.

in584:= sol a =DSol ve[{y' [X] =2 (4-y[x]), Y[O] =1}, y[x], X]

ougssal= {{y[x] > e?* (-3+4e”%)}}

Let y = f(x) be the solution given above. Then we can use the following command to extract this solution and define it as f ().
mpesi= f [Xx_1 = solafl[l, 1, 2]]

outsssl= e 2* (-3 +4 e®¥)

Here isthe plot of the solution:

insse)= Plot [f [x], {X, -2, 7}]

Out[586]= -5+
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b) We proceed asin a) above.

ins87):= sol b = DSol ve[’\/ 1-x% y' [x] =xy[x], YIXI, x]

out[587]= Hy [X] eV 1-x2 C[1] }}

Note that the above solution has an arbitrary constant C[1]. To plot the graph of some particular solutions corresponding to
different values of C[1], we define g(x, ¢), where c = C[1], asfollows.

in[ssg):= Cl ear [g, X, C]
g[x_, c_]1=solb[[1, 1, 211 /. C[1l] »cC

= y2
outss9)= € e V17X

Here are the graphsfor c = -5, -4, ..., 5.

inso0;:= Pl ot [Tabl e[g[Xx, c], {c, -5, 5}1, {X, -2, 2}]

Out[590]= -4
2

0)

ins911:= Cl ear [y]
solde =DSol ve[y[X]Yy' [X] -5Xx =10, y[x], x]

out[592]= Hy[x] e—\/5X2+2C[1] }, {y[x] e\/5X2+2C[l} }}

We extract the two solutions as follows.

=solde[[1, 1, 2]] /. C[1] »c
=solde[[2, 1, 2]] /. C[1l] »cC

inso3= f[X_,
grx_,

ous93= -\ 2 ¢ +5x2
ousoa= \/ 2 ¢ + 5 x?

Theplotsforc=-2, —-15, -1, ..., 1.5 2aregiven below.

c_]
c_]
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nsosi= Plot [Tabl e[{f [Xx, c], g[X, ¢1}, {c, -2, 2, .5}1, {X, -3, 3}]

0ut[595]= b b e S WL
-3 -2 - [ 2 3

Observe that the two solutionsy = =/ 5x2 + 2¢ and y = v/ 5X2 + 2 ¢ can be combined into one:
y2-5x2 =2c.

Thisisafamily of hyperbolas. Here is a contour plot of this equation.

insesl= Contour Plot [y?-5x%, {x, -3, 3}, {y, -7.5, 7.5}, Frane - False, Axes ->True]

out[596]=

m Exercises
1. Solvethe following differential equations and plot some solutions.
a(1+x%)y'=x*y b) xy'+3y=sinx ¢) (+4y)y' =-2xy
2. Consider the differential equation

B+2y)y'=2-€, y0)=a
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a) Solve the equation.

b) Plot the graphsfor valuesof a= -2, -1, 0, 1, 2.

c¢) Plot the graphs for thevaluesof a= -5, -.1, .1, .5.

NOTE: For parts b) and ¢) make sure to use alargeinterval for x.

3. Consider the differential equation
y=xyb-y/(@+x, y0=a

a) Solve the eguation.

b) Plot the graphsfor valuesof a=-2,-1, 0, 1, 2 andb=-2, -1, 0, 1, 2.

¢) Plot the graphs for thevaluesof a= -5, -.1, .1, 5andb=-5, -.1, .1, .5

d) Show that the limit as x » oo of the solution does not depend on a. Does the limit depend on b? If so, how?

m 0.2, Applications

Students should read Sections 9.1, 9.2, and 9.4 of Rogawski's Calculus [1] for a detailed discussion of the material pre-
sented in this section.

NOTE: The differential equations we encounter in this section can be solved by the method of separation of variables. This
method is discussed in the text. We leave it to the reader to solve the differential equation of the examples in this section by hand.
m 9.2.1. Growth and Decay

The growth of bacteriain a culture is known to be proportional to the amount of the bacteria present at time t. Suppose theinitial
amount of the bacteriais yo and the amount at timet is y(t). Then the above physical law yieldsthe differential equation

y'=ky,  ¥0) =yo,
where k is the proportionality constant.
NOTE: Since the bacteriais growing in number, y(t) isincreasing and hence y' (t) > 0. Thus k must be a positive number.

Example 9.2. Suppose the amount of bacteria in a culture was 200 at timet = 0. It was found that there were 450 bacteria after
2 minutes.
a) Find the amount of the bacteria at any timet.

b) At what time will the number of bacteria exceed 10,0007
Solution:
a) First note that y(0) = 200 and y(2) = 450. We solve the differential equation y' =k y:

nso7)= Clear [y, t, k]
solde =DSolve[{y' [t] =ky[t], y[0] =200}, y[t], t]

oufsesl= {{y[t] -200e*"'}}
msoo)= f [t_] =solde[[1, 1, 2]]
ouifse9= 200 ekt

To find the value of k we solve f(2) = 450 for k.
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ineoo):= sol k = Sol ve [f [2] == 450, k]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

out[600]= Hk - % Log [;} }}

in[601]:= N[%]

outeo1]= {{k - 0. 4054651}

1 n(9/4)

5~ 0.405465. Using thisin y(t), we see that the amount of bacteria at agiventimet

Thus the proportionality constant isk =
is
y(t) = 200 0405465t

b) To find the time it takes for the bacteria to exceed 10,000, we solve

Log[9/4]

2
Sol ve [f [t ] = 10000, t]

In[602]:=

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

out[603]= Ht - - Log (50 }}

Log[2] - Log[3]
We approximate this by evaluating
inf604]:= N[%]

outeoal= {{t - 9.64824}}

Thus it takes about 9.64824 minutes for the bacteria to reach 10,000. To visualy see this, we plot the graphs of the solution
y(t) = 200 94054651 (in blue) and y = 10000 (in red) on the same axes.

ineos:= Pl ot [{f [t], 10000}, {t, O, 15}, PlotStyle -» {Blue, Red}]
20000
15000

Out[605]=

10000}

5000

NOTE: The differential equation y' = ky is aso used to model the amount of a radioactive substance. However, in this case we
note that k < 0. (Explain this!)

Example 9.3. Carbon dating is used to determine the age of a fossil. Suppose that a fossil has 5% of Carbon-14 of the original
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amount in a bone. If the half-life of Carbon-14 is 5600 years, estimate the age of the bone.

Solution: Let y(t) be the amount of Carbon-14 in the bone and let yg be the initial amount of Carbon-14. Then the differential
equation we need to solveis

ineos:= Cl ear [k, y, yO0]
solde =DSol ve[{y' [t]==ky[t], y[0] ==y0}, y[t], t]

outeorl= {{y[t] - ekt yo}}

Thus the solution to the differential equation is y(t) = yp €¢!. The half-life of Carbon-14 is 5600 implies that y(5600) = % Yo. We
solve this equation for k.

ineog:= Y [t _] =solde[[1, 1, 2]]

1
Sol ve[y[5600] = =0, k]

ousos= €kt y0

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

Log (2] H

out/e09= {1k > -
otsosi= {{ 5600
in[610]:= N[%]

oute10)= {{k - -0.000123776}}

Thus k = —0.000123776. To find the age of the bone, we solve y (t) = .05y, for t.

Log[2]
Infe11]:= K = = 5600 )

Sol ve[y[t] =0.05y0, t]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

oute12]= {{t -»24202.8}}

Thus the bone is about 24,203 years old. Observe that we do not have to know the original amount of Carbon-14 in the bone.

= 9.2.2. Annuity

An annuity isan investment in which a principal amount of money is placed in an account earning interest rate r and money is
withdrawn at aregular interval. The differential equation that models an annuity is given by the annuity equation,

P'(t)=r Pt - W =r(Pt) - ),

where P(t) is balance in the annuity, r is the interest rate, and W is the rate (dollars per year) at which money is withdrawn
continuously.

Example 9.4. Find the general solution of the annuity equation for P(t) and then use it to calculate the following:

a) Assumer = 6% and W = $6000 per year and P(0) = $50000. Find P(t) and determine if and when the annuity runs out of
money.

b) Assumer = 6% and W = $6000 per year and P(0) = $100000. Find P(t) and determine if and when the annuity runs out of
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money.
¢) Assumer = 6% and W = $12000 per year. If we want the annuity to run out of money after 20 years, how much should be
invested now?

Solution: We solve

inje13):= DSol ve[P' [t]=r (P[t] - !\I), P[t1, t]
r
-

out[613]= {{

Thus the general solutionis P(t) = W/r +ce't.

a) Weuser = 0.06, W = 6000, and solve the initial value problem and define P(t) as the solution.

ine14]= Clear [r, W P]
r =0.06;
W= 6000;

sol de = DSol ve[{P' [t]=r (P[t] - W) P[0O] = 50000}, P[t1, t];

P[t_] =solde[[1, 1, 2]] r
oufsigl= 100000. - 50000. e 08!
We plot the graph of P(t) to see when the money will run out.
np1o)= Plot [P[t], {t, O, 15}]
50000
40000
30000}
20000}

out[619]= F
10000}

-10000|-

—20000f
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As the graph indicates the money runs out after 11 and half years. We can confirm this by solving P(t) = O:
ine20;= NSol ve [P[t] =0, t]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

oute20]= {{t - 11.5525}}

b) We repeat the above procedure with the obvious modifications:

ine21:= Clear [r, W P]
r =0. 06,
W= 6000;

sol de = DSol ve[{P' [t] = (P[t] - W) P[O] = 100000}, PIt], t];

r
P[t _]1 =solde[[1, 1, 2]]
outs25]= 100 000.

ine26):= Plot [P[t], {t, O, 80}]

200000

150000

100000+

out[626]=

50000 -

20 40 60 80

Observe that the money will never run out. What happens if we invest $100,001? $99,999?
¢) Inthis case we haver = 0.06 and W = 10000 per year

ine27):= Clear [r, W P, c]
r =0.06;
W= 12 000;

dsol = DSol ve[{P' [t]=r (P[t] - X\I) P[O] ==c}, PIt], t];
r
P[t _]1 =dsol [[1, 1, 2]]
oue31]= 200 000. - 200000. %%t + 1, ¢ % 06!
We solve P(20) = O for c.
in632]:= NSol ve [P[20] == 0, c]

oute32]= {{Cc » 139761. }}

Thus we need to invest $139,761.00 now.
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m 9.2.3. Logistics Equation

The differential equation

d
S =ky(1-3%)

is called the logistics equation. Here k > 0 and A is a constant called the carrying capacity. This equation is useful for modeling
the growth of a population where resources are limited and can only sustain a certain maximum population given by the carrying
capacity.

Example 9.5. The population p(t) of mosquito larvae growing in atree hole increases according to the logistics equation with
growth constant k = 0.3 per day and carrying capacity A = 1000.

a) Assuming that the initial population of the larvae is 50, find the population p(t) at any timet.
b) After how many days will the larvae popul ation exceed 5007

¢) When does the larvae popul ation reach 99% of the maximum capacity?

Solution:

a) Weusek = 13—0 and solve the corresponding differential equation in Mathematica:

ine33)= C ear [y]

3 yIt]
| de = DSol "[t] = — t 1- ——-|, 0] =50%, t], t
sol de = DSol ve [{y' [t] = —y[t] [ 1000] y[0] =50}, yit1, t]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >
1000 e3t /10

out[634]= {{y t] - W
+ e

NOTE: Be careful with using adecimal approximation for k. For example, try using k = 0.3 and see what happens.
Next, for convenience we write the solution given in the previous output as

ine3s):= Cl ear [p, t]
p[t_] =solde[[1, 1, 2]]

1000 e3t /10

Out[636]=

19 + 631/10

Thus the population of larvae at any timet is given by

_ 1000 €3Y/10
Pt = 19+€31/10

b) To find how long it takes for the larvae population to reach 500, we solve
in[637]:= NSol ve [p[t] == 500, t]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

oues7l- {{t -9.8148}, {t »9.8148 -20.944 i}, {t »9.8148 +20.944 i}}

Thus it takes about ten days for the larvae population to exceed 500. Observe that p(10) ~ 513.887.
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NOTE: We ignored the other two solutionsin the previous output since they are complex-valued and not physically relevant.

¢) Wefirst plot the graph of p(t) to estimate the number of days required for the larvae population to reach 99% of the maximum
capacity, i.e., p(t) = 999.

ine3s;= Plot [p[t], {t, 0, 60}]

1000 +
800 -
600 -
Out[638]= L
400 -
200 -

10 20 30 40 50 60

It appears that the population reaches 999 larvae after t = 30. We use the Table command to numerically confirm this.

in[e39]:= Tabl eForm[Tabl e[{t, N[p[t], 20]}, {t, 10, 50, 5}],

Tabl eHeadi ngs -» {{}, {"Days ", "Larvae Popul ation"}}]
Out[639]//TableForm=

Days Larvae Popul ation

10 513. 88668301168543188
15 825. 71546532788782007
20 955. 02200538248404316
25 989. 60067930023585514
30 997. 66069888351031767
35 999. 47708104964742173
40 999. 88327359193169386
45 999. 97395245585093165
50 999. 99418788969128789

We can reasonably conclude that the population reaches 999 larvae between 30 and 35 days. To obtain a more precise answer,
we have Mathematica solve p(t) = 999 for t:

in[e40]:= NSol ve[p[t] =999, t]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

oureaol= {{t > 32.8373), {t >32.8373 -20.944 1)}, {t ->32.8373+20.9441i})

Thus the desired timeist = 33 days.

= 9.2.4. Newton's Law of Cooling

Newton's Law of Cooling states that the rate of change in the temperature of an object is proportional to the difference between its
temperature and that of the surrounding environment (known as the ambient temperature). If A isthe ambient temperature and
T(t) isthe temperature of the object, then the differential equation that governsthislaw is
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T'(1)=-k(T@®-A), TO) =T,
where Ty istheinitial temperature of the object and k is a positive constant.

NOTE: Thisisadifferential equation that can be solved by separation of variables. We leave it to the reader to solve the differen-
tial equation of the next example by hand.

Example 9.6. The temperature in an oven is 350 F when the oven is turned off. After 15 minutes, the temperature is 250  F.

Assume the temperature in the house is 70 F.

a) Find the temperature of the oven at any timet.

b) At what time will the temperature become 75  F?
¢) What will the temperature beinthelimitast » c?
d) Does your answer in ¢) conform with your physical intuition?

Solution:

a) The ambient temperature here is room temperature. Hence A= 70. The initia temperature is Tp = 350. Newton's Law of
Cooling then gives

T'(t) = —k(T(t) - 70)), T(0) =350,
We solve the equation to get

inea1]:= Clear [T, k]
sol =DSolve[{T' [t] =~k (T[t]-70), T[0] ==350}, T[t], t]

ougeazi= {{T[t] >70e™" (4+eX')}}

mea3= T[t_1 =sol [[1, 1, 2]]

oueaz)= 70 e ™®' (4 +ekt)

Thus the solutionis T(t) = 70e7*!(4 + €!) or T(t) = 70+ 280e7¥*. To find the value of k, we solve T(15) = 250 for k.
in[e44]:= sol k = Sol ve[T[15] == 250, K]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >
1 14
out[644]= Hk - I Log {?} }}
neasi= K =sol k[[1, 1, 2]]
1 14 }

outeas)= — Log| —
BT {9

ine46):= N[%]

oute46= 0. 0294555

Thusk = '”(1‘5‘/ 9 = 0.0294555. Hence the temperature of the oven at any timet is given by

T(t) = 20+ 280 & 00294555

b) We solve T(t) = 75 for t:
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ine47):= NSol ve [T[t] =75, t]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

outfe47]= {{t - 136.659}}

After about two hours and 17 minutes the temperature will be 75 F.

¢) We make a plot of the solution:

in[eag):= Plot [T[t], {t, O, 100}, AxesOrigin - {0, 0}]
350

3oof

25of

zoof

out[648]= F
150 |

100

50 F

To find the limiting temperature, we evaluate
neag)= Limt [T[t], t »Infinity]

outea9l= 70

d) Since heat flows from aregion of higher temperature to a region of lower temperature, it isintuitively clear that the oven will
cool down to the room (ambient) temperature. Hence the limit should be 70° F as expected.

m Exercises

1. A bacteria in a culture grows at a rate proportional to its size. Suppose the culture contains 200 cells intially and there are 800
cells after 3 hours.

a) Find the formulafor the number of cellsin the culture at timet.

b) Find the number of bacteria after 2 hours.
c) At what time will the bacteria exceed 100007

2. Solvethe following using the annuity differential egaution: P' = r(P - Vr—v)

a) Assumer = 6% and W = $500 per year and P(0) = $5, 000. Find P(t) and determine when the annuity runs out of money.

b) Assumer = 6 % and W = $500 per year and P(0) = $9, 000. Find P(t) and determine when the annuity runs out of money.

¢) Assumer = 6 % and W = $20000 per year. If we want the annuity to run out after 40 years, how much should we invest now?

3. A population of squirrels live in aforest with a carrying capacity of 3000. Assume logistic growth with growth constant k = 0.8
per year.

a) Find the population of the squirrels at any timet assuming an initial population of P(0) = 800.

b) How long will it take for the squirrel population to double? Triple?
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4. A hot metal rod is placed in awater bath whose temperature is 40° F. The rod cools from 300 to 200° F in 1 minute. How long
will take the rood to cool down to 150° F? 45° F?

m 9.3. Numerical Methods Using Slope Fields

Students should read Section 9.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

m 9.3.1. Euler's Method

The simplest numerical method for solving a first order differential equation is Euler's Method. This method uses the approxima-
tion of afunction given by itstangent line. Hereisabrief description.

Let y = ¢(X) be the solution of the differential equation
y'=f(xy), yX0) = Yo
Then the equation of the line tangent to the graph of y = ¢(X) at X = Xg isgiven by
Yy = @' (Xo) (X = Xo) + ¢(X0).
But when X = xg, we have ¢(tp) = Yo and ¢' (Xo) = f (X0, Yo). Thus when X is close to Xg, ¢(X) can be approximated by
y = f(Xo Yo) (X~ Xo) + Yo.

We now choose h > 0 to be a small positive number, called the step size, and define X; = Xo + h. Then ¢(X;) is approximately
equal to

Y1 = Yo+ f(Xo, Yo) (X1 — Xo)

or

Y1 =Yo+hf(Xo, Yo)
We repeat the above argument at the point (x;, Y1) to get an approximation of ¢(x2), where X, = X3 + h= %o + 2h:

Yo = y1 +h (X, y1)
Proceeding in this manner, we obtain Euler's Method:

Yni1 = Yn+hf(X, yo) forn=0, 1, 2, 3, ...

where o(Xn) ~ Y.

If the approximated solution is calculated over an interval [a, b] and the step size h is specified, then the number of iterations (or
steps) required isgiven by m= (b—a)/h, where X, = aand x, = Xg + nh.

Here is a Mathematica program called Euler for evaluating Euler's Method in m steps (the option SetPrecision sets the precision
of our calculations to 10 digits).
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neso= C ear [f, x, y, x0, y0O, h, m]
Euler [f _, h_, m]:=Mdule[{n},
Do[
y[n+1] =SetPrecision[N[y[n] +hx*f [x[n], y[n]]], 107;
X[n+1] =x[n] +h,
{n, 0, m1]]

Example 9.7. Usethe Euler program to construct a table of solution values for the differential equation y' = x2+2y, y(0)=1
with astep size of h = 0.1 and for m = 10 steps.

Solution: Here f(x, y) = X2+ 2V, % =0, yo= 1.

mes2)= FIX_, y 1:=2x24+2y

m= 10;

x0 = 0;

yo =1;

h =0. l;

X [0] = x0;

y[0] =y0;

Eul er [f, h, m]

Tabl eForm[Tabl e[{n, x[n], y[n]}, {n, 1, m], Tabl eHeadings » {{}, {"n ", "xn", "yn" }}]

Out[660]//TableForm=

n X, VYn
1 0.1 1.200000000
2 0.2 1.441000000
3 0.3 1.733200000
4 0.4 2.088840000
5 0.5 2.522608000
6 0.6 3.052129600
7 0.7 3.698555520
8 0.8 4.487266624
9 0.9 5.448719949
10 1. 6. 619463939

To see how accurate the above approximation is, we solve the differential equation for the exact solution and plot both the
approximate and exact solutions on the same axes.

nee1]:= Cl ear [z, t, exact ]
exact =DSolve[{z' [t]=f[t, z[t]], z[x0] =yO0}, z[t], t];
z[t_1=z[t] /. exact [[1]]

1 2t 2
out[663]= " (-1+5&*' -2t -21t?)
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inee4):= Cl ear [plotl, plot2]
plotl=Plot[z[t], {t, 0, 1} 1;
plot2 =ListPlot [Table[{x[n], Y[n]}, {n, O, m], PlotStyle - PointSize[0.01] ];
Show[ {pl ot 1, plot2}]

8
7t

6f

out[667]=

Observe that the approximations become less accurate as we move away from the initial point (O, 1). Thisistypical of humerical
methods such as Euler's Method.

Here is a modification of the Euler progam that allows the user to input the endpoints a and b directly (instead of the step size h)
and m.

nees= Clear [f, x, y, h, a, b, m]

b-a
Eul er Endpt [f_, a_, b_, m] :=Nbdu|e[{n, h}, h=N[ ];
m
Do [
y[n+1] =SetPrecision[N[y[n] +h=*f [x[n], y[n]]], 107;
X[n+1] =x[n] +h,

n, 0, m}]]

Example 9.8. For the differential equation y' = x? + 2y, y(0) = 1, approximate its solution over the interval [0, 2] using m= 10
steps.

Solution: Again, we have f(x, y) = X2+ Y, X = 0, Yo = 1. However, we now input the interval [a, b] = [0, 2] into Euler EndPt.

ne7ol= fIX_, Y_1:=Xx2+y
m= 10;
x0 = 0;
y0 = 1;
x[0] = x0;
y[0] =y0;
a=0;
b= 2;
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Tabl eForm[Tabl e[{n, x[n], y[nl}, {n, 1, m],
Tabl eHeadi ngs » {{}, {"n ", "Xa", "yn" }}]

Out[679]//TableForm=

n Xn Yn

1 0.2 1.200000000
2 0.4 1.448000000
3 0.6 1.769600000
4 0.8 2.195520000
5 1. 2.762624000
6 1.2 3.515148800
7 1.4 4.506178560
8 1.6 5.799414272
9 1.8 7.471297126
10 2. 9. 613556552

This time we numerically compare the approximate solution with the exact solution:

ineso)= Cl ear [z, t, exact]

exact =DSolve[{z' [t]1=f[t, z[t]], z[x0] ==yO0}, z[t], t];

Z[t _1=2z[t] /. exact [[1]]

Tabl eForm[TabIe[{n, x[nl, y[nl, N[z[xO+n (b-a)/m]1}, {n, 1, m}],
Tabl eHeadi ngs » {{}, {"n ", "xn", "ya", "y(m)" }}]

ouesz= -2 +3e -2t —t?

Out[683]//TableForm=

m 9.3.2. Vector Fields

n Xn Yn y (n)

1 0.2 1.200000000 1.22421
2 0.4 1.448000000 1.51547
3 0.6 1.769600000 1.90636
4 0.8 2.195520000 2.43662
5 1. 2.762624000 3.15485
6 1.2 3.515148800 4.12035
7 1.4 4.506178560 5.4056
8 1.6 5.799414272 7.0991
9 1.8 7.471297126 9.30894
10 2. 9. 613556552 12.1672

Consider a differential equation in the form

y'=f(x y.

159

Since y' represents the slope of the line tangent to the graph of the solution y, we can think of f (X, y) as the slope of the same
tangent line at the point (X, y), which we indicate by drawing a segment of it at the point of tangency. The set of all such line

segments (normalized to have the same length) is called the direction field of the differential equation. Note that the direction
field gives a graphical approximation to the solution. It enables us to draw or visualize the graph of the unique solution of the

equation passing through a given point. We will illustrate thisin an upcoming example.

To plot the slope field of the differential equation y' = f(x, y) along the intervals (a, b) and (c, d) along the x- and y-axis,
respectively, the command to use is Vector FieldPlot[{1, f[x, y]}, {x, &, b}, {y, c, d}].
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However, before evaluating this command, we need to evauate the command Needs[" Vector FieldPlots™ ], which loads a
graphics package for plotting vector fields. This needs to be done once for each session.

Warning: If you evaluate the Vector FieldPlot command before you evaluate the Need[" Vector FieldPlots™] command, no
graphics output will be generated. Moreover, if you then evaluate Needs[" Vector FieldPlots™ ] and go back to evaluate Vector -
FieldPlot, the same problem may occur. To solve this, you must quit the kernel (under the Evaluation menu) and then start over
by evaluating Needd[" Vector FieldPlots™] first.

ines4]:= Needs [" VectorFiel dPlots™ "]
Example 9.9. Consider the differential equation y' = x> -2y, y(0) = —1.

a) Draw the slope fields for the differential equation.

b) Solvethe differential equation.

c) Plot both the slope field and the solution on the same axes.

d) Redo parts b) and c) for the same equation but with initial condition given by y(a) = b. Choose various values for a and b.

Solution:
a) Here, f(x, y) = X2 - 2y. Weusethe Vector FieldPlot command to plot the corresponding slope field:

ness)= T [X_, y_1:=x2-2y

inese]= plotl =VectorFieldPlot [{1, f[x, y]}, {x, -5, 5},
{y, -10, 10}, Axes - True, Franme - Fal se, Col or Functi on -» Hue]

S 10l Y
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b) We use the DSolve command to find the exact solution of the differential equation.

nes7)= Clear [y, X, g]
sol =DSolve[{y' [X] =T [x, y[x]], y[0] =-1}, y[x], X]
g[x_1=sol [[1, 1, 2]]

1
out[688]= JL{y[x] - 4—@’“ (—5+e2"72e2>‘x+2e2"x2)}}

1
out[689]= " e %X (—5 +e2X -2 e2Xx 12 &% X2)

¢) We now plot the slope field together with the solution above:

inoo)= plot2 =Pl ot [g[x], {x, -5, 5}, PlotRange » {-10, 10}]

10

out[690]= — . 1 . . . 1

—-10%-

161
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ineo1:= Show[pl ot 1, plot2]

Y 10+
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bt t ot
by N t1
Pty Pt
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Pttt g forttd

d) We can show several plotson the slope fields. Here is an example of how this can be done.

npoz)= Cear [y, X, h, a, b]
sola =DSol ve[{y' [X] =f[x, y[x]1], y[a] ==b}, y[x], X];
hix_, a_, b_1=Sinplify[sola[[1l, 1, 2]]]

1
out[694]= Ze’“ ((-1+2a-2a”+4b)e®®+e”* (1-2x+2x%7))
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ineos)= pl ot 3 = Pl ot [Eval uate[Tabl e[h[x, a, b], {a, -3, 3, 2}, {b, -3, 3, 2}11,
{x, -5, 5}, PlotRange -» {-10, 10}1];
Show[
pl ot 1,
pl ot 3]

-

Out[696]=

m Exercises

1. Use Euler's Method to find a numerical solution for the following initial value problems. Also find their exact solutions and
compare the results.
Ay =x-y, y0=1 b) y'=(1-x?)cosy, y(1)=0

2. Plot the direction field for the following differential equations:
ay =x+y by =ty

3. Consider the differential equation y'=3y— 2y
a) Draw the direction field for the differential equation.

b) Solvethe differential equation.
c) Assume y(0) = 2. Plot the graph of the solution for this case and aso the direction field on the same axes. Discuss the

behavior of the solution as x — co.
d) Redo part c) for the same differential equation but with initial condition given by y(a) = b (choose various values for a and b).
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Chapter 10.  Infinite Series

m 10.1. Sequences

Students should read Section 10.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that a sequence is a function whose domain is the set of non-negative integers.

In Mathematica, we denote a sequence a, as a function. Thus, instead of a, we write a(n). The limit of a sequence is evaluated by
using the Limit command. When Limit[a[n], n—»do is evaluated, Mathematica automatically assumes that n is a continuous
variable (instead of a discrete variable). It employs various techniques to evaluate limits.

To plot the graph of a sequence, we use the ListPlot command. ListPlot[list] plotsthe graph of list, where list isalist of points
(X, ), denoted in Mathematica by {x,y}. In our case, list will be the table of values of the form {n,a[n]}. The corresponding plot

command in this case would be ListPlot[Table[{n,a[n]},{n,min,max}].

Example 10.1. Consider the sequence defined by

_ 4n+l
T 3n+2

a) Find the first few terms of the sequence.

b) Plot the graph of the sequence.

¢) Make a conjecture for the limit based on the graph.

d) Find the limit of the sequence.

Solution:

a) We define the sequence as a function of n and use the Table command to generate the first ten terms of the sequence.

inpo7):= Cl ear [a, Nn]
4n+1

alnd== 302
+
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ineeo)= Tabl eForm[Tabl e[{n, a[n]}, {n, 1, 10}],
Tabl eHeadi ngs - {{}, {"n", "a."}}]

Out[699]//TableForm=
n an

29
23
33
26
37
29
41
32

[(e] (o] ~ [e)] (6] A W N P
N
[N

=
o

To obtain decimal expressions of these values we evaluate

inf700)= Tabl eForm[N[TabIe[{n, a[ni}, {n, 1, 10311,
Tabl eHeadi ngs - {{}, {"n", "a."}}]

Out[700]//TableForm=

n an
125

. 18182
. 21429
. 23529
.25

. 26087
. 26923
. 27586
. 28125

© 0O ~NO UM WN R
PR R PPRRPPRPREPP

-
o -

b) To plot the graph of the sequence, we use the ListPlot command. Here isaplot of the first 100 terms of the sequence.

in[7o1]:= Li stPlot [Table[{n, a[n]}, {n, 1, 100}]]

1.32 ; /
E .".
131
: ..
outzorj= -3OF S
B L]
L .
129" .
128F ¢
r L]
- L L L L L L
20 40 60 80 100

¢) The graph suggests that the limit is 1.333.... We can use the Table command to see this more clearly.
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in[702]:= Tabl eForm[N[TabI e[{n, a[n]}, {n, 1000, 10000, 1000}11,
Tabl eHeadi ngs - {{}, {"n", "a."}}]

Out[702])//TableForm=

n an
1000. 1.33278
2000. 1. 33306
3000. 1. 33315
4000. 1.33319
5000. 1.33322
6000. 1.33324
7000. 1. 33325
8000. 1. 33326
9000. 1. 33327
10000. 1.33328

Hence the limit seemsto be 1.3333... or 4/3. Hereisaplot of y = 4/3 and the graph of the sequence for large values of n:

in[7o3):= Cl ear [plotl, plot2]
plotl =ListPlot [Table[{n, a[n]}, {n, 1, 1000, 10}11;
plot2=Plot[4/3, {x, 1, 1000}1;
Show[pl ot 1, plot2, PlotRange » {1.25, 4/3}]

| ...M'"'
132f
130
out[706]= |
128}
I Il I I I Il I I I Il I I I Il I I I Il
200 400 600 800 1000

d) Finally, we confirm thisin Mathematica by evaluating the limit as n goesto o
in7o71:= Limt [a[n], n->Infinity]

4
out[707]= —
3

Example 10.2. Consider the sequence defined by

a) Plot the graph of the sequence.
b) Does the sequence converge?
Solution:

a) Again we use ListPlot to plot the graph.
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inog):= C ear [a, n]
(-1)"

a[n_]:=

in[710;:= ListPlot [Table[{n, a[n]}, {n, 1, 100}]]

010
[ L]
. ..
.
0.05-
o...
7 to.ooooooo.o.ooo.....,...........
out[710]= e
L 20 40........50,,......80....o.-.100
o-o""‘
-0.05
. L]
.
.
r L]
~0.10}
r L]

b) From the graph it is clear that the sequence approaches 0 in the limit. We confirm this using the Limit command.
in711)= Limt [a[n], n->Infinity]

out711}= O

NOTE: There are instances where the sequence a, may not be well-defined if n istreated as area variable (as opposed to an
integer variable). In such case Mathematica may return the limit unevaluated or else gives an output that indicates the limit may
not exist, as the following example illustrates.

Example 10.3. Determine whether or not the sequence defined below converges:
n n
an=(-1 Y]
Solution: First we will plot the graph of the sequence.

in712):= Cl ear [a, n]

afn_1:=(-1)"
n+1

in[714]= ListPlot [Table[{n, a[n]}, {n, 1, 100}]]

10r .......ooo...o.o.o.ooooo.....0.0.00..-....00.

051

Out[714]= S S S S S S

-05

71_0: .....’.000.o.oo..oooo..oooooooo.o..ooooooo.oo.

The graph clearly indicates the sequence does NOT converge (to a unique limiting value). We can see this by investigating the
following tables of values. The first one lists the even terms while the second one lists the odd terms of the sequence.
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in715= Tabl eForm[Tabl e[{n, N[a[2n]]}, {n, 10, 100, 10}1,

Tabl eHeadi ngs -» {{}, {"n",

Out[715]//TableForm=

n azn

10 0.952381
20 0.97561
30 0.983607
40 0.987654
50 0.990099
60 0.991736
70 0.992908
80 0.993789
90 0.994475
100 0.995025

2" 1]

in716)= Tabl eForm[Tabl e[{n, N[a[2n-1]]}, {n, 10, 100, 10}],
Tabl eHeadi ngs - {{}, {"n", "azn-1"}}]

Out[716]//TableForm=

Finally, let us evaluate the limit.

in717)= Limt [a[n], n->Infinity]

out[717)=

This output, specifically the notation I nterval[{0, z}], means that the limit does not exist uniquely, but has subsequences whose
limits take on the set of complex values €' * for al x [0, n]. Thisis because the variable n that appears in the Limit command

is automatically assumed by Mathematica to be a complex variable. In our case, for n an integer variable, we have two subse-
guences, a;, and az ;1 (even and odd, respectively), converging to different limits (1 and -1, respectively). Thus, a, diverges.

Example 10.4. Consider the sequence {a,} defined recursively by a; = 1 and a,,; = Va, + 1 . Generate the first ten terms of
this sequence and compute its limit.

n azn-1

10 -0.95

20 -0.975

30 -0.983333
40 -0.9875
50 -0.99

60 -0.991667
70  -0.992857
80 -0.99375
90 -0.994444
100 -0.995

(EZJ‘LIntervaI [{0, 7}]

Solution: Here is one method of defining a recursive sequence.

in[f718:= Cl ear [a,
afli]j=1

n]

a[n_]:=a[n] =Sgrt [a[n-1] +2]

outf719]= 1
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NOTE: The second occurrence of a[n] in the preceding command tells Mathematica to store all intermediate values of the
recurrence in evaluating a[n].

Here are the first ten terms of the sequence:

in721)= Tabl eForm[Tabl e[{n, a[n]}, {n, 1, 10}],
Tabl eHeadi ngs - {{}, {"n", "a."}}]

Out[721])//TableForm=

n a,
1 1

2 V3

3 V2+v3

4 A2+ 2+\/?

5 \/2+x/2+\/2+ﬁ

6 2+\/2+\ 2+\2+V3

7 2+ 2+\/2+\/2+\/2+\/?

8 2 +1\| 2+ 2+\/2+\ 2+\NV2+V3

9 2+\[2+1\|2+ 2+\/2+\/2+\/2+\/3

10 2+\[2+\|2+\|2+ 2+\/2+ 2+\V2+V3

The following table gives decimal expressions of the same first ten terms and reveal s the limit to be equal to 2.
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in7221= Tabl eFor m[Tabl e[{n, N[a[n]]}, {n, 1, 10}1,
Tabl eHeadi ngs - {{}, {"n", "a."}}]

Out[722]/[TableForm=
n an
. 73205
. 93185
. 98289
. 99572
. 99893
. 99973
. 99993
. 99998

© 0N OB~ WN PP

NP RP PR RRRPRPRPR

-
o

NOTE: In general Mathematica is not able to directly compute limits of sequences defined recursively. Assuming a, converges
(provethis!), we then computeits limit, called L, say, by letting n — oo in the recurrence formulafor a,:

L=lim,ean=limooVa,1+2 =V0im,ea,1+2 =VL+2

Solvingthe equation L = vV L + 2 thenyieldsL = 2 asthe limit.
in723):= Sol ve[L == Sqrt [L + 2], L]

out723= {{L->2}}

Example10.5. Leta; = land b, = V2. Definetwo sequences recursively by

ani1 =V an bn and bn+l = an;bn

a) Choose various values of a; and b, and calculate the first ten terms of the sequences {a,} and {by}.
b) Show that a, < b, for every positive integer n.

¢) Show that both sequences converge to the same limit. (NOTE: This common limit is called the arithmetic-geometric mean of
a;and bl)

Solution:

a) Here is aprogram that generates the first ten values of a, and b,,.

in[f7241= Cl ear [a, b, n]

a[l] =1
b[1] = 10
afi _1:=a[il=Va[i -11*b[i -1]
i -1 b[i -1
bl ]:=bpi]- o -H*00 -1,
2
out[725)= 1

out[726)= 10
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in[729]:= Tabl eForm[Tabl e[ {k, N[a[ k], 10], N[b[ k], 101}, {k, 1, 10} 1,
Tabl eHeadi ngs -» {{}, {"n", "a[n]", "b[n]"} }]

Out[729]//TableForm=

n afnj b[n)

1 1.000000000 10.00000000
2 3.162277660 5.500000000
3 4.170434885 4.331138830
4  4.250027349 4.250786858
5 4.250407086 4.250407103
6 4.250407095 4.250407095
7 4.250407095 4.250407095
8 4.250407095 4.250407095
9 4.250407095 4.250407095
10 4.250407095 4.250407095

b) The following table suggeststhat a, < by, for at least the first ten terms:

in7301= Tabl eFor m[Tabl e[{k, N[a[ k], 10], N[b[ k], 107, N[b[k], 10] - N[a[k], 1071}, {k, 1, 10} 1,

Tabl eHeadi ngs -» {{}, {"n", "a[n]", "b[n]", "b[n]l-a[n]"} }]

Out[730]//TableForm=

n afn] b[n] bin]-a[n]
1 1.000000000 10.00000000 9.00000000
2 3.162277660 5.500000000 2.337722340
3 4.170434885 4.331138830 0.160703945
4 4.250027349 4.250786858 0.000759508
5 4.250407086 4.250407103 1.7x10°
6 4.250407095 4.250407095 0. x107°
7 4.250407095 4.250407095 0. x10°*°
8  4.250407095 4.250407095 0. x10°*°
9 4.250407095 4.250407095 0. x107°
10 4.250407095 4.250407095 0. x1071°

171

For a better feel on this, let us plot the graphs on the same axes. To this end, we define two lists using the Table command and

use the ListPlot command to plot the graphs.

n731)= plotl = ListPlot [Tabl e[{k, a[k]}, {k, 1, 10}], PlotStyle - {Blue}];
plot2 =ListPlot [Table[{k, b[k]}, {k, 1, 10}], PlotStyle » {Red}];
Show[pl ot 1, plot2, PlotRange » {0, 10}]

10 -

out[733]=
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The above graph suggests that the two sequences converge to the same limit. Unfortunately, Mathematica's Limit command
cannot help us compute the limit of a, and b, due to their recursive nature. (Try this!)

NOTE: We encourage the reader to experiment with different initial valuesfor a; and b; to see if the sequences a, and b, aways
converge to the same limit.

Example 10.6. Consider the sequence

_ (n!)l/n

_ In(nHh-ninn

a) Show that if b, =Ina,, thenb, = .
b) Does b, converge? If so, find the limit.
¢) Doesa, converge? If so, find the limit.

Solution:

a) We define asequence ¢, = w and then show that b, = c;,.

in[7341.= Cl ear [a, b, c]

(n !)1/n

Q
—.

=]

n

n
b[n_1:=Log[a[n]]

Log[n!] -nlLog[n]
c[n_]:

n

in[738]:= Tabl eForm[TabIe[{N[c[n]], N[b[n]1], N[c[n], 10] - N[b[n], 101}, {n, 2, 10}1,
Tabl eHeadi ngs » {Automatic, {" cn", " by", " ca-bn"}}]

Out[738]//TableForm=

Cn bn Cnh-bn
1 |-0.346574 -0.346574 0. x10**
2 |-0.501359 -0.501359 0. x107°
3|-0.591781 -0.591781 0. x10°*°
4|-0.65194 -0.65194 0. x10°*
5 |-0.695218 -0.695218 0. x107°
6 |-0.72803 -0.72803 0. x10'°
7 | -0.753866 -0.753866 0. x10°
8 | -0.774799 -0.774799 0. x10°*°
9 | -0.792144 -0.792144 0. x107*°

The preceding table indicates that the two sequences are the same. Hereisaplot of both:
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in739]:= Li stPlot [{Table[{n, b[n]}, {n, 1, 100}], Table[{n, c[n]}, {n, 1, 100}1},
Pl ot Range » {-1, 0.1}, AxesOrigin- {0, 0}]

Il Il Il Il Il
20 40 60 80 100
—02l
e
—04L
out[739]= .
—06f °
r L]
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—10l

_ In(Hh-ninn
- n

This plot clearly showsthat b, = ¢, i.e., In(ay) = In(%) . Weleave it to the student to establish this equality using

properties of the natural logarithmic function.

b) The previous plot indicates that the limit of b, is-1. To confirm this, we use the Limit command.

inf740;= Limt [b[n], n-Infinity]

out[740]= -1

¢) Since by, = In(ay), it followsthat a, = € and hence lim.,, . &, = €1, Again we verify this using the Limit command:

inf741]= Limt [a[n], n->Infinity]

1
Out[741]= —
e

m Exercises

1. Determine the convergence of the given sequence.
a) a, = 32+n+2 b)an:In(2”+3) 0) an = W

2n2+1 n+1

1 1 1 1
2. Let Cn—m+m+m+...+ o0

a) Find the first ten terms of the sequence.

b) Plot the graph of the sequence.

¢) Isthe sequence increasing? Bounded? Convergent? Prove each of your assertions.
d) Find limp_, « Cp.

3. The nth harmonic number is defined to be the sum

1,1
Hh=1+3+3+ ..+

Sk

Let a,=H,—Innand b, = 1'”1 % dx.
a) Show that H, = b, forn=1, 2, 3, ..., 10. Prove that this holdsfor al positiveintegersn.

b) Show that a, = 0forn=1, 2, 3, ..., 10. Provethat thisholdsfor all positive integers n.
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¢) Usethe ListPlot command to plot the graph of a,. Doesthe graph indicate that a, is decreasing or increasing?
d) Evaluate limp., » an.

€) Thelimit in part d) is called Euler's Constant and is denoted by y. Compute y accurate to 20 digits.

m 10.2. Infinite Series

Students should read Section 10.2-10.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

m 10.2.1. Finite Sums

Sum[a[n], n, n1, n2] evaluates the finite sum of a, as n goesfrom n; to n,.
Sum[a[n], n, n1, Infinity] evaluates the infinite series of a, as n goesfrom n; to co.

Using the BasicM athl nput Palette, we can aso enter finite sums or infinite series aszﬂfnl a[n] or ¥, alnl, respectively.

Example 10.7. Compute the following finite sums:

g xio, b) Tf1 k-1 (k+ 1)

20 2
o5f ()2 dzhei-2 ¢ xg

k=0 3 ok241

Solution:

1627
out[742)= - ——
2520

b)
in[743)= Sum[(k +1) (k -1), {k, 1, 5}]

out[743)= 50

n '
) The binomial coefficient ( m) = —T__ jsexpressed in Mathematica by the command Binomial[n, m].

m! (n—m)!

30
In[744]:= ZBi noni al [30, kj 2X
k=0

out[744]= 205891132 094 649

NOTE: The above number is the same as 3% = 205891 132094 649, Verify this!

d)



Chapter 10

n
In[745]:= Z (3j -2)

j=1
3

out[745]= -2 N + E n(l+n)

in[746):= Si nplify[%]

1
Out[746]= E n(-1+3n)

€)
10 k2 +1
In[747]:= Z _—
ok¥+2k?2+1
361278549115758513
Out[747]=

126 627 880430636 728

m 10.2.2. Partial Sums and Convergence

Example 10.8. Consider the series Y, ﬁ. Let s, denoteits nth partial sum.
a) Find s)0o.

b) Compute every 10th partial sum up to n = 100.

¢) Compute every 1000th partial sum up ton = 10, 000.

d) From the tables of valuesin parts a) and b) what do you infer about the convergence of the series? Prove your assertion.

Solution:
a) First we define s, in Mathematica and then evaluate Sygo.

in[74g):= Cl ear [s, n]

n 1
s[n_]:=
Z‘ 4j2-1
s[100]
100
out[750)= ——
201
in[751):= N[%]

out751]= 0. 497512

175

b) Here we use the command Table[g[n],{n,1,J,K}] which givesthe list of every K-th value of s, asn goesfrom 1toJ. The

command TableForm[N[Table[g[n],{n, 1, J, K }]]] lists the values in column form.
in[7s21:= Table[s[n], {n, 1, 100, 10}]

1 11 21 31 41 51 61 71 81 91
out[752]= {—, T T T T T Too T T —}
3 23 43 63 83 103 123 143 163 183

in[753:= N[%]

ou[753)= {0. 333333, 0.478261, 0.488372, 0.492063,
0.493976, 0.495146, 0.495935, 0.496503, 0.496933, 0.497268}
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in7s4)= Tabl eFor m[Tabl e[{n, N[s[n]1}, {n, 10, 100, 10}],
Tabl eHeadi ngs > {{}, {"n", "sa"}}]

Out[754]/[TableForm=

n Sn
10 0.47619
20 0.487805
30 0.491803
40 0.493827
50 0.49505
60 0.495868
70 0.496454
80 0.496894
90 0.497238
100 0.497512
c)
in7ss)= Tabl eFor m[Tabl e[{n, N[s[n]]}, {n, 1000, 10000, 1000}],
Tabl eHeadi ngs » {{}, {"n", " sn"}}]
Out[755]//TableForm=
n Sn
1000 0. 49975
2000 0. 499875
3000 0. 499917
4000 0. 499938
5000 0. 49995
6000 0. 499958
7000 0. 499964
8000 0. 499969
9000 0. 499972
10000 0.499975

d) It seemsthat the partial sums convergeto 0.5. We confirm this by evaluating

in[7s6)= Limt [s[n], N - ]

1
out[756]= —
' 2

Can you prove this? Hint: Use the method of partial fractions to decompose this series into a telescoping series as discussed in
your calculus text.

Example 10.9. Let s,bethe nth partial sum of the harmonic series
P

a) Find syg0.

b) Compute every 1000th partial sum up ton = 10, 000

¢) Plot the graphs of the partial sums.

d) From the table of valuesin part b) what do you infer? Prove your assertion.

Solution: We will follow the method of the preceding example. First we define the nth partial sum.
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in7s71:= C ear [s, n]
s[n_]:=Suml/k, {k, 1, n}]

a) Then s, isgiven by

In[759:= S [100]

14466 636279520351160221518043 104131447711
out[759]=
el 2788815009 188499086581 352357412492 142272
in[760]:= N[%]

out760]= 5. 18738

b) Here isatable of values of every 1000th term in the sequence s, for n less than or equal to 10, 000.

in[761]:= Tabl eForm[TabIe[{n, N[s[n]1}, {n, 1000, 10000, 1000}],

Tabl eHeadi ngs -» {{}, {"n",

Out[761])//TableForm=

c) Hereisaplot of s,

in[762):= Li stPl ot [Table[{n, s[n]}, {n, 1,

ou762l= 3}

n Sn

1000  7.48547
2000  8.17837
3000  8.58375
4000 8.87139
5000 9.09451
6000 9.27681
7000  9.43095
8000  9.56447
9000  9.68225
10000 9.78761

300, 20}1]

250
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The above graph indicates a slow growth that makes it difficult to reach a definitive conclusion regarding the convergence of the

harmonic series.

d) The table in b) and the plot in ¢) both suggest that the sequence of the partial sumsisincreasing. To convince ourselves of this
we compare s, and .



178 Mathematica for Rogawski's Calculus

in7e3)= Tabl eForm[Tabl e[{n /2., N[s[2"]]}, {n, 1, 10}],

Tabl eHeadi ngs -» {{}, {" % " s }}]
Out[763]//TableForm=

E 32"
2

To.5 1.5
1. 2.08333
1.5 2.71786
2. 3. 38073
2.5 4.0585
3. 4.74389
3.5 5.43315
4. 6.12434
4.5 6.81652
5. 7.50918

This table suggests that syn =
gence of the harmonic series.

g for n= 2. Usethisfact (a proof of it can be found in your calculus text) to establish the diver-

Example 10.10. Determine whether the following series converges or diverges.

9z, b) T, L O Sa(FE-m=) 9 ShalnnsD-inn

Solution: In al cases we let Mathematica attempt to evaluate the infinite sum. For those cases where Mathematica returns a
numeric output, thisis understood to mean that the series converges and that the sum of the series is the given value.

a)
= (-1)"
In[764]:=
; n?
JT2
out[764]= — —
12

Thus the series converges to — g To see this graphically, we plot the graph of the partial sums of the series using the ListPlot

command, along with the horizontal line representing itssums = — g ~ —0.822467.

inf7es)= Cl ear [s, n]
0, (-1)%

s(n_1=, o

k=1
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in767):= plotl = Li stPlot [Table[{n, s[n]}, {n, 1, 100}11;

71'2
pl ot 2 = Pl ot [_E’ x, 1, 100}];

Show(pl ot 1,
-0.8218f

-0.8220f

-0.8222

-0.8224

out[769]=

-0.8228

-0.8230}

-0.8226

pl ot 2]

b) Observe that lim;_, .,

following output message from Mathematica if we attempt to evaluate the series.

In[770]:= Z
j=1

Sum::div

Out[770]= Z

j-1

mj_l
i

@ -1+]j

-1

: Sum does not converge. >

179

=1+ 0. Hence, the series does not converge according to the Test for Divergence. This explains the

¢) Since thisis atelescoping series, it can be shown that the nth partial sumisgivenby s, =1- % This can be seen in the
n+

following output:

n
In771):= S[n_] : = Z
k

vk

1 1

Vk+1




180 Mathematica for Rogawski's Calculus

in7721= Tabl eForm[Tabl e[{n, s[n]}, {n, 1, 10}],

Tabl eHeadi ngs » {{}, {"n", " sn"}}]
Out[772])/[TableForm=
n Sh
11 1. L
V2
2 1.1
V3
1
3 3
4 1-X
\5
5 1--1
Ve
6 1- -1
NT
7 1- -1
22
2
8 3
9 1.+
V1o
10 1- 21—
Vit

Hence, the series converges to 1, which we confirm with Mathematica.

ki 1 1
In[773]:= Z [— -
n=1\yn Yn+1l

ou[773]= 1

d) This, too, is a telescoping series with the nth partial sum given by s, = In(n+ 1) (verify this). Hence the series diverges, as
shown by the following output.

In[774]:= Z (Log[n+1] -Log[n])

n=1

Sum::div : Sum does not converge. >

©

out[774]= Z (-Log[n] +Log[1l+n])
n=1

m EXxercises

1. Consider the series Y%, —~—.
Zn_l n?+3n+2

1

a) Use the Apart command to decompose the terms of the series, a, = s

, into partia fractions.

b) Use part a) to find aformula for the nth partial sum of the series.
¢) Isthe series convergent? If so, then find its sum.

2. Determineif the given seriesis convergent. If itis, then find its sum.

00 1 o (D" 00
& Yot nor b) 2o - 0 Zwa (D™
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3. Thesereis 3> gar" iscalled ageometric series.

a) Find the nth partial sum of the geometric series.
b) For what values of r does the series converge? Diverge?
¢) Find the sum of the geometric series for those values where the series converges.

4. Consider the series Yy =

v

a) UsetheListPlot command to plot the first ten partial sums of this series.

b) Show that the series converges.

m 10.3. Tests for Convergence

Students should read Sections 10.4-10.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

m 10.3.1. Comparison and Limit Comparison Tests
The Comparison Test: Suppose 0 < a, < b, for al n> M where M is some positive integer.

a) If Y21 by is convergent, then Y ; &, is also convergent.

b) If 3.1 &, isdivergent, then 3> ; b, isalso divergent.
The Limit Comparison Test: Suppose a, and b, are both positiveand lim,,_,, % =|.If O0<| < oo (thatis, if | isafinite positive
number), then 317 ; a, and ;5”4 b, both converge or both diverge.

To test convergence of a given seriesy ; &, using the Limit Comparison Test, it isimportant that the series > ; b, easily be
checked for convergence.

Example 10.11. Discuss the convergence of the series

co 1
n=1
v n?+2
Solution: Since \/17 < \/L = % and the harmonic series >, % was shown to divergence in Example 10.8 of this text, it
n?+2 n?

follows by the Comparison Test that our series diverges also. Thisis verified by Mathematica:

ki 1
In[775]:= Z e —
n=1vVn2+2

Sum::div : Sum does not converge. >

© 1
out[775])= Z _

n=1 /2 +n2
Example 10.12. Discuss the convergence of the series

3n%+40n%+4
n°+200 n*+1

2nt1
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Solution: To find another series to compare ours with, we consider one with terms b, = :—2 This comes from considering lower

powers of nin both the numerator and denominator of a,,.

in[77e)= Cl ear [a, b, n]
3n3+40n2+4

afn ]:s ———
n®+200n%+1
b . 3
[n_]:= n—2

.~ ra[n]
in[779)= Limt [

, Nn-Infinit
b[n] y]

out[779]= 1

Since the series 3774 :—2 is convergent (p-series) and limp_, gﬁ = 1, we conclude from the Limit Comparison Test that our series

o 3n’+40rP+4

°, ————— isalso convergent.
n=1 15,200 n%+1 9

Example 10.13. Discuss the convergence of the series Y7, [1 — cos( %)]

Solution: We note that 1imn_,., [1- cos(%)] = 0. Thisis confirmed by Mathematica.

in780)= Limt [1-Cos[1l/Nn], N - o]

out[7sol= O

Thus the necessary condition for convergence is satisfied. But this does not guarantee convergence. We will use the ListPlot
command to plot the graph of the partial sumsto seeif the series converges.

in[7e1:= Cl ear [S]
s[n_]:=Sum[l-Cos[1l/k], {k, 1, n}]

in[7e3:= Li stPl ot [Table[{n, s[n]}, {n, 1, 100}], Pl ot Range -» {0, 1}]

10~

0.8

06},

out[783]=
04+

0 20 40 60 80 100

The above graph clearly indicates convergence. To see that this is indeed true, we compare it with a series that is known to
converge: > q niz To thisend let us define a, and b, as follows.



Chapter 10 183

in7e4)= C ear [a, b, n]

a[n_] :=1—Oos[£]

b[n_71:

Observe that both a, and b, are positive termsfor all n. Hence we can apply Limit Comparison Test:

a[n]
b[n]

In[787]:= Lirrit[ , n—»lnfinity]

1
Out[787]= —
2

Therefore, the given series, ¥, [1- cos(%)], converges.

m Exercises

1. Usethe Comparison Test or the Limit Comparison Test to determine if the given series is convergent. If it is convergent, then
find its sum.

Inn n*+200 n?+1000 n+2222
a) Yo, 1 b) >> C) Yo, ————==
) 2ni \/E ) Znz2 n2+3Inn ) Znz1 nS+5n%+n+1
Inn 1 -1
d Yol e X T f) Tt (1-2747)

m 10.3.2. The Integral Test
The Integral Test. Given an infinite series
2ne18n

we define f(x) sothat f(n) = a, . If f(x)ispositive on theinterval [1, o), decreasing on thisinterval, and if lim,_., f(X) =0,
then

Jfodx and ¥ a
both converge or both diverge.

Example 10.14. Usetheintegral test to determine the convergence of the following series.

a X

%) PR 00 1
) Zj:l je’! 0 Xni1 rnn

o 1
"=l
Solution:

a) Here a, = % and so we define f (n) in Mathematica:
n

in7eg)= C ear [f,

fIx_1:=

X1
1
Vx
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inf7oo;= ' [X]

1

2 X3/2

out[790]= -

Since f'(x) < Ofor dl x € [1, ), it followsthat f isdecreasing. Clearly f ispositivein vaueand limy.., f(x) = 0. Thuswe
can apply the Integral Test by evaluating [~ f (x) d x:

n7o11:= I ntegrate[f [x], {x, 1, Infinity}]

1
Integrate::idiv : Integral of —— does not converge on {1, co}. >
X

@ ]
Oout[791]= J — dx
1 4/x

To confirm this, we evaluate this improper integral according to itslimit definition:

in7921:= Cl ear [F, b]
F[b_]1:=Integrate[f [x], {X, 1, b}]

in[7o41:= Limt [F[b], b - o]

Out[794]= o
b) Here we define f as

in7os)= C ear [f, X]
fIx_1=x E-**
out[796]= e x
inro71= Plot [f [x], {x, 0, 5}, PlotRange -» {0, 1}]

10~

0.8

out[797]=
04+

0 1 2 3 4 5

The graph clearly showsthat the function is decreasing. We can confirm this by solving

infrog)= f' [X]
Sol ve [f ! [X] == 0]

y2 2
ou7es)= X -2 e x2
1

oupeer= {{x »-—} {x> —1}}

V2
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in[gooj:= ' [1]
1

out[800]= - —
e

inso1l:= N[1/Sqgrt [2]]
outgo1]= 0. 707107

Thus f has critical points at t% ~ 0.707. Since f'(1) < Oweconcludethat f isdecreasing on (1, o).

The graph also showsthat lim,_,, f(Xx) = 0. Again we can confirm this by evaluating
ingoz):= Limt [f [x], X=>Infinity]
out[go2= 0

Hence the Integral Test can be used to determine if the seriesis convergent. That the series 3352, e is convergent followsfrom
the fact that

In[803]:= j f [x] dx
1
1

out[803]= ——
2e

Since the corresponding integral is convergent it followsthat the series 3772, j € I* is also convergent.

¢) Inthis case, we define f as
ingo4]:= C ear [f, X]

fIx_]=
VX Log[x]

1
\/x Log[x]

infgoel:= Plot [f [x], {X, 2, 100}]

Out[805]=

0.14 ;
0.12 ;
0.10 ;
Out[806]= 0.08 i
0.06 ;

0.04f

0. 02 L L L L L L L L L L L L L I
20 40 60 80 100

We leaveit for the reader to check that f satisfies al the conditions of the Integral Test, which we now apply.
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In[807]:= J f [x] dx
2

1
Integrate::idiv : Integral of ————— does not converge on {2, co}. >
Vx Log[x]
@ 1
Oout[807]= J — dx
2 \/x Log[x]

Since the preceding output states that the integral is divergent, we conclude that the corresponding series is divergent also.

Example 10.15. For what values of p does the series ', n(Tln)p converge?
1
n(nn)?

Solution: We apply the Integral Test. Towards this end, we define f(x) so that f(n) = and then verify that f(x)is positive

and decreasing on theinterval [a, ), and that limy_., f(X) =0:

insos= Cl ear [f, X, pl

. 1
X s —
- x (Log[x])P

mg1o]= Limt [f [x], X=>Infinity]
out[s10]= O
To confirm this limit we will plot graphs of f(x) for some values of p

ns11]:= Pl ot [Eval uate[Tabl e[f [x], {p, -4, 2, .5}11, {Xx, 2, 100}, Pl ot Range -» {0, 5}]

5r

out[811]=

In the above plot, observe that some of the graphs are initially increasing, but then begin to decrease at a certain point. Let us
then find the interval over which the function f (x) is decreasing for each p. To this end, we compute the derivative f ' (x) and

solve f '(x) < Ofor x.
ins12)= f' [X]

pLog(x]*P Log[x]™P
out[s12)= - -
x2 X

2

infs13):= Si nplify[%]

Log[x]*P (p+Log[x])

out[813]= -
X2
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ing14):= Sol ve [f' [x] =0, Xx]
oug1al= {{Xx »eP}}

Since (Inx) ™1™ > Oforal x> 1, weseethat f'(x) < 0if Inx> —p, or equivaently, x = ¢ P. Thus f(x) is decreasing on [2, o)
where a isthe maximum of 2 and ¢~P.

To apply the Integral Test we integral fover the interval [2, co0). This is easier than integrating over the interval [a, co) and
permissible since the integrals f2°° f(x)dxand fa “ f (x) d x either converge or diverge together.

ns1s)= I ntegrate[f [X], {X, 2, «}]

Log[2]*™P
outsis= I f [Re[p] >1, ———, Integrate[
-1l+p

Log([x]P .
, {X, 2, o}, Assunptions - Re[p] sl”
The preceding output shows that f2°° f(x) dxisconvergent for p> 1. However, the case p < 1 remains unsolved. To evaluate the

integral in this situation we define its anti-derivative F(b) = fzbf(x)clx and find the limit of F(b) asb —» oo.

ins16):= Cl ear [F, b]
F[b_] =Integrate[f [Xx], {X, 2, b}]
Log(2)"™ - Log[b)" ™"

ougr7]= | f {Re[b] >1|]1mb] #0, 1 ,
— +p

Log(x] P
|

Integrate , {X, 2, b}, Assunptions - ! (Re[b] >1 || Im[b] th)H

(In2)¥P-In(b)*-P

Since b isareal number and b > 2, the solution to our integral isthe first one, that is, F(b) = s ,

provided p + 1. But
(In2)*P

, which we
1-p

then for p < 1, we see that limy_,., F(b) = co since limy,, In(b) P = 0. For p> 1, we have lim,,, F(b) =
already knew from the second previous Mathematica output. The following tables might be helpful to convince you about this.
ins1g]:= Table[Limt [F[b], b-Infinity], {p, -3, .9, .5}]

outg18= {w, ©, ®, ©, ©, ©, ©, ©}

ins1o]:= Table[Limt [F[b], b-Infinity], {p, 1.1, 9, .5}]

outs19]= {10.3733, 2. 0766, 1.3605, 1.12346, 1.02813, 0.997425, 1.0048, 1.03926,
1.09605, 1.1734, 1.27122, 1.39056, 1.53333, 1.70219, 1.90056, 2.13262}

For p = 1, we make this substitution inside the integral and evaluate it directly:

in[s201= p =1,
Integrate([f [x], {X, 2, w}]

Integrate::idiv : Integral of does not converge on {2, co}. >

@ 1
Oout[821]= J — dX
2 x Log[x]

x Log[x]

Therefore, the infinite series 3, n(Tln)P is convergent for p > 1 and divergent for p < 1.

NOTE: To see how slow the growth of this seriesisfor the value of p = 1, we consider the following table of partial sums. Recall
that f(n) isthe nth term of the series and hence the nth partial sumis given by
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ing22= Cl ear [p, s, nl
s[n_] = Sum[f [k], {k, 2, n}]
15 (-1 +n) Log| ;& Log[%]yp
out[823]=

Log[ ]
The following output shows that the sum of the first ten thousand termsiis only about 3.01501088.

in[s24]= p =1,
N[s [100001] ]

outg2sl= -96 304. 4
Here isaplot of the graph of the first ten thousand partial sumsin steps of 1,000.

in[s26]:= Li stPl ot [Table[{n, s[n]}, {n, 1000, 10000, 1000}]11]

—20000%

—40000 - °

Out[826]= L
—60000 -

4000 6000 8000 . 10000

m Exercises

1. UsetheIntegral Test to determine if the given series is convergent. If it converges, then find its sum.

00 n oo n 00 (Inn)3
a) Zn:l_ b) anz on C) Zn:l )

n?+1
2. For what values of p doesthe seriesy ; ﬁ converge?

(Inn)k
nP o’

3. Consider the series }7,

a) Fixavaueof p(say, p=2or p=1/2) andfind all values of k for which the series converges.

b) Fix avalue of k (say, k = 2 or k = —2) and find all values of p for which the series converges.

¢) Generalize the results of a) and b) to al values of pand k.

4, Let f be apositive valued function that decreases on [1, co)and let a, = f(n). It can be shown that
[ fodx=Yyan<a+ [ f(0dx.

1 . .
a) Use f(x) = vy to verify this.

b) Approximate 3> ; il using its nth partial sumswith n =10, 100, 1000, 10000.

nl-
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10.3.3. Absolute and Conditional Convergence
Suppose a, > 0 for al n. Theinfinite series
e (=D &y

iscaled an alternating series. If the series 32, (—1)" a, is convergent but the series 3 , a, is divergent, then the alternating
series is called conditionally convergent. If 3, a, is convergent, then the alternating series Y, (—-1)" a, is called absolutely
convergent.

Alternating Series Test: If a, is decreasing and limy,_,, @, = 0, then the series % ; (- 1)" &, is convergent.
Example 10.16. Determineif the given seriesis conditionally or absolutely convergent.

D"
n?+1

"
0 2n2 minm

Q) Y1
Solution:
a) Wedefinea, = # in Mathematica and check that a,, satisfies the conditions of the Alternating Series Test.

in[g27:= Cl ear [a, n]
1

a[n_]:=
n2+1

in[g29]:= Limt[a[n], n->w]
outjg29]= 0
nez0= f [x_1 =a[x];
f'x]
2 X
Out[831]= — 72
(1 + XZ)

o (="
n=1 2.1

Thus, a,, is decreasing since f'(x) > 0, where f(n) = a,. Moreover, a, converges to 0. Hence, the series }, is conver-

gent by the Alternating Series Test.
To check absolute convergence, we use the Limit Comparison Test with b, = n—12

[n]
l/nzl

in[832]:= Limt [

n—»lnfinity]

out[s32)= 1

Since the series 2?111% is convergent and the previous output shows lim,_,, Bﬁ =1, we conclude that the series

"
n?+1

D18 = Yt L . isalso convergent. Therefore, the aternating series > ;

2+

is absolutely convergent.

b) We procced asin part a).

in[s33)= Cl ear [a, n]
1

an_1:= ——
(1 nLog[n]
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ing3s):= Limt[a[n], n->o]
out[s3s}= 0
ns3el= T [X_1 =a[x];
frx]
1 1

Out[837]= - 2 - 5
x2 Log [x] x2 Log [X]

For the same reasons we conclude that a, is decreasing and converges to 0. Hence, the series 3, (n’li): is convergent by the

Alternating Series Test.

To check absolute convergence, we apply the Intgeral Test to f (X):
ingas= Cl ear [m]
Limt [me [X] dx, m-Infini ty]
Out[839]= @
From this we conclude that the series is conditionally convergent.

Example 10.17. Show that the series

co "
Zn:l

v n?+1

is conditionally convergent. Find avalue of n for which the partial sum s, approximates the series by an error less than 10™°.
Also find the corresponding value for s,.

Solution: We leave it for the reader to check that the series converges conditionally as in the preceding example. For the second
part of the problem, we proceed by first defining the partial sums of the series.

in[ga0;:= Cl ear [s, a, nJ
1

VnZ+1

sin_1:=sum[(-1)*ark], {k, 1, n}]

a[n_1:=

If S denotes the sum of the aternating series, it can be shownthat |S—s,| < an.1 (refer to your calculus text for a proof of this
fact). The following table of values gives some numerical evidence of thisfact:

n

= (-1)
27
n=1./1+n?

e (D"
in[g43):= Tabl e[{N[Abs [Z —_ -5 [m]”, N[a[m]]}, {m 1, 10 }]
n=1Vn?+1
outgs3= {{0.266189, 0.707107}, {0.181024, 0.447214}, {0.135203, 0.316228},
{0.107332, 0.242536}, {0.088784, 0.196116}, {0.075615, 0.164399}, {0.0658064, 0.141421},

{0. 0582284, 0.124035}, {0.0522031, 0.110432}, {0.0473006, 0.0995037}}
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inga4]:= C ear [S, n]

S i -n"
n=1vn24+1

out[845]= i Sl
n=1 /1 +n?

The table below givesthe values of a,, for large values of n.

nsae)= Tabl e [N[a[10"] ], {n, 1, 10 }]

oufaaci= {0. 0995037, 0.0099995, 0.001, 0.0001, 0.00001, 1. x10° 1. x107, 1. x10°°, 1. x10°°, 1. x10*°}

Thus n = 10° isa possible value. But solving a, = 10~° can give us a more accurate value.

nea7i= NSol ve[a[x] = 107°, x]

oufs47= {{x - 100000. }, {x - -100000. }}

Thus, if n= 100001 we have |S-s,| < 107°. We confirm this with Mathematica:

in[s4g:= N[S-s[100001]]

outsag)= 4. 99993 x107°

Can you find asmaller value of nfor which | S-s,| < 107°?

m Exercises

1. Determine if each of the following infinite series is absolutely convergent, conditionally convergent, or divergent. Justify your

conclusions!
-1" (n*-1)

) I I 2 g 2 g nR )™ Vil -V ]

n?+1 n3+n?+33 n!

2. Discovery Exercise:
1
nin(ninn)y

1
nindninn?’
1
nindninny?

a) Determine the convergence or divergence of }.»

[ee] 1 00
05’ 2n-2 nin(ninn) ’ and 2nzp

b) Generalize your work in part @) by determining for which real numbers p the seriesy ;> , converges.

= 10.3.4. Ratio Test

The Ratio Test: Suppose a, > 0 and let
r=limp,e ==

a) If r < 1, the series 37 ; @, converges

b) If r > 1, the series 37 ; a, diverges.

¢) If r = 1, no conclusion can be drawn about the convergence of the series >”; a,. In other words, if r = 1, then we must use
another test to determine the convergence.

Example 10.18. Use the Ratio Test to determine the convergence of the following series.
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n 1 3n®+40n%+4
g 3. M 9 ¥, L 0) iy, drrdord
) Zn_l nt ) ZJ—Z janj)? ) Zn_l n®+200 n*+1

Solution: For each series we define a,, to be its nth term and evaluate limy_ %.

a)

insa9:= Cl ear [a, n]
n

a[n_]:= n_l

ings1):= Limt[a[n+1]/a[n], n->o]

out[s51]= €

Since e > 1, the series Y7 4 ul converges by the Ratio Test.

m
b)

inss2= Cl ear [a, j 1]

1

afj _1:=

- i (Loglj1?®
Linit[af +11/afj1, j -> ]

out[ss4]= 1

This output means that we must use a different test. However, this is an instance of Example 11.12 in this text with p=3.
Hence, the series converges by the Integral Test.

c)

ingss):= C ear [a, n]
3nd+40n?2+1
an_l]:= —
n>+200n%+1
ngs7;= Limt[a[n+1]/a[n], n->w]

out[ss7]= 1

Again, this output means we are forced to use a different test. Therefore, we shall use the Limit Comparison Test instead. To this
end, we define b, = :—2:

insss]:= Cl ear [b, n]

3
b[n_1:= n_2

a[n]
b[n]

In[860]:= Lim't[ , n-»lnfinity]

out[seo}= 1

3n+40?+4

is also convergent.
n®+200 n*+1

Since the series > ; % is convergent, we conclude that the series 37 ;
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m Exercises

1. Determine the convergence or divergence of the given infinite series using any of the convergence tests discussed in this
section.

o 3n+l o0 o0 3 oo 2\" oo 3\" o o (M) oo 1\"
A Y1 % b) Y1 ﬁ ) Y1 4nn+T+5 d) Xvan(3) & Xan(z) f I o) X (;—n). h) Sno (=D (1+ 7)
2. The Ratio Test proved to be inconclusive for some of the series in the previous exercise. Can you conjecture for what type of
series the Ratio Test will fail in general? Use other tests to rework the problemsin the first exercise where the Ratio Test failed.

3. Of the following four conditions, one guarantees that a series will diverge, two conditions guarantee that a series will converge,

and one has no guarantee (the series can either converge or diverge). ldentify each one and explain your reasoning.
ni1

limy, o | 22]= 0
limy o [ 22]= 3
limy, o | 22| = 1
|imnw|a;;1 =2

4. |dentify the two series that are the same:
n
3 Saan(3)
n
b) Xnto(N+1) (%)

oy

m 10.3.5. Root Test

The Root Test: Suppose a, > 0 and let

r= Iimnaoo (an)l/n

a) If r < 1, the series > ; a,converges
b) If r > 1, the series 37 ; a, diverges.
¢) If r = 1, no conclusion can be drawn about the convergence of the series Y 1 an.
In other words, if r = 1, then we must use another test to determine the convergence.

Example 10.19. Usethe Root Test to determine the convergence of the following series:

) n _\n oo 1 oo 3n+l
3} X (zm) DS e 9 I

Solution: For each series we define a,, to beits nth term and evaluate limy_ ., (a,)¥".

a)

inge1]= Cl ear [a, n]

n
a[n L=

(n_] (2n+1J

ing63:= Limt [(a[n])“”, n—>oo]

1
Out[863]= —
2
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Thus, the series 37 ; (z:ﬁ)n c onverges by Root Test.
b)
inse4):= Cl ear [a, n]
1
an_J]:= ———
n3" +n?

inge6l:= Limt [(a[n])l”‘, n —>oo]

n

! ,n%oo}

out[see)= Limt [

3"n+n?
Even though the preceding Limit command is returned as unevaluated, the N command reveals that it is approximately 1/3.

in[867):= N[%]

outge7]= 0. 333333

To verify this we use the Squeeze Theorem (discussed in your calculus text) with b, = %3" and c, = = First note that
b, < a, < ¢,. Wecan verify thisusing the following plot:

3-X 3-x
in[ses]:= Pl ot [{— a[x], —} {x, 1, 10}, PlotStyle » {Geen, Red, Bl ue}]

2 X X

0.04
0.0

Oout[868]= 0.02 [

0.01

4 6 8 10

We now define b, and ¢, as and evaluate limy_,.., ()" and limn,. (by)Y".

ingeo):= Cl ear [b, ¢, n]

1
b[n_]:=
2n3"
c[n L=
(- n 3"

me7zp= Limit [(bn])™", noinfinity]
Limt[(c[n)'" noinfinity]

out[872]=

Out[873]=

Wk, W]k
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Thus we also have limy,_.., (an)¥" = % and hence the series converges by the Root Test.
c)
ins74]= Cl ear [a, n]
3n+2
an_]:= ———
n-n+1

nezel= Limit [ @[N] n-> o]
outs7el= 1
The Root Test fails. Let ustry the Ratio Test:

a[n+1]

ing77)= Li m't[ , no Infi nity]

a[n]
outg77}= 1

The Ratio Test fails aswell. We can easily verify that the Integral Test is applicable. We will evaluate the integral

In[878]:= J a[x] dx
1

2 3x
Integrate::idiv : Integral of + does not converge on {1, co}. >

1-x+X> 1-x+%?
® 2+ 3X
Out[878]= J —— dXx
1

1-x+x2

To confirm the divergence of the improper integral, we proceed as follows.
ins79)= C ear [F, b]
b
Flb_1: =j a[x] dx
1
ings1]= Limt[F[N], n->o]
Out[881]= o

Thus the series is divergent.

m Exercises

1. Determine the convergence or divergence of the series:

9 IV " BIe” 9 (GE) dE(s) "

2. Construct two examples of infinite series, the first convergent and the second divergent, for which the Root Test generates
inconclusive information.

3. Use the Root Test to test for convergence or divergence of the series:

1 1 1 1
a) —— + +
) (n3®  (ns* (n5° (n6)°

2 3 4 5.6
+24 244,240,
b) 1 st tatatste
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Hint: Write aformulafor the general nth term in each case.

m 10.4. Power Series

Students should read Sections 10.6-10.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

m 10.4.1. Taylor Polynomials
The Taylor polynomial of agiven function f at apoint x = aisgiven by

f"(a)

2!

" (@
3!

f(")(a)
n!

T.0=f@+ f'@x-a)+ (x—a)® + (X—a)°+ ...+ x-a)"

The Mathematica Series[f,{x, a, n}] generates the nth Taylor polynomial T,(x) plus a term of the form O[x]™**. To obtain the
Taylor polynomial without this term, we use the command Nor mal[ Serieq[f,{x, a, n}]].

The nth remainder Ry(x) of f(X) at x = aisdefined by

Ra(¥) = (%) = Th(X).

Taylor's Theorem states that
Ri(0 = 5 2 TP (x- u)"du

Here is away to define the Taylor polynomial of fat x = a by defining Tn(X) and the nth remainder R,(x) (using Taylor's Theo-
rem for R,) without referring to Mathematica's built-in command Series.

ingsz)= Clear [a, x, f, T, R]

N D[f s , k /.
T el e Y [f [x] {xk N /xoa
k=0 !

1 X
R[x_, a_, n_] :=—jD[f [ul, {Uu, N+1}] % (x-u)"du
nt! Ja

Example 10.20. Let f(x) = €. Findits5th Taylor polynomial at x = 0.

Solution: We use the Series command to obtain the answer:
insss):= Normal [Series[E*, {x, 0, 5}]]

x2 x3 x* x5
out[gss]= 1 + X + ?Jr o + £+ 70

Using the polynomial T[x, a, n] we defined above we get
insse:= C ear [f ]

fIx_]1:=FE
T[x, 0, 5]
x2 x3 x* x5

out[888]= 1+X+—+E+Z+m
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inss9= R[X, 0, 5]

1
Oufs8s)= T (-120 + 120 * - 120 x - 60 x* - 20 x® - 5 x* - x°)

Example 10.21. Find the nth Taylor polynomial of f(x) at x = a for various values of a and n.

a) f(x) = Vx b) f(x) = cosx

Solution: a) We shall use the same function T[x,a,n] defined in the previous example (make sure you evaluate this function
before you evaluate the table below).

in[soo;= Cl ear [a, X, f]
nOD[f [x], {X, kK}] /. x>a

> = (x -a)~

k=0

T[x_, a_, n_]:

R[x_, a_, n_]:

]_ X
—J D[f [ul, {u, n+1}] % (x-u)"du
nt! Ja

ingo3= C ear [f]
fIx_1=vVx
Tabl eForm[Table[ T[x, a, n], {a 1, 5}, {n, 1, 3}1,
Tabl eHeadi ngs -
{{"at a=1", "at a=2", "at a=3", "at a=4", "at a=5"}, {"n=1", "n=2", "n=3"}}]

out[894]= VX

Out[895]//TableForm=

n=1 n=2 n=3

at a=1 [1+3 (-1+x) 1+3 (-1+%) -5 (-1+x)% L1+ 3 (-1+x) -5 (-1+x)%+ & (-1+x)°
at a=2 |V2 + &% 2 s 2 2? o . 2k (20? (200)°

+2%2 +2V2 162 +2#2 162 ’ 64+/2
at a=3 [V/3 + 32X N - Y 34 B (83902 (30)°

e T2V a3 T2V 2443 1aav3
at a=4 2+45(—4+x) 24—%(—44—X)—%(—4+X)2 2+%(—4+X)—%(—4+X)2+%(—4+X)3
at a=5 |5 4 3% 5 5+x  (-5+x)? N (-5+x)2  (-5+x)3

+2ﬁ +2ﬁ 405 +2ﬁ 40+/5 +400ﬁ

b) We proceed asin part a):
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ingos:= Cl ear [f]
f [X_] = Cos [X]
Tabl eForm[TabIe[T[x, a, n], {a 0, 2P, Pi /2}, {n, 1, 4}] ,
Tabl eHeadi ngs -»
{{"at a=0", "at a=x/2", "at a=x", "at a=3x/2", "at a=2x"}, {"n=1", "n=2", "n=3", "n=4"}}]

out[sg7]= CoS [X]

Out[898]//TableForm=

n=1 n=2 n=3 n=4
at a-0 1 1-% 1-% 1-% .5
At az T f o poed(5ex)® Goxed (5
at a=r -1 —1+%(—7T+X)2 —l+%(—ﬁ+x)2 —l+%(—n+x)2—21—4(—71+x)4
at a=3n/2 —32—"+X —32—"+X —32—7T+X—%(—32—7T+X)3 3771+X—%<—32—"+X)3
at a=27 |1 1-2(-2n+x)% 1-3 (-27+x)? 1-2(2mex)?+ & (-2mex)”

Example10.22. Let f(x) = 2+13X2.

a) Find the Taylor polynomiasT,(x) of f at x=0forn=1,2, ..., 6.
b) Draw the graphs of the function f and its Taylor polynomialsfound in part a).
¢) Over which interval does the nth Taylor polynomial gives a close approximation to f (x) if n=4, n=10, and n = 20?

Solution:
a) Here are the Taylor polynomialsup to order n = 6.
ingoo):= Cl ear [f ]

f [X_] =

2 +3x2
Tabl eForm[Tabl e[ {n, T[x, 0, nl}, {n, 1, 6}],
Tabl eHeadi ngs » {{}, {"n", "T, at a=0"}}]
1

2 +3x?

out[900]=

Out[901])//TableForm=

n T, at a=0
1
13
1 3x2
2 57
1 3x2
3 -7
1 3x2 9 x4
L e
1 3x2 9 x4
S it e
6 £73x2+9x“727x6
2 4 8 16

b) Wefirst use the Plot command to plot the graphs of f and its Taylor polynomial at x = O for the desired values of n. We then
use the Show command to plot both graphs on the same axes.
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inoz:= Cl ear [pl ot 1, plot2]
plotl =Pl ot [f [x], {Xx, -3, 3}, PlotStyle » Red];
plot2 =Pl ot [Eval uate[Tabl e[T[x, O, n], {n, 1, 6}11, {x, -3, 3}1;
Show[pl ot 1, plot2]

| fa¥ /

04l
03l
Out[905]= r
02f

01l

-3 -2 -1 1 2 3

¢) We use the same commands as in part b) except that we do not use the Table command. The first oneisfor the case n = 4.

infoos):= Cl ear [plotl, plot2]
plotl =Pl ot [f [x], {x, -3, 3}, PlotStyle » Red];
plot2 =Pl ot [Eval uate[T[x, 0, 411, {X, -3, 3}] ;
Show[pl ot 1, plot2]

out[909]=

It seems that the two graphs are close to each other if xisintheinterval (-0.5, 0.5). To see this close up, we recommend that
you change the range of values for x in both plots (plotl and plot2) to theinterval [—1, 1]. We can confirm this by plotting the 4th
remainder of f(x)at x=0.
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ino10):= Pl ot [Eval uate[R[x, 0, 411, {x, -1, 1}, PlotRange -» {-1, 1}]

10

05

out[910]= R Y N S N H S S |
-10 -05 F 0.5 1.0

—-05¢F

We repeat the above with n = 10.

info11:= Cl ear [pl ot1, plot2]
plotl =Pl ot [f [x], {x, -3, 3}, PlotStyle » Red];
plot2 = Pl ot [Eval uate[T[x, O, 10011, {x, -3, 3}1 ;
Show[pl ot 1, plot2]

out[914]=

The above graph clearly indicates the 10th Taylor polynomial gives a close approximation for f in the interval [-.6, .6]. Again
plotting R, will confirm this.

no1s:= Pl ot [Eval uate [R[x, 0, 1011, {x, -1, 1}, PlotRange » {-1, 1}]

10

05

out[915]= [ T L ol
-1.0 -05 F 05 10

-05F

-1.0-
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If we continue in this manner, we see that the Taylor polynomia P, for large values of n gives a better approximation of f inthe
interval [-1, 1]. Infact, for n = 20, we see that R,(X) isamost zero in the interval [-0.7, 0.7], which is an improvement over the
previous interval [-0.6, 0.6] obtained for n = 10.

no16:= Pl ot [Eval uate [R[x, 0, 20]], {x, -1, 1}, PlotRange » {-1, 1}]

101

OU[[916]: 1 1 1 L L 1 L L L L L L L L 1 L | 1 1 1
-1.0 -05 F 0.5 1.0

-05F

-1.0-

m 10.4.2. Convergence of Power Series
A series of the form
S0 8n(X—%0)" = 80 + a1 (X = Xo) + Ba(X — Xo)’ + Bg(X — %0)* + ...
iscalled a power series.
The set of al x for which the series convergesis called the interval of convergence.
If the series converges for x = X only, we say isradius of interval isR = 0. In this case itsinterval of convergence is {Xg}.

If the series converges for all real numbers x , we say its radius of convergence is R = . In this casg, itsinterval of convergence
iS (=00, o).

If the series converges for some x # X and diverges for some y, then it can be shown that there exists R > 0 such that the power
series converges for all x for which | x— %o | < R and diverges for al x for which | x—xg| > R. The convergence at x = xg — R
and X = Xg + R needs to be checked.

When the radius of convergence R isa positive real number, there are four possiblitiesfor the interval of convergence:
X-R X+Ror[x—-R +Ror(X—R, p+RJor[Xg—R, Xp+R]

depending on the convergence at the end points of the intervals.

The radius of convergence R of the power series Y22, an(X — Xo)" can be found by using the Ratio or Root Test. Let

or r=Ilim .V lanl

i1
a,

r=limge |

a) If r =0, then R = 0.
b) If r = co, then R=0.

Q) If0<r < oo, thenR= 2.

Example 10.23. Find the radius and interval of convergence for the given power series.
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o N o (x=3)" o (x+2)"
a) Yniogng X' b) X e 0 Xnhko il
00 00 1 n
d) Xnson™x! € Xnlo y (X-1)
Solution:

a) Let us define sy(x) to be the mth partial sum of the series and plot the graph of some of these partial sums. We will plot every
100th partial sum up to 10,000 terms.

ino171:= Cl ear [s, n, m]

S[X_, m]:= X
fo2n+1

4.x10%°

2.x10% |-

ing19]= Pl ot [Eval uate[Tabl e[s[x, m], {m 1, 1000, 100}]11, {x, -2, 2}]
out[919]=

-2

\
Al
1

L L L Il

e

‘ L
—2.x10%
|

This clearly indicates that the partial sums diverge outside (—1, 1). Here isthe plot over the interval (-1, 1).

ine20]= Pl ot [Eval uate[Tabl e[s[x, m], {m 1, 1000, 1003}11, {x, -1, 1}]
15F
1o}

Out[920]= L
051

We now use calculus. Here note that a, = "+l and xg = 0. Wefirst define a, in Mathematica and find the radius of conver-

2n
gence. Werecall |a| (absolute value of a) is entered as Abga].

ino211:= Cl ear [a, n, r]
n

a[n_]:=
2n+1
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a[n+1]

|n[923];:r=Lirrit[Abs[ ] n->|nfinity]

a[n]

outo23)= 1

Thus the radius of convergenceisR= rl = % = 1. The power series convrgeson (-1, 1). To check convergence at the endpoints
x=—1and x = 1, we note that the power series becomes 3" 5—— (—1)"and 3. 5= (1)", both of which are divergent, since

their nth terms do not converge to 0. Here Mathematica confirms the divergence at the endpoints.

n

In[924]:= (-1)"
; 2n+1

Sum::div : Sum does not converge. >

= (-1)"n
Out[924]= Z —_—
io 1+2n
In[925]:= n"
é 2n+1
Sum::div : Sum does not converge. >
@ n
Out[925]=
nZ:(; 1+2n

Therefore, the interval of convergenceis (-1, 1).

(x=3)"
b) 2?1021 nan

injo26:= Cl ear [a, r, n]

a[n_1:= —

a[n+1]

In[928]':I’=LirT‘it[ , n-»lnfinity]

a[n]

1
out[928]= —

Thus the radius of convergenceisR= = = = = 3.

Since xg = 3, the power series convergeson (Xo — R, Xp+ R) = (3-3, 3+ 3) = (0, 6). We need to check the endpoints x = 0 and
x = 6. We substitute these in the power series and evaluate
(x-3)"

In[929]:= Z — /. X {0, 6}

n
n=1 n3

out929]= {-L0Q[2], o}
Thus the interval of convergenceis|0, 6).

(x+2)"
n?+n+1

C) X1
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ine30):= C ear [a, r, n]

1
an_]:= ——
nZ+n+1

a[n+1]

in[932]:= r = Limt [Abs[ ] n- oo]

a[n]

out932= 1

Hence, the radius of convergence is R= % = 1. Since Xy = —2, we see that the power series converges at least on the open
interval (-2-1, -2+ 1) = (-3, —1). To determine the actual interval of convergence we need to check the endpoints. Asin part
c), we evaluate

® (X +2
In[933]: Z ol ) /. X = {-3, -1}

onZ+n+1

1 1
7(__ (~1)2/3
1+ (-3 2

Out[933]= {

1 1 1
-1)2”® |pol yGamma |0, -~ (-1)%2®| - Pol yGanma [0, = - — (-1
( y 02 | -Poly 0 -

J

N| -

—
N
~
w

_

w+Directed nfinity[(-1)"?]

1+ (-1)Y3
inf934]:= N[%]

oufosa- {0. 76131 - 1. 96864 x10 ° i, (0.5-0.2886751i) ((0.5 +0.866025 i) o + ) }

Since this is not clear, we examine the series by plugging in by hand x = -3 and x = —1. When x = —3 the series becomes

p3ar) (n_zi:i)l pyaa 17 ( L Wh|ch is an aternating series. We leave it to the reader to verify that the Alternating Series Test
appliesin this case. Thus, we have a convergent series.
Next, we substitute x = —1 to obtain the series > ; (n_i;i)l Sl 5—— - to which we apply the Integral Test (verify that the

conditions of the Integral Test are satisfied):

in[93s]:= | nt egrate[ , {X, 0, Infini ty}]

X2 +xX +1
27

out[935]=
33

Thus, the series convergesin this case as well. Therefore, the interval of convergence for the power seriesis[-3, —1].
d) Zen' X

info3e)= Cl ear [a, r, nJ
a[n_1:=n"

info3g]:= r =Limt [Abs[%], n- oo]

Out[938]= o

Thus, the radius of convergence is R = 0 and the series converges for x = 0 only.
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o 1
e) Zn:O F (X_ 1)”
info3o;= Cl ear [a, r, n]
1

a[n_] L= n—'

e s timt [ 2] 0o o)

out[941]= O

Thus, the radius of convergenceis R = oo and the series convergesfor al real x. Hence, the interval of convergence is (—oo, ).

m Exercises
1. Determine theinterval of convergence for the following power series:
T, L D e@nt(d) O Sy %
2. Determine the radius of convergence for the following power series:

@x"
n!

AXTo-D" X b X" )X

n+1

3. Give examples of power series that have an infinite radius of convergence, aradius of convergence containing only the center,
and aradius of convergence of one.

m 10.4.3. Taylor Series
The Taylor seriesfor f(x) at x = aisgiven by the power series

v oD (x—a) = f@)+ f (@ (x-a)+ 2 (x-a + =2 (x—a)®

The Mathematica command Serieq[f {X, a, n}] generates the power series of f at x = a to the order (x—a)". It isnot possible to
write all the terms explicitly since there are infinitely many.

Example 10.24. Let f(x) = %

a) Find the first ten terms of the Taylor seriesof f at x = 0.
b) Estimate the radius and interval of convergence of the Taylor seriesof f at x = 0.

Solution:
a) We use the Series command to obtain the Taylor series as follows:
inje42):= Cl ear [f, X]

1-x
fIx_1:=

2 +X
in[o441:= Series[f [x], {x, 0, 10}]
1 3x 3x2 3x3 3x* 3x> 3x8 3x7 3x%8 3x% 3x10

out[944]= — - — + + +
2 1024 2048

11

+ +
4 8 16 32 64 128 256 512

This output givesthe Taylor seriesto order n = 10.
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b) To first gain intuition for the radius of convergence of the Taylor series, we define the nth Taylor polynomial of f(x) asa

function of n (note our use of the Normal command to truncate the remainder term from the Taylor series).

info4s):= C ear [T, X, n]
T[X_, n_]:=Nornal [Series[f[x], {X, O, n}]]

Hereisalist of thefirst 20 of these polynomials.

inoa7):= Table[T[x, n], {n, 0, 10}]

1 1 3x 1 3x 3x> 1 3x 3x? 3x® 1 3x 3x? 3x® 3x*
e {S S 3 T e 2 a s 'z a4 s 1w
1 3x 3x%2 3x® 3x* 3x> 1 3x 3x> 3x® 3x* 3x5 3xb
2 4 8 16 32 64’2 4 8 16 32 64 128
1 3x 3x%2 3x® 3x* 3x> 3x% 3x” 1 3x 3x%2 3x% 3x* 3x> 3x% 3x7
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
1 3x 3x%2 3x® 3x* 3x> 3x8% 3x” 3x% 3x°
2 4 8 16 32 64 128 256 512 1024’
1 3x 3x%2 3x® 3x* 3x> 3x85 3x” 3x® 3x° 3x%0
2 4 8 16 32 64 128 256 512 1024 2048

3 x8

512

Observe that each polynomial appears twice, i.e., T, = Tony1, Since f isan even function. Next we plot the graphs of some of

these polynomials:

info4g):= Cl ear [pl ot 1]
plotl =Pl ot [Eval uate[Tabl e[T[x, n], {n, 1, 20}11, {X, -5, 3}, PlotRange » {-10, 10}]

Out[949]= — : : : : : :

,10,

To compare the graph of these polynomials, we plot the graph of f and use the Show command.



ineso:= Cl ear [pl ot 2]

out[951]= ———1
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plot2 =Pl ot [f [x], {x, -5, 3}, PlotRange » {-10, 10},
10-
5,
7\v\\ |
-4 -2 5 2
-5
_1ol

ines2):= Show[ {pl ot 1, plot2},

out[952) —————1

Pl ot Range -» {-10, 10}]

\ 10r
\
\\
5,
-4 12
-5
_10,

Pl ot Styl e » Red]

207

Observe that the graphs of the Taylor polynomialsin the preceding plot seem to give a good approximation to f only inside the
interval (-2, 2). This suggests that the radius of convergence is 2. This becomes more evident as we plot the graph of T, for
large vaues of n as shown in the following plot, where n = 30, 35, 40, 45, 50.

infos3):= Cl ear [pl ot 3]

pl ot 3 = Pl ot [Eval uate[Tabl e[T[x, n], {n,
{x, -5, 3},

pl ot4 = Pl ot [f [X],

Show[ {pl ot 3, plot4},

out[956]= ————

10

-10

30, 50, 5}11, {x, -3, 3}1;
Pl ot Styl e » {Red, Thi ckness[0.002]1}];
Pl ot Range -» {-10, 10}]
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To prove that the radius of convergence isindeed R = 2, wefirst find aformula for the Taylor coefficients. Based on the follow-
ingtable, itisclear thatag =1/2and a, = (—1)”3/2"+l (provethisfor al n).
nes71:= a[n_] : = D[f [X], {X, n}]/n! /. x->0

Tabl e[a[n], {n, 0, 10}]

1 3 3 3 3 3 3 3 3 3 3

Out[958]= {—. Ty Ty T Ty T T Ty Ty T Ty Ty T T —}
2 4 8 16 32 64 128 256 512 1024 2048
We now apply the Ratio Test on Y an X"

infoso;:= Cl ear [a]
a[n_]=(-1)"nx3/2"(n+1)

r=Limt[Abs[%], n-)oo]
al[n

outes0= 3 (-1)"2-1-n
1

Out[961]= —
2

Hence, the radius of convergenceisR=1/r = 2.

Next, we determine whether the endpoints should be included in the interval of convergence. For this, we evaluate our Taylor
seriesat x=-2and x = 2.

In[962]:= Za [n] (-2)"n
n=1

Za[n] (2)™n
n=1

Sum::div : Sum does not converge. >

© 3
out[962]= Z > (—1)2n

n=1

Sum::div : Sum does not converge. >

© 3 (-1)"

Out[963]= Z 5

n=1

This shows that the Taylor series diverges at both endpoints. Thus, the interval of convergenceis (-2, 2).
Example10.25. Let f(x) = sinx.

a) Find the Taylor seriesof f at x = 0.

b) Find the radius and interval of convergence of the Taylor series.
Solution:

a) We repeat the steps in the previous example.

infoe4]:= Cl ear [f]
f[x_1:=Sin[x]

inoee:= Cl ear [T]
T[X_, n_]:=Nornal [Series[f[x], {X, O, n}]]
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inoes:= Tabl e[T[x, n], {n, 0, 10}]

x3 x3 x3 x5 x3 x5 x3 x5 x’
out[968]= {0, X, X, X ==y X —y Xm—t ——) X = — 4 —— X — — + —— = ———,
6 6 6 120 6 120 6 120 5040
x3 x5 x7 x3 x5 x7 x? x3 x5 x7 x?

+— - + 7}
6 120 5040 362880

+ — - — X
6 120 5040

+— - —_
6 120 5040 362880

Observe that al terms of the Taylor polynomialsare odd powers of x. Can you explain why?
Here isaplot of the graphs of the first ten of these polynomialsand the function f.

injoeo]:= Cl ear [plotl, plOt2]
plotl =Pl ot [Eval uate[Tabl e[T[x, n], {n, O, 10}11, {x, -3Pi, 3Pi}l;
plot2 =Pl ot [f [x], {X, -3Pi, 3Pi}, PlotStyle » Red];
Show[ {pl ot1, plot2}, PlotRange -» {-10, 10}]

10+

Out[972]=

_10L-
b) Observe that the higher the order of the Taylor polynomial the better it approximates f over awider interval. To see thismore
clearly, we plot T, for n = 20, 40, 60.
injo73:= Cl ear [pl ot 1, plot2]
plotl =Plot [f [x], {x, -40, 40}, PlotStyle -» Red, Pl otRange » {-5, 5}1;
plot2 =Pl ot [ Eval uate[T[x, 2011 , {x, -40, 40}, PlotStyle - Blue, PlotRange » {-5, 5}1;
plot3 =Pl ot [ Eval uate[T[x, 4011 , {x, -40, 40}, PlotStyle - Blue, PlotRange » {-5, 5}1;

plot4 =Pl ot [ Eval uate[T[x, 6011 , {x, -40, 40}, PlotStyle - Blue, PlotRange » {-5, 5}1;
Show[{plot1l, plot2}]

2,

o NANANANANNNANTS
CRTRVE VRV AVA VAT RVRTE

—2F
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no79:= Show[ {pl ot 1, plot3}]

— AAAAAAAAAAAAW
EAVRVATAVAY AVAVRVVRVAVE

infoso;:= Show[{pl ot 1, plot4}]

S WA AAA/\AAAAAW
EAVAVATAVAY \/VVZO VRVE

The preceding plots suggest that the radius of convergence for the Taylor series of sinxisR = co. To prove this, wefirst find a
formulafor the Taylor coefficients {a,}. Again, based on the following table, it is clear that a, = sin(zn/2)/n! (prove thisfor all
n).
ines1]:= a[n_] : = D[f [X], {X, n}]/n! /. x-0

Tabl e[a[n], {n, 0, 10}]

1 1

0 - , 0, , o}
120 5040 362 880

1
out[982]= {0, 1, O, 5 0,

We now apply the Root Test on Y72 an X"

infos3;:= Cl ear [a, n, r]
a[n_1=Sin[Pi xn/2]1/n!
Tabl e[a[n], {n, O, 10}]
r=Limt [Abs[a[n]]®(1/nNn), N> o]
sin[%]
Out[984]=

n!

1 1 1 1
out[985]= {0, 1, 0, -—, 0, —, O, - , 0, , O}
6 120 5040 362880

SeriesData::sdatn : Order specification in SeriesData[_, _, {}, ___] is not a machine-size integer. >

out[ose]= O
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Hence, the radius of convergenceis R = .

m Exercises
1. Determine the Taylor series for f(x) = €2* centered about ¢ = 0.
2. Determine the Taylor seriesfor f(x) = Inx centered about the pointc = 1.

3. Find the MacL aurin series for each of the following functions:
a) f(x) =sin2x b) g(x) = sinhx ¢) h(x) = (arcsinx) /x

e/ Xifx+0
if x=0
a) Plot the graph of this function using Mathematica.
b) Use the limit definition of the derivative and L'Hopital's Rule to show that every higher-order derivative of f at x = 0 vanishes.
¢) Find the MacLaurin series for f. Doesthe series convergeto f?

4. Consider the function f(x) = {

5. Use Taylor series to determine the following definite integral, which cannot be integrated via elementary means:

folmealx.

6. Determine the following limit using the theory of Taylor series.

. 1-cosx
limy,o E—
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Chapter 11 Parametric Equations, Polar Curves, and Conic
Sections

m 11.1. Parametric Equations

Students should read Sections 11.1-11.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

m 11.1.1. Plotting Parametric Equations

The Mathematica command for plotting a curve defined by parametric equations x = f(t) and y = g(t) fora <t < bisParametric
Plot[{f(t).o(} {t.ab}].

Here are some examples:
Example 11.1. Plot the curve described by the parametric equations x = cost and y = sintforO<t < 2x.
Solution:

nos7:= ParametricPlot [{Cos[t], Sin[t]}, {t, 0, 2x}]

out[987]=

Recall that the above parametric equations represent the unit circle. However, Mathematica may produce a graph that, depending
on its default settings, looks visually like an elipse due to different scalings of the x and y-axes. In that case the plot option
AspectRatio can be used to specify the ratio of the height to the width for a plot. For example, to stretch the plot above so that
the circle becomes elliptical where the height is twice as long as the width, we can set AspectRatio equal to 2.
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inosg)= ParametricPlot [{Cos[t], Sin[t]1}, {t, O, 2x}, AspectRatio - 2]

Out[988]=

Example 11.2. Plot the curve described by the parametric equationsx =t> —4and y=t/2for -2 <t < 3.
Solution:

noso= ParametricPlot [{t*2-4, t /2}, {t, -2, 3}]

out[989]=
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Example 11.3. Plot the curve (prolate cycloid) described by the parametric equations X =20 —4sing and y = 2—4cosé for
O<t<2n.

Solution:

ineoo)= ParametricPlot [{26-4Sin[e], 2-4Cos[e]}, {6, -4Pi, 4Pi},
Pl ot Label ->"prolate cycloid"]

prolate cycloid

6

U e Ul Y 10 0

NOTE: In the above input we have used the the command PlotL abel. In general, the command PlotL abel —»"text" prints the
title text for the given plot.

m 11.1.2. Parametric Derivatives
Recall that for a curve described by parametric equations x = f(t) and y = g(t), its derivative dy/dx can be expressed as a ratio

between the parametric derivatives dy/ dt and dx/ dt (application of the Chain Rule):

dy
pie

2|gl=le
«
G

Example 11.4. Consider the following parametric equations (folium of Descartes):

4t 412
Xx=—andy=—
1+t8 y 1+3

a) Plot the curve described by the parametric equations above.
b) Find all points of horizontal tangency to the curve.
¢) Find the derivative at the farthest tip of the folium.

Solution:

a) Here isaplot of the folium of Descartes:
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4t 412
1+t3, 1+t3

Pl ot Label -> "Fol i um of Descart es"]

ineo1:= Parametri cPl ot [{ } {t, 0, 20}, PlotRange - Al |, AspectRatio -1,

Folium of Descartes

20
15
Out[991]=

10

0.5

P T Y IO R B
0.5 1.0 15 20

NOTE: The more complete graph of the folium of Descartes is shown below. The dashed line in the plot indicates an asymptote.
Can you generate a Mathematica plot of it? Can you find an equation of the asymptote (see Exercise 4)? Hint: Beware of the
discontinuity att = —1.

Folium of Descartes
3

L B ) RN

b) In order to find points of horizontal tangency, i.e., points where the slope of the tangent lineis equal to zero, it suffices to solve
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% =0, or equivalently, % = 0 (assuming % + 0). Hence, we evaluate

412
1+t3,

inoz)= Sol ve [D[ t ] ==0, t ]

outeoz= {{t » 0}, {t »-(-2)*3}, {t 213}, [t » (-1)?®2v/3}}
Since 3—’: does not vanish at t = 0 and t = 23 (we ignore the imaginary solutions), we conclude that there are two points
corresponding to these values at which the tangent lines are horizontal.

m 11.1.3. Arclength

The arc length of a curve described by parametric equations x = f(t) and y = g(t), a<t < b, isgiven by

b dx\2 dy\2
L= V(&) +(5) at
Example 11.5. Find the arc length of the curve x = e'cost, y =etsintforO<t<n/2.

Solution:

noz= Cl ear [X, Yy, t]
X[t_]:E’\(—t)*CDS[t];
y[t_1=E*(-t)*Sin[t];
/2
'\/((D[X[t], t1)"2 + (DLy[t]1, t]1)"2) at

out99s)= V2 (1-e72)

in[997]:= N[%]

oute97]= 1. 12023

m Exercises

1. Sketch the curve represented by the parametric equations.
dx=t3,y=12/2 b) x=2(@-sind), y= 1—-cosé ¢) x=3cos*f, y=3sn°0

2. Find all points of horizontal and vertical tangency to the curve x = cosé + 6siné, y= sinf — 6cosd, 0 <0 < 2.
3. Consider parametric equations given by x = 3cos(t/3) — costandy = 3sin(t/3) — sint.

a) Graph the curve represented by the parametric equations above.

b) Find the slope of the line tangent to the curve at the point wheret = 7 /4.

¢) Find the arc length of the curvefromt =0tot = 3x/2.

4. Find the asymptote corresponding to the folium of Descartes (see Example 11.4) and plot the asymptote together with the
folium of Descartes.
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m 11.2. Polar Coordinates and Curves

Students should read Sections 11.3-11.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

m 11.2.1. Polar Coordinates

Conversion between Cartesian (rectangular) coordinates and polar coordinates can be achieved by the following conversion
formulas:

r2=x2+y>? X = I cosé

6=tanly/x y=rsng

Example 11.6. Perform the following conversions:
a) Convert (3, 4) into polar coordinates.
b) Convert (7, 7/ 3) into Cartesian coordinates.

Solution:
a) Using the first set of conversion formulas above we find that:

Inggl:= I =\ 32 + 42

6 =N[ArcTan[4/3]]

out[998]= 5

outj999]= 0. 927295

b) This time we use the second set of conversion formulas:

in[1000):= X = 7 * Cos [Pi /3]
y=7%Sin[Pi /3]

7
out[1000]= —
2

73

Out[1001]=

m 11.2.2. Polar Curves

The Mathematica command for plotting a curve described by a polar equation in the form r = f(0) for « < 6 < 8 is Polar-
Plot[f(0).{0,a, B}].
Example 11.7. Plot the graph of the limacon r = 3 - 4 cos6.

Solution:
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in1002:= Pol ar Pl ot [3 -4 Cos[e], {e, -4Pi, 4Pi},
Aspect Rati o -> Aut omati c]

out[1002]=

Example 11.8. Plot the graph of the six-leaf roser = 2cos(36/2).
Solution:

in1003:= Pol arPl ot [2 Cos[3 /2], {6, -4Pi, 4Pi},
Pl ot Label ->"A Si x-Leaf Rose", AspectRatio -> Automatic]

A Six—Leaf Rose

Out[1003]=
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Try modifying the function to generate a 12-leaf rose.

m 11.2.2. Calculus of Polar Curves

Recall that the derivative of apolar equation intheformr = f () for @ < § < Sisgiven by

dy _ f' (@) sinf+f(0) cosd
dx ~ f'(H)cosb—f(@)sinb

Moreover, the area A of the region bounded by a polar equation intheformr = f () between @ < 6 < Bisgiven
A= [ t20)d0
Example 11.9. Locate al horizontal and vertical tangents of the limaconr =2 —siné.

Solution: Wefirst plot the limacon to anticipate our solution points:

in1oo4;= Pol ar Pl ot [1 + Cos[e], {e, -2Pi, 2Pi}]

out[1004]=

From the plot above we should expect to find two horizontal tangents and three vertical tangents.
Next, we compute the derivative of the limacon:

ino0s):= C ear [f, 6]
f[e_] =1+Cos[6]

outj1006)= 1 + Cos [6]

inroo7):= dydx = Sinmplify[(f' [6] *Sin[e] +f [6] *xCos[6]) / (f' [6] xCos[e] -f [6] *Sin[6])]

36
out[1007)= -Cot [7]

219
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To obtain horizonal tangents, we solve dy/dx = 0 for 6.

in[r00g):= dydx == 0
Sol ve [dydx = 0, 6]

30
out[1008]= - Cot [7]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

Out[1009]= {{Ge—g}, {9% g}}

Therefore, our two horizontal tangents are located at 6 = +7/ 3.
Asfor vertical tangents, we solve for where the reciprocal of the derivativeis zero, i.e., 1/(dy/dx) = O for 6.

inf1o10:= 1/ dydx
Sol ve [l /dydx == 0, @]

36
outf1010)= —Tan [7]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

ouf1011]= {{6->01}}

Since the solution above only gives us the principal solution 6 = 0 of —tan(36/2) = 0, we need to additionally solve36/2=+n
for 6, which yields our two other solutions, 6 = +27/3.

NOTE: What isthe derivative at § = n?
Example 11.10. Find the area of the region contained inside the circle r = 3sin6 and outside the convex limaconr = 2 — siné.

Solution: Wefirst plot the two polar curves on the same set of axes.
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no121= PolarPlot [{3Sin[e], 2-Sin[e]}, {e, 0, 2},
Aspect Rati o -> Aut omati c]

out[1012]=

Next we find their points of intersection by equating them and solving for 6:
no13;= Sol ve[3 Sin[e] ==2 -Sin[e], 6]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

Out[1013]= {{6 - g}}

Observe that Mathematica gives only the solution § = x/6 which liesin the first quadrant since trigonometric inverse functions
are involved. We can see from the above graph that the other point of intersection must beat & = 5x/6. Thus, the area of the
enclosed regionis given by

notg= (1/72) (Integrate[(3Sin[e])~2, {6, Pi /6, 5Pi /6}] -
Integrate[(2-Sin[e])"2, {6, Pi /6, 5P /6}])

out1014= 3 V3

inf1015]:= N[%]
out1015)= 5. 19615
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moi6p= I ntegrate[(3Sin[e])"2, {6, Pi /6, Pi /2}] -
Integrate[(2-Sin[e])"2, {e, Pi /6, Pi /2}]

out[1016]= fg (—5\/3_+47T) +§ (3\/3_+47r)

inf1017):= Si npl i fy[%]
ou[1017]= 3 V3

NOTE: Using even symmetry of our region, it would have been enough to integrate between 6 = /6 and § = =/ 2 and double the
result.

m EXxercises

1. Using Mathematica to perform the following conversions:
a) Convert (— 1,V3 ) into polar coordinates.
b) Convert (-5, 37 /4) into Cartesian coordinates.

2. Plot the graph of each of the polar equations given below and find an interval for 6 over which each graph istraced only once.
ar=3-4cosf b)yr=2+sinfd c)r=3cos(36/2) d)yr=5sn260

3. Generate the butterfly curver = €% — 2cos(46) + sin® (0/12).

4. Find dl horizontal and vertical tangents of the lemniscate r? = cos(26). Plot its graph to confirm your answers.

5. Consider therose curver = cos(20) for-2n < 0 < 2n.
a) Plot its graph.
b) Find the area of one petal of the curve.

6. Graph and find the area of each of the following regions.
a) The commoninterior of r =3-2sinfandr = -3+ 2siné.
b) Insider = 2(1 + cosf) and outsider = 2 cosé.

¢) Inner loop of r = 3+ 4siné.

7. Find the length of the given curve on the specified interval.
ar=1+sn,0=<60<2n b)r=6(1+cosh), 0 <0=<2nm.
8. Consider the polar equationsr = 4sindandr = 2(2-sin’ ).
a) Graph the polar equations on the same axes.

b) Find the points of intersection of the curves.
¢) Find the circumference of each curve.

m 11.3. Conic Sections

Students should read Section 11.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Conic sections refer to the three families of curves (ellipses, hyperbolas, parabolas) generated by intersecting a plane with a cone.
Recall the equations for describing each family of curvesin standard position:

I. Ellipse



(EF+(2) =1

I1. Hyperbola

2
(- =1
I11. Parabola

_ 1 2
y_4c2X
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NOTE: These formulas assume that the "center" of the conic section is at the origin. To trandate the center to a different point,
say (Xg, Yo), wereplace x and y by x — xg and y — Yo, respectively.

The most useful command for plotting conic sections is Contour Plot[egn,{x,a,b}{y,c,d}].

Example 11.10. Determine the family that each conic section below belongs to and then make a plot of each.

a) );—2 + Zz—6 =1
b)y=3%
Q§—§=1
Solution:

a) Thisconicisan ellipse. To plotit, we evaluate

info18):= ContourPl ot [X"2/9+y”"2/16 =

o X, -4, 4},

(yr _41 4}]

4l

out[1018]=

0

2

4

Observe that the length of semi-major and semi-minor axes are 4 and 3, respectively. How would this change if we happen to

switch the coefficients 9 and 16?

b) This conic isaparabola. Since the equation here is solved for y, we merely use the Plot command:
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npo19}= Plot [(9/74) x"2, {Xx, -2, 2}]

out[1019]=

¢) Thisconicisahyperbola. Hereisitsplot:

inr020:= ContourPl ot [x*"2/4-y~2/9=1, {x, -6, 6}, {y, -6, 6}]

e B s S S B R

out[1020]= 0 R ]

Example11.11. Find an equation of an ellipse with center at (—1, 3) and having semi-major and semi-minor axes of lengths V5
and 1/2, respectively.

Solution: From the given data we see that (X, Yo) = (-1, 3),a= V5,andb=1/2. The equation of our €ellipse istherefore:

el 4 ay-32=1

To plot it, we evaluate
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inpro21):= ContourPlot [(X +1)"2/5+4 (y-3)"2 =1, {x, -4, 2}, {y, 2, 4}, AspectRatio-»2/3]

] = e R N R

out[1021]= 30 [ ]

25F- *

2000 0 0

m EXxercises

1. Plot each of the following conic sections. Can you determine the family that each conic section belongs to before plotting?
Also, what are the values of a and b (or c) in each conic section?

36 16

S by L_X_1 0 y=3%

2. Plottheellipse % +4y?=1. What are the lengths of the semi-major and semi-minor axes?

2. Find an equation of an ellipse with center (1/2, —5) and having semi-major and semi-minor axes of lengths 3/4 and V7,
respectively.

4, Consider apolar curve of theformr = m?ﬁ where d and e are hon-negative constants.

a) Plot thiscurve for d = 3, and e = 1/2. Do you recognize this curve as a conic section? Of which type? Hint: Use the com-
mand Polar Plot.

b) Repeat part a) but thistime use e = 2 instead. Do you recognize this curve as a conic section? Of which type?
¢) Repeat part @) but thistime use e = 1 instead. Do you recognize this curve as a conic section? Of which type?

d) Describe how the graph changes as we vary the values d and e. What happens to the graph when e = 0? NOTE: The value e
is called the eccentricity of the conic section.

€) Assume 0 < e< 1. Convert the polar equation r =

de . . X% \2 V-Yor2
Tremsy [0 that in standard form for an ellipse, (T) +( bo) ~1 and

determine formulas for its center, semi-major, and semi-minor axes. Verify these formulasfor the ellipse in part a).
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Chapter 12 Vector Geometry

Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives. First place your screen cursor over the plot. Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

m 12.1. Vectors

Students should read Sections 12.1-12.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

A vector is an object that has magnitude and direction. In physics, these vectors are denoted by arrows, where the magnitude of
the vector is represented by the length of the vector, and the way in which the arrow points indicates its direction. In mathemat-
ics, these vectors are represented by pointsin two or three dimensions, where the vector is the arrow that starts at the origin and
ends at the point. For example, the point (2, 1, 3) could be considered both as a point in 3-D space and as a vector from (0O, 0, 0)
to (2, 1, 3). To distinguish a point from a vector, we will use the angled brackets ( and ) instead of parentheses. Thus, the point (2,
1, 3) isdenoted (2, 1, 3) as usual, but the vector from the origin to that point is denoted ( 2,1, 3) .

The length or magnitude of a vector v is denoted ||v|| and isread as"normv." If v=(ab, c),then|lv||=vy a + b?> + c?. In
two dimensions, if v = (b ,then||v|]| =y & + b? .

Vectors and matrices, in Mathematica, are smply lists. A vector is alist of numbers within braces, with commas between
numbers, while amatrix is alist of lists (vectors), with each vector list being a row of the matrix (for a complete description of
listsin Mathematica, see Section 1.2.3 of thistext). Of course, al rows must be the same size. For example, consider the vector
a below:

injo22)= a = {1, 3, 5}

ou1022)= {1, 3, 5}

The ith component of the vector ais denoted by &;, or in Mathematica, by a[[i]]. For instance the second component of a, which
is 3, would be obtained by:

inf1023:= af[2]1]

out[1023]= 3

All of the usual vector algebra operations are available to us:
Dot Product

The Dot Product of two vectors u = (uy, Up, Ug) and v = (vy, V2, v3) isdefined by
U-V=UpVs + UV, + UgVz. Forexample:
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npo241= a = {1, 3, 5}
b= {1, -2, 3}
a.b

ou1024= {1, 3, 5}

our025)= {1, -2, 3}

out[1026)= 10

or

in[1027):= Dot [a, b]

out1027)= 10

NOTE: We use the ordinary period symbol on the keyboard for the dot product.
Cross Product

The cross product of two vectors u = (U, Up, Ug) and v = (vy, V2, Vvs), is defined as a vector perpendicular to both u and v, and
calculated by the following "right-hand"” rule:

U XV =(UpV3 - UgVa, U3 Vg - Uy V3, UVa - UpVy)
This calculation can be done in Mathematica in two ways. The first is to use the Cr oss command:
in[102g):= Cross[a, bl

ou1028= {19, 2, -5}

The second is by using the multiplication symbol "x". This special symbol can be entered on the Basic Math Input Palette or
by pushing the escape key, followed by typing the word "cross" and hitting the escape key again: [esc]crosgesc]

In[1029= a x b

ouf1029)= {19, 2, -5}

Recall that the cross product of 2 vectors, a and b creates a vector perpendicular to the plane of the vectors a and b. In your
Calculus text, the cross product is also defined as the determinant of a special matrix. We will look at this alittle later.

Norm (Length) of a Vector
The norm or length of a vector can be calculated in Mathematica by the Norm command
inj1030)= Clear [X, y, Z]

in[1031:= Norm[{X, y, z}]

Out[1031]= JAbs [x12+ Abs[y]?+Abs[z]?
in[1032):= Nor m[a]

out[1032]= V 35

in[1033):= Norm([2 a]
out[1033)= 2 V35

Vector Addition
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The sum of two vectors u = (uy, U, Us) and v = (vy, V5, V3) isdefinedtobeu+v =uv; + UpVp + Uz Va.
npo34p= 2a - 3b + {1, 1, 1}

ouff1034)= {0, 13, 2}

Example12.1. Leta= (1, 2, 3). Show that 2 isaunit vector.

llal
Solution:
inj1035]:= Norm[a / Nor m[a] ]
out[1035)= 1
Example 12.2. Find the equation of alinein 3-space passing through Py = (3,-1,4) in the direction of v =(2,7,1)and graph it.
Solution: The line through Py = (xo, Yo, zo) in the direction of v = (a, b, c) isdescribed in vector or parametric form by:

Vector form: r(t) = (Xo, Yo, 20) + (@, b, ¢)
Parametric Form: x=xp+at, y=yo+bt, z= 2z +ct

Thus, the vector description of thelineis

in1036):= C ear [r, t1;
rit_1= {3, -1, 4y +t {2, 7, 1}

ou10371= {3 +2t, -1+7t, 4+1t}
To graph this line we use the Par ametricPlot3D command:

ParametricPlot3D[{f, f, f}, {U Unn Unex}]

produces a three-di mensi onal space curve paranmetrized by a variable u which runs fror
Umin 1 O Umax-

in[103g):= ParametricPl ot 3D[r [t], {t, -3, 3}, I mageSi ze » {250}, | magePaddi ng » {{15, 15}, {15, 15}}]

out[1038]=

NOTE: This plot command uses the option I mageSize to specify the size of graphics output. Settings include Tiny, Small,
Medium, Large, or {pt}, where pt is the number of points.



Chapter 12 229

Example 12.3. Give the description in vector form of the line that passes through the points P = (1, 0, 4) and Q = (3, 2, 1), then
find the midpoint of the line segment W} and plot this line segment.

Solution: The line through points P = (a3, by, ¢;) and Q = (ay, by, ¢o) has vector form r(t) = (1 —t) (ay, by, C1) + t(az, by, C). In
this parametrization, r(0) = Pandr(1) = Q. Thus,

inf1oz9)= r[t_1 = (1-t) {1, 0, 4} +t {3, 2, 1}
ou1039= {1+2t, 2t, 4 (1 -t) +t}
The midpoint of the line segment PQ is

In[1040]:= I [ %]

out[1040]= {2, 1, g}

The plot of the line segment is

in[1041):= ParametricPlot3D[r [t], {t, -0.1, 1.1}, |ImageSize » {250}, | nagePaddi ng » {{15, 15}, {15, 15}}]

2010 15

2.0
25 30

Out[1041]=

Example 12.4. Find the angle between the vectorsv = ( 3,6,2)and w = ( 6,3,6) .

Solution: Remember that the angle between two vectors, v and w, is given by 8, which is defined by 6 = cos‘l( v ) .

[IvI Il
Therefore,

n[1042]:= V = {3, 6, 2}
w = {6, 3, 6}

out1042)= {3, 6, 2}
outf1043= {6, 3, 6}

V. W

Nor m[v] Nor m[w] ]

In[1044]:= € = ArcCos[

16
out[1044)= Ar cCos {Z}
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in[1045]:= N[%]

ou1045)= 0. 704547

Therefore, = .7045 radians.

m Exercises
1. Calculate the length of the vector v = (1, 3, 4).
2. Calculate the linear combination: 5(2, —2, 5) + 6(1, 3, 8)
3. Find a vector parametrization for the line that passes through P = (1, 2, —6) with direction vector v = (2, 1, 5).

4. Determine whether the two given vectors are orthogonal (v + w iff v.w =0):
a) <11 11 l>| <15 _21 3> b) <11 11 1)1 <_35 21 1>

5. Find the angle between the vectors:
a) (1, 2), (57 b) (2, 4, 1), (1, -3, 5)

m 12.2. Matrices and the Cross Product

Students should read Section 12.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

In order to understand the alternate approach to the cross product alluded to above, we need to define the terms matrix and
determinant.

Matrices

A matrix isarectangular array of numbers consisting of n rows and m columns (denoted n x m). We are especially interested in
square matriceswherem = nand in particular m = 2or m= 3. For example: A 3 x 3 matrix would be

a1 ap a3

dy; Ay ax
dz1 Az ass

but Mathematica would show this matrix as:

n1o46):= A = Table[10i +j, {i, 3}, {j, 3}]

oufioasl= {{11, 12, 13}, {21, 22, 23}, {31, 32, 33}}

npo47:= B = Table[i +j, {i, 2}, {j, 2}]

outj10471= {{2, 3}, {3, 4}}

To have Mathematica display a matrix in the traditional way, use the M atrixForm command:
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in[1048:= Mat ri xFor m[A]
Mat ri xFor m[B]
Out[1048]//MatrixForm=
11 12 13
21 22 23
31 32 33

Out[1049]//MatrixForm=
2 3 ]
3 4

231

Note that in the definition of the matrices A and B, Mathematica treats them as lists and when we use the command M atrix-

Form, we can see the matrices presented in the traditional way.

Deter minants

The determinant is a function, Det, which assigns to each square matrix a number which is defined for 2 x 2 and 3 x 3 matrices

asfollows:

inos01:= Cl ear [a, b];
F = {{a, b}, {c, d}}
Mat ri xFor m[F]

oufi051)= {{a, b}, {c, d}}
Out[1052]//MatrixForm=

a b]
c d

inf1053;:= Det [F]

ouf1053= -bc+ad

npos4p= G= {{al, a2, a3}, {bl, b2, b3}, {cl, c2, c3}}
Mat ri xFor m[G]

oufi054= {{al, a2, a3}, {bl, b2, b3}, {cl, c2, c3}}

Out[1055]//MatrixForm=
al a2 a3

bl b2 b3
cl c2 c3

in[1056]:= Det [G]

ouf1056)= —a3b2cl+a2hb3cl+a3blc2-albh3c2-a2blc3+alb2c3

Using these definitions, we can now define the cross product of two vectors by the formula

<b11 b21 b3>X<Clv C2, C3) = Det bl

wherei =(1,0,0),j =(0,1,0),andk =<0, 0, 1).

Example 12.5. Calculate the cross product of v = (1, 3, 6) and w = (-2, 8, 5).

Solution:
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infros7= Clear [i, j, Kl
= {i, |, Kk}

"
-
«©«
<
=
S

outosgl= {i, j, Kk}

ou1059)= {1, 3, 6}

ouf1060)= {-2, 8, 5}

ouoei= {{i, j, k}, {1, 3, 6}, {-2, 8, 5}}
in[1062):= Mat ri xFor m[A]

Out[1062]//MatrixForm=
i
1

k
6
-2 5

3
8

In[1063]:= V x W
Det [A]

ou1063= {-33, -17, 14}

oufi064]= -331 -17j +14Kk

Observe that the two previous outputs are equivalent.

m Exercises

050

35

1. Calculate the determinantsof | 1 3 6 andof(6 2).
255

2. Calculate the cross product of v =(2, 0, 0y andw = (-1, 0, 1). Do this using the Cross command as well as by the determi-
nant approach.

3. Caculate the area of the parallelogram spanned by the vectors v and w above. (Hint: look up the formula for this in your
calculus textbook.)

4. Show that vxw = —wxVv andthat vxv = 0.

m 12.3. Planes in 3-Space

Students should read Section 12.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Note that a plane in 3-D space is defined as all points P (X, Y, 2) such that the line segment Py P is perpendicular to a given
vector n, caled the normal vector, where the initial point of n is Py = (Xo, Yo, Zo). In vector notation, this is described by the

equationn- PP =0where PP = (x— Xo, Y— Yo, Z— Zp). Therefore, the equation of the plane through Po = (Xo, Yo, Zo) With
nonzero normal vector n = (a, b, c) can be denoted by either of the following:

Vector form: n-{x,y,2=d
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Scalor form: ax+by+cz=d
Here,d =axg+byp+CZ =n-(Xo, Yo, Z0).

Example 12.6. Find an equation of the plane determined by the pointsP = (1, 0, -1), Q= (2, 2, 1), and R= (4, 2, 5). Then plot
the graph of the plane.

Solution: The vectorsa = PQ and b = PR lieinthe plane, so the cross product n = ax b isnormal to the plane:

npoes= Cl ear [a, b, nJ

a= ({2, 2, 1y - {1, 0, -1}
b =14, 2, 5} - {1, 0, -1}
n=axbhb

n. {x,y, z} =

ou1066)= {1, 2, 2}

out0671= {3, 2, 6}

ou106g)= {8, 0, -4}

ou[1069]= 8 X -4z =d

To compute the value of d, we choose any point on the plane, that is, we can choose either P, Q, or R, and then compute
d=n-P,d=n-Q,ord=n-R. LetuschooseP =(1, 0, —-1).

mpovop= d = n. {1, 0, -1}

out[1070]= 12

Therefore, the plane we want has equation 8x — 4z = 12 and the graph is obtained by using the Contour Plot3D command
which has the form:

Cont Ourpl Ot3D[fv {X, Xminu Xmax}- {yl ymin! yn-ax}! {Zv Zm’n- Zmax}]
whi ch produces a three-di nensional contour plot of f as a function of x, y and z.
or

Cont Ourpl 0t SD[f == 91 {Xr eriny Xmax}y {yv ymin! ymax}y {Zl Zmina Zmax}]
whi ch plots the contour surface for which f =g.
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inpro71):= ContourPl ot 3D[8 X - 4z =12, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, I mageSi ze » {250}]

out[1071]=

In order to see this plane more clearly from a different perspective, move your cursor over the plot. Then drag the mouse while
pressing and holding the left mouse button to rotate the plot.

m Exercises

1. Let PL be the plane with equation 7x— 4y + 2z = 10. Find an equation of the plane QL parallel to PL and passing through
Q=(2 1,3 and graphiit.

2. Find the eguation of the plane through the pointsP = (1, 5, 5), Q = (0, 1, 1), and R= (2, 0, 1) and graphit.

3. Find the angle between the two planes. x+2y+z=3and4x+ y+3z=2. (Hint: The angle between two planesis the angle
between their normal vectors.)

m 12.4. A Survey of Quadric Surfaces

Students should read Section 12.6 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A quadric surface is the three-dimensiona equivalent of a conic section (i.e., ellipses, hyperbolas, and parabolas). The basic

types of quadric surfaces are ellipsoids, hyperboloids (of one or two sheets), paraboloids (elliptic or hyperbolic), and cones.

m 12.4.1. Ellipsoids

The standard ellipsoid is described by (x/a)? + (y/b)2 +(z/c)¥=1To help us visualize it, we are often interested in the mesh

of curves called traces, obtained by intersecting our quadric surface with planes parallel to one of the coordinate planes. In the
plot below, you can see that mesh, and also see that the traces of an ellipsoid are themselves ellipses.

Example 12.7. Graph the ellipsoid above, witha = 3, b = 4, and ¢ = 5, and describe the traces of this ellipsoid.

Solution: The correct Mathematica command to use is Contour Plot3D. Thisis shown following:
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in[1072:= ContourPl ot3D[ (x/3)"2+ (y/4)"2+ (z/5)"2 =1, {X, -6, 6},
{y, -6, 6}, {z, -6, 6}, AxeslLabel - {x, y, z}, | mageSi ze » {250} ]

Out[1072]=

Again, note that the ellipsoid can be manually rotated to ook at it from different perspectives. First place your screen cursor over
the plot. Then drag the mouse while pressing down on the left mouse button to rotate the plot. When you do this you will note
that, indeed, al of the traces are ellipses.

m 12.4.2. Hyperboloids

The three-dimensional hyperbolas are called hyperboloids, and come in two types: the hyperboloid of one sheet, with standard
form (x/a)? + (y/b)? = (z/c)? + 1, and the hyperboloid of two sheets, with standard form (x/a)? + (y/b)? = (z/c)>- 1. A
limiting case of the hyperboloid is the eliptic cone, defined by the equation (x/a)? + (y/b)2 = (z/0).

Example 12.8. Describe the traces of the two hyperboloids: (x/3)? +(y/4)? = (z/5)% + 1 and (x/3)* +(y/4)* = (z/5)* - 1.

Solution: First we graph the hyperboloids:
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in[1073;:= ContourPl ot3D[(x /3)"2+ (y/4)"2 = (z/5)"2+ 1, {X, -6, 6},
{y, -6, 6}, {z, -6, 6}, AxesLabel - {x, y, z}, I mageSi ze » {250}]

Out[1073]=
Zo

In this case, the traces parallel with the xy-axis are all ellipses, and the traces parallel wth the xz- and yz-axes are hyperbolas.

in1074):= ContourPl ot 3D[ (x /3)"2+ (y/4)"2 == (z/5)"2-1, {x, -30, 30},
{y, -30, 30}, {z, -30, 30}, AxeslLabel - {x, y, z}, | mageSi ze » {250}]

20—
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Out[1074]=
Z o

When we look at this plot, we see that the traces are the same as for the previous hyperboloid of one sheet.
Example 12.9. Graph the conewitha = 3, b = 4, and ¢ = 5, and define its relationship to the hyperboloid of one sheet.

Solution: We get the graph by using the Contour Plot3D Command:
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in[1075:= Contour Pl ot 3D[ (x /3)"2+ (y/4)"2 == (z/5)"2, {x, -30, 30},
{y, -30, 30}, {z, -30, 30}, AxeslLabel - {x, y, z}, | mageSi ze » {250} ]

“\' V ‘A
\\'\{‘I‘"?i" L[]
QAR

20

out[1075]= ,

When we compare this plot with that of the hyperboloid of one sheet (see previous example) we can see clearly that this cone can
be thought of as alimiting case of the hyperboloid of one sheet in which we pinch the waist down to a point.

m 12.4.3. Paraboloids

The final family of quadric surfaces that we want to consider are the paraboloids, of which there are two types: elliptic and
hyperbolic. Their standard equations are z= (x/a)2+(y/ b)2 (elliptic paraboloid) and z= (x/a)z—(y/ b)2 (hyperbolic
paraboloid).

Example 12.10. Graph the two types of paraboloids for a = 3 and b = 4 and describe their traces.

Solution: Here isthe graph of the élliptic paraboloid:

info76):= Contour Pl ot 3D[(x /3)"2+ (y/4)"2 ==z, {x, -30, 30},
{y, -30, 30}, {z, -30, 30}, AxeslLabel - {x, y, z}, I nageSi ze » {250} ]

20

out[1076]= ,
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Observe that the traces in the direction of the xz- and yz-axes are both parabolas while those in the xy-direction are ellipses, which
can be seen by dragging the plot in the appropriate directions. Similarly, for the hyperbolic paraboloid:

in[10771:= ContourPl ot3D[ (x /3)"2 - (y/4)"2 ==z, {x, -30, 30},
{y, -30, 30}, {z, -30, 30}, AxeslLabel - {x, y, z}, I nageSi ze » {250} ]

out[1077]= ,

Again, by dragging the plot above, we see that the traces in the yz-direction are parabolas while those in the xz-direction are
hyperbolas.
m 12.4.4. Quadratic Cylinders

The last group of quadric surfaces we will look at are the quadratic cylinders. These are surfaces formed from a two-dimensional
curve (in the xy-plane) along with all vertical lines passing through the curve:

Example 12.11. Graph aselection of quadratic cylinders.
Solution:

a) A circular cylinder of radiusr: x? + y? = r2. For the graph we will user = 3.
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in1o7g:= Contour Pl ot 3D[x"2 +y~2 =372, {X, -5, 5}, {y, -5, 5},
{z, -30, 30}, AxesLabel - {x, y, z}, | mageSi ze » {250}]

out[1078]=

b) An elliptic with equation (x/a)? + (y/b)? = 1. Wewill usea= 3and b = 6.

inf1079)= Contour Pl ot 3D[(x /3)"2+ (y/6)"2 =1, {X, -5, 5},
{y, -8, 8}, {z, -20, 20}, AxeslLabel - {x, y, z}, | mageSi ze » {250}]

=aw
SASTSEY
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)

out[1079]=

c) A hyperbolic cylinder with equation (x/a)? — (y/b)> = 1. Wewill usea=3andb=6.
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in[1080;:= ContourPl ot3D[(x/3)"2-(y/6)"2 =1, {x, -10, 10},
{y, -10, 10}, {z, -20, 20}, AxesLabel - {x, y, z}, I mageSi ze » {250}]

d) A parabolic cylinder with equationy = ax? witha = 3.

in1o81):= Contour Pl ot 3D[y == 3x"2, {x, -3, 3}, {y, -1, 8},
{z, -10, 10}, AxesLabel - {x, y, z}, | mageSi ze » {250}]

10

out[1081]=

AL LU DA s

m Exercises

1. State whether the given equation defines an ellipsoid, hyperboloid, or paraboloid, and of which type. Then confirm your
answer by graphing the quadric surface.

a) (X/5°+(y/ T +(2z/9° =1
b) (x/5° - (y/7 +(z/9% =1
C) ¥+5y?-672=1
d) z=(x/5°+(y/7)?
& z=(x/5°—(y/ 7}
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2. State the type of the quadric surface and graph it, and then describe the trace obtained by intersecting it with the given plane.
a) (x/5%+y*+(z/9°=1, z=1/4

b) y=2x%, z=25

0 (X/5°-(y/7)’+(z/9°=1, y=4

m 12.5. Cylindrical and Spherical Coordinates

Students should read Section 12.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

m 12.5.1. Cylindrical Coordinates

In cylindrical coordinates, the point P = (X, Y, 2) is expressed as (r, 6, z) where r and 9 are the polar coordinates of x andy. The
formulas for converting from (x, y, 2) to (r, 6, 2) are:

Cylindrical to Rectangular Rectangular to Cylindrical
X = cosf r=+ X+ y?

y=rsng tanf =y/x

Z2=72 zZ=1Z

The commands in Mathematica to do these conversions must first be loaded into Mathematica from the "Vector Anaysis'
external package:

in[1082:= << Vect or Anal ysi s”

Example 12.12. Convert (r, 0, 2 = (2, 37 /4, 5) to rectangular coordinates.

Solution: We use the Coor dinatesToCartesian command to convert from cylindrical to rectangular coordinates:
in[1083):= Coor di natesToCartesian[{2, 3Pi /4, 5}, Cylindrical]

Out[1083]= {—\/2_, \/2_, 5}

in[1084]:= N[%]

ou1084)= {-1.41421, 1.41421, 5.}

Example 12.13. Convert (X, Y, 2 = (2, 3, 5) to cyclindrical coordinates.

Solution: We use the Coor dinatesFromCartesian command to convert from rectangular to cylindrical coordinates:

in[1085):= Coor di nat esFronCartesian[{2, 3, 5}, Cylindrical]

out[1085]= {m ArCTan{g], 5}

in[1086]:= N[%]

out1086)= {3. 60555, 0.982794, 5.}

Of course, one very strong point for Mathematica is its graphing ability. It will easily graph functions described in cylindrical
coordinates. The command to do thisis RevolutionPlot3D.
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Revol utionPl ot 3D[f,, {t, tmn, twex}, {6 Orin, Omex} ]
takes the azinuthal angle 6 to vary between 6, and 6.

2r2sin(56)
1412

Example 12.14. Graph the cylindrical coordinate function z =

Solution:

in[1087):= Cl ear [r, 6];

2r2sin[5e]

1+r2

Revol uti onPl ot3D[ (r, 0, 5}, {6, 0, 2}, IrrageSize-»{ZSO}]

m 12.5.2. Spherical Coordinates

A point P = (X, v, 2) isdescribed in spherical coordinates by atriple (o, 8, ¢) where p is the distance of P from the origin, 6 isthe
polar angle of the projection (x, y, 0), and ¢ is the angle between the z-axis and the ray from the origin through P. The formulas
for converting between rectangular and spherical coordinates are:

Spherical to Rectangular Rectangular to Spherical
X = pcosfsing p=AXR+yY+7
y=psnésng tanfd = y/x

Z= pCoS¢ cos¢ =2z/p

These conversions are done in Mathematica using the same commands as with cylindrical coordinates, but with the word spheri-
cal replacing cylindrical.

Example 12.15. Convert (p, 6, ¢) = (2, 371 /4, n/5) to rectangular coordinates.
Solution:

in[1089):= Coor di natesToCartesian[{2, 3Pi /4, n/5}, Spherical]

Out[1089]= {

1++/5 2[5 \/?’7\5}

2V

in[1090]:= N[%]

outf1090)= {1. 14412, 0. 831254, -1.41421}
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Example 12.16. Convert (X, Y, 2) = (2, 3, 5) to spherical coordinates.

Solution:

inf1001):= Coor di nat esFronCartesian[{2, 3, 5}, Spherical ]

Out[1091]= {\/ﬁ ArcCos{ ] ArcTan[ZH

V38
in[1092]:= N[%]

out1092)= {6. 16441, 0.624754, 0.982794}

Again, the main use here of Mathematica isits graphing ability. It will easily graph functions described in spherical coordinates.
The command to do thisis the SphericalPlot3D command.

Spherical Pl ot 3D[r, {6, Onin, Omax}s {4 iy Pt ]
generates a3 Dpl ot withaspherical radiusr asafunctionof spherical coordi nates oand ¢.

Example 12.17. Graph the spherical coordinate function p =1+ sin(6¢)/6.

Solution:

inf1093):= Spherical Plot3D[p = 1+Sin[6¢] /6, {6, 0, Pi}, {¢#, O, 2Pi }, I mageSi ze » {250}]

out[1093]=

m EXxercises

1. Convert from cylindrical to rectangular:
a (2,7/3, -4 b) (14,7/2,3)

2. Convert from rectangular to cylindrical:

d 225 b) (4,V3,8)
3. Plot the surface 22 + r2 = 256 and describe it.

4. Convert from spherical to rectangular:
a (2,7/5 /3 b) (4,7/6,51/6)
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5. Convert from rectangular to spherical:

3 (V2,2,3) b) (4.V3 /2, V8)

6. Plot the surface p sing = 5 and describe it.
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Chapter 13 Calculus of Vector-Valued Functions

Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives. First place your screen cursor over the plot. Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

m 13.1. Vector-Valued Functions

Students should read Section 13.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A vector-valued function is a vector where the components of the vector are themselves functions of a common parameter (or
variable). For example, r is a vector-vaued function if r(t) = (x(t), y(t), z(t)). If we think of t as the time variable, the r(t)

describes the motion of a particle through three-dimensional space over time. What we want to do is to understand what path is
taken. We do this through graphing in three dimensions. Also, sometimesit is helpful to consider the projections of these curves
onto the coordinate planes. For example, the projection of r(t) on the xy-planeis (x(t), y(t), O).

Example 13.1. Trace the paths of each of the following vector functions and describe its projections onto the xy-, xz-, and yz
planes:

a) rt =t t2, 2t)

b) r(t) = (cos’t, sin’t, sin2t)

Solution: We use the ParametricPlot3D command to trace the path of each curve and to see its projection.
a) First we look at the plot of r(t) = (t, t?, 2t):

inf1004)= ParametricPlot3D[{t, t? 2t}, {t, -3, 3}, PlotStyle > Red, | nmageSi ze » {250}]

Out[1094]=

This curve looksvery much like a parabolain 3-D space. To see the projections, we look first at:
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infi0os)= ParametricPlot3D[{t, t?, 0}, {t, -3, 3},
Pl ot Range -» {-1, 1}, PlotStyl e - Orange, | mageSi ze -» {250}]

Out[1095]=

Thisisclearly aparabolain the xy-plane.

in[1096]:= ParametricPl ot3D[{t, O, 2t}, {t, -3, 3}, Ticks » {Automatic, {-1, O, 1}, Automatic},
Pl ot Styl e » Orange, | mageSi ze » {250}, | magePaddi ng -» {{15, 15}, {15, 15}}]

0 -2

Out[1096]=

And this clearly aline in the xz-plane.
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inoe7;= ParametricPlot3D[{0, t?, 2t} {t, -3, 3},
Ticks » {{-1, 0, 1}, Automatic, Automatic}, PlotStyle -» O ange, | mageSi ze->{250}]

out[1097]=

Thislast plot is also clearly a parabola, but in the yz-plane.
b) Next welook at r(t) = (cos’t, sin’t, sin2t):

inf100s):= Par amet ri cPl ot 3D[ {Cos [t 15, sin[t]® Sin[2t 1}
{t, -2x, 2}, PlotStyle » Orange, | mageSi ze » {250} ]

Out[1098]=

Note that since both sine and cosine are periodic with period 27, it is not necessary to extend the domain beyond —2 7 or +27.
The projection in the xy-planeis:
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1000} ParametricPlot3D[{Cos[t1° Sin[t]% 0}, {t, -2x, 2x}, PlotPoints »100, | mageSize » {250} ]

Out[1099]=

The projection in the xz-planeis:

in1100)= ParametricPlot3D[{Cos[t1° 0, Sin[2t]}, {t, -2x, 2x}, | mageSi ze » {250} ]

Out[1100]=

1.0

Lastly, the projection in the yz-planeis:
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inf1101)= ParametricPl ot 3D[{0, Sin[t 15, Sin[2t 1}, {t, -2x, 27}, I mgeSi ze » {250} ]

out[1101]=

Note that the last two projections are almost exactly alike. Thisisto be expected because the sine and cosine functions have the
same graph, but /2 radians apart.

m Exercises

1. Graph r(t) and its three projections onto the coordinate planes for:
a) r(t) = (coy 2t), cost, sint)

b) r(t) = (t+ 15, e*%®! cost, "% sint)

0 ri=(tt,25t/(1+12))

2. Which of the following curves have the same projection onto the xz-plane? Graph the three projections to check your answer.
a) ryt =t &%)

b) ra(t) = (€', t, t?)

c) ra(t) = (t, cost, t?)

m 13.2. Calculus of Vector-Valued Functions

Students should read Section 13.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Since vector-valued functions are differentiated and integrated component by component, Mathematica will handle this easily
since it treats vectors as lists and automatically performs the indicated operation on each element of the list.

The derivative of avector valued function r(t) = (x(t), y(t), z(t)) is defined to be
ri =&, y', o),
whiletheintegral of r(t) is
[frvdt=([xtdt, [yt dt, [zt dt).

Similarly, the limit is defined by
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limea () = (limga X, limesa Y, limea 2(1).

Example 13.2. Differentiate and integrate each of the following vector functions:
arm =t t3 2t)

b) s(t) = (cos’t, sin’t, sin2t)
Solution:

@

inp1102):= Clear [r, s, t]

{t, t?, 2t}
{Cos(t1®, sinft1® Sin[2t]}

Inf1103= r [t _]:
s[t_1:

In[1105]:= 0 I [t]

ouf1105= {1, 2t, 2}

In[1106]:= jr [t]at
t2 t3
2
out[1106)= { —, —, t
apos: {0 — 17}
(b)
In[11071:= 6 S[t]

ouriio7= {~3Cos[t]?Sin(t], 3Cos[t]Sin[t]? 2Cos[2t]}

In[1108]:= js [t] dt

3Sin[t] 1 3 Cos [t ] 1 1
out[1108]= {7+—S|n[3t], -——— + —~Cos[3t], ——Oos[Zt}}
4 12 4 12 2

Limits are handled the same way both in the calculus of vector-valued functions and in Mathematica:

r(t+h)—

Example 13.3. Evaluate limit = O forr(t) = (t, 2, 2t).

h-0

Solution:

Sincer(t) has been defined in the previous example, we merely evaluate

rit +h] -r[t]

In[1109):= Limt [ .

. h-0]
ouf1109= {1, 2t, 2}
Aswe would expect, thislimit gives us the same answer for r ' (t) asin the previous example.

Example 13.4. Evaluate Iimit(tz, 4t, tl3>
t-3

Solution:
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in[a110):= Limt [{tz, 4t, tis} t -»2]

Out[1110]= {4, 8, %}

Derivatives of Dot and Cross Products

Using the formulas of the derivative of the dot and cross products for vector-valued functions is simple in Mathematica. As a
reminder, the formulas are:

%(r(t)-S(t)) =r(t)-s'(®+r'(t-st) and %(r(t)XS(t)) =r()xs'(®+r'Oxs(t)
Example 13.5. Evaluate%(r(t)-s(t)) and g—t(r(t)xs(t)) forr(t) = (t, 2, 2t) and s(t) = (cos’t, sin’t, sin2t).
Solution:
inf1111:= 8¢ (r [t]1.s[t]1)
oufi111- Cos[t]®+4t Cos[2t] -3t Cos[t]?Sin[t]+3t2Cos[t]Sin[t]?+2tSin[t]®+2Sin[2t]
Infr112:= 8¢ (r [t1xs[t])

ouriiizl- {2t2Cos[2t] -6t Cos[t] Sin[t]®-2Sin(t]®+2tSin[2t],
2Cos[t]® -2t Cos[2t] -6t Cos[t]?Sin[t]-Sin[2t],
~2t Cos[t]®+3t2Cos[t]?Sin(t]+3t Cos[t]Sin(t]®+Sin(t]®}

Tangent Lines

Example 13.6. Find the vector parametrization of the tangent lineto r(t) = <1 —t?, 5t, t3> at the point t = 1 and plot it along with
r(t).
Solution: Recall that the tangent line at ty has vector parametrization L (t) = r(tp) + tr' (to):
npg= r[t_1= {1-t% 5t, t3}
reot]
Lit_1=r[1] +txr'[1]
oufiiig= {1-t?, 5t, t3}
ouiia= {-2t, 5, 3t 2}

ouf1115]= {-2t, 5+5t, 1+3t}

Here isaplot of the curve and the tangent line.
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n[1116:= ParametricPlot3D[{r [t], L[t]1}, {t, -2, 4}, I mageSi ze -» Snal | ]

20—

20
out[1116]=

NOTE: Recall that the plot can be rotated to better view it from different perspectives.

m EXxercises

1. Evaluate the limits
a) lim,,(sin2t, cost, tan4t) b) limeo (. &2, 4t)

2. Compute the derivative and integral of
a) r(t) = (tant, 4t -2, sint) b) r(t) = (¢, &)

3. Find a parametrization of the tangent line at the point indicated and plot both the vector-valued curve and the tangent line on
the same set of axes.

4. Evaluate % r(g(t) for r(t) = (4sin2t, 2cos2t) and g(t) = t2.

m 13.3. Arc Length

Students should read Section 13.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

The arc length of apath r(t) = (X (t), y(t), z(t)) fora <t < bisgiven by

L= [liroldt= [V 02 + (07 + @07 dt
and like the one-dimensional version is difficult to evaluate by hand. Thus Mathematica is the perfect tool for calculating this.

Example 13.7. Compute the arc length of r(t) = (1-t?, 5t, 2t%) over theinterval 1<t <2,

Solution:
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nf1117= r[t_1 = {1—t2, 5t, 2t3}

2
L =JNorm[r' [t]] at
1

1 i
out[1118]= | — + — (—1)3/4
54 54
7 o _ 3+31 i-4414
9130 -18+/1234 - (8-8i) |-— Ell.pt.cE[jArcslnh[ , -
i+4+vV14 i-4+14 i+4+V14
2 o _ 3+31i i-4+14
(1+1) - ElllptlcE[jArcSmh{ , ]+
i+4+V14 j_4m 1+4+V14
7 o ) 6+61 i-4+14
(8-81i) [-——— E||IptICE{J'LAI'CSInh[ , +
1+4+V14 i-4~14 1+4+V14

2 o ) 6+61 i-4+14
(1+1) — ElllpthE[iAl’CSlnh{ ] ]+
1i+4 4 i_4m 1+4+V14

:

7 o _ 3:+31i i-4+/14
(8-81) |[-—m—-—r ElllptlcF{lercSmh[ , -
i+4\14 s i+414
2 o _ 3+31 i-4+/14
(224 +224 i) |- —— ElluptlcF[jArcsunh[ , -
i+4+V14 174m 1i+4+14

7 o ] 6+61i i-4+14
(8-81) |-—— ElllptlcF{lercSmh[ } }+
i+4+14 i_4a~14 1+4+V14
2 o ) 6+61 i-4+14
(224 + 224 1) |- —— ElluptucF[jArcSunh[ ] ]
i+4+V14 i_4a~14 1i+4+vV14

Note that the above output indicates that Mathematica cannot find an antiderivative for the integrand, and thus we need to find
another technique to evaluate this integral. Hence, we next try the numerical integrate command, NI ntegrate, which does give
us our result:

inf1119]= L = NIntegrate[Norm[r' [t]1], {t, 1, 2}]
ouf1119]= 15. 285
Speed

The vector r' (t) is also known as the velocity vector as it pointsin the (instantaneous) direction of motion described by r(t). Its
length or norm, ||r ' (t)||, givesthe speed at timet.

Example 13.8. Compute the speed of r(t) = (1-t?, 5t, 2t*) whent =1, 1.5, and 2.
Solution:

The following output gives alist of speeds of r ' (t) at the three given times using the Norm command, which cal culates the norm
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of avector:

inf120= r [t _1 : {1—t2, 5t, 2t3}
Speed = {Norm[r' [1]], Norm[r' [1.5]], Norm[r' [2]]}

outf121]= {\/65, 14. 7054, /617 }

inf1122]:= N[%]

oufi122)- {8. 06226, 14.7054, 24.8395}

Observe that the speed is increasing as we move along the path of r(t) fromt=1tot=2. This can be seen graphicaly by
plotting the speed:

in[f1123):= Norm[r "' [t 1]
Pl ot [Norm[r' [t]], {t, 1, 2}]

out[1123]= \/25 +4 Abs [t ]2 + 36 Abs [t ]4

25+

out[1124]=

151

NOTE: Observe how the Norm command inserts absolute values around each vector component in the formulafor ||r ' (t)||, which
seems redundant since each component is squared. This is done because in Mathematica vector components are allowed to be
complex-valued, in which case absolute values are needed to refer to their magnitudes.

m EXxercises

1. Compute the length of curve over the giveninterval:
a) r(t) =(2sint, 6t, 2cost), -6<t<6
b) r(t = (12t,8t%2,3t%), O<t=<1

2. Find the speed of a particle moving aong the curve r(t) at the given value of t.
a) r(t)=(e¢72,15t,5/t), t=1
b) r(t) = (sin2t, cos4t, sin6t), t=n/2

3. Compute s(t) = fot llr ([l dufor r(t) = (2, 2t2, t3) and interpret Mathematica's result.

4. Forr(t) = <4t, 1-3t, V24 t), compute s(t) asin the previous exercise. Then use s(t) to find an arc length parametrization of

r(t), i.e., find ¢(s) = t where ¢ isthe inverse of s(t), and check to see that r (¢ (s)) has unit speed, i.e., ||[r' (¢ (9) || = 1. Lastly, plot
r(t) and r (¢ (S)) and compare them.

5. Consider the helix r(t) = (asint, acost, ct).
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a) Find aformulafor the arc length of one revolution of r(t).
b) Suppose a helix has radius 10, height 5, and makes three revolutions. What isitsarc length?

6. The Cornu spiral is defined by r(t) = (x(t), y(t)), where x(t) = fotsi n(“z—z) duand y(t) = fotcos(“?z) du.

a) Plot the Cornu spiral over variousintervalsfor t.
b) Find aformulafor itsarc length along the interval —a < t < a, where aisapositive real number.
¢) What isitsarc length inthelimitasa —» co?

m 13.4. Curvature

Students should read Section 13.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Vector tools previously studied including arc length enables one to study the idea of curvature, which serves as a measure of how
acurve bends, i.e., the rate of change in direction of a curve. In arriving at a definition of curvature, consider a path in vector
form and parametrized by

re = (x, y, z()

The parametrization is classified asregular if r'(t) # Ofor al valuesof t and for whichr (t) isdefined. Assumethenthat r(t) is
regular and define the unit tangent vector in the direction of r ' (t), denoted T (t), asfollows:

_ro
TO = o

This unit tangent vector T at any point enables us to determine the direction of the curve at that point, so one may define the
curvature k (Greek letter kappa) at a point as

I Il
lr* i

dT
k=115 =

which represents the magnitude of the rate of change in the unit tangent vector with respect to arc length. One denotes the vector
dT /ds as the curvature vector. Its scalar length therefore measures curvature. For example, a straight line has « = 0 (zero
curvature) as one would expect. For acircle of radius p, we have k = 1/ p (reciprocal of p). This makes sense since a larger
circle should have smaller curvature. In genera, if we were to secure acircle, caled the osculating circle, that best fits a curve at
a specific point on the curve, then curvature of the curve at such a point should agree with the curvature of the osculating circle,
i.e,

Moreover, the radius p of this circle is called the radius of curvature. Note that the equations linking « and p illustrate their
inverse relationship:

Example 13.9. Compute the curvature « for acircle of radius p defined by
r(t) = {p cost, p sint).

ra .

Solution: Wefirst compute the unit tangent vector T using the formulaT(t) = TROTE

npizsy= Cear[r, T, t, p]
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n126= r[t_1 ={pCos[t], pSin[t]}
reqtl
Tt _1=r"[t]1/Sinplify[Norm[r' [t]]]

ou1126]= {p Cos[t], pSin[t]}
ouf11271= {-pSin[t], pCos[t]}

pSin(t] o Cos [t ] }

Out[1128]= {—

\/AbS[pCOS[t]]2+AbS[pSin[t]]z \/AbS[pCbS[t]]2+Abs[pSin[t]]2

Observe that in this output Mathematica is not able to reduce the expression inside the radical, which simplifiesto p as aresult of
the fundamental trigonometric identity cos? x + sin® x = 1. This is due to the Norm command, which employs absolute values.
To remedy this, we use the formulal||r' (t)|| = Vr'(t)-r'(t) instead of the Norm command.

nrizgy= T[t_1=r'"[t]/Sqgrt [Sinplify[r'[t].r' [t]]]
oSint] pOOS[t}}

Jr e

We then compute the curvature using the formulax =

out[1129]= {—

I Il
lr* i

n130}= k =Sqrt [Sinplify [T [t]. T [t]1]1/Sinmplify[r' [t].r' [t]]]

1
Out[1130]= —
02
Since the radius p is assumed to be positive, we conclude that « = / iz = H = % as expected.
P

Example 13.10. Compute the curvature « for the curve defined by f(x) = x? at the point (3, 9).
Solution: Observe that the graph of afunction y = f(x) can be parametrized by x =t and y = f(t) and hence r(t) = (t, f(t)). In
this case the formula for curvature reduces to

inp1131):= Clear [r, t, f]
rie_1=H{t, frtny

ouf1132= {t, f[t]}

r'[t]
n1133)= T[t_1 =
Sqre[r' [t].r' [t]]

x=Sqrt [Sinmplify[T [t].T [t1]1/Sinplify[r'[t].r'[t]]]
1 frit] }

Out[1133]= {

\/1+f'[t]2 | \/1+f’[t}2

out[1134]=

whichisthesameas« = AL - With f(x) = X2, we get

(1+(F' ) /
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mpissy= f[t_] =t 2
X

ouf113s}= t?

out[1136]= 2

At x =t = 3, the curvature becomes

n[1137]= k¥ /. t >3
2
3737

Here isaplot of the curvature along with the function.

out[1137]=

mnpisgi= Plot [{f [t], x}, {t, O, 3}]

ouf113s)= [

0.5 10 15 2.0 25 3.0

Example 13.10. Compute the curvature k and the radius of curvature p for the curve defined by
r=(1-t,2+1, 2+ 1)at=1/2

Solution: Again we begin by computing the unit tangent vector T:
np1139= Cear [r, T, t, x]

mpaop= rt_1={1-t, t"2+1, (2/3)t"3+1}
reqtl
Tt _I=r"[t]1/Sqrt[Simplify[r' [t].r' [t]1]]

213
}

Out[1140]= {1—t, 1+t2 1+

oufiat= {-1, 2t, 2t?}

out[1142]= {— ! , 2t , 2t }

\/(1+2t2)2 J(1+2t2)2 J(l+2t2)2

257



258 Mathematica for Rogawski's Calculus

We then compute the curvature using the same formula as in the previous example and evaluate itat t = 1/2:

n143:= k =Sqrt [Sinpl i fy[T' [t1.T' [t]1]1/Simplify[r' [t].r' [t]]]

x/.t>1/2
1
out[1143]= 2 —
(l +2t 2)
8
ouf[1144]= —
9

Hence the curvature k = 8/9 at t = 1/2 and the corresponding radius of curvatureisp =1/« =9/8.
Curvature Formula (Cross Product)

There is an aternative formula for calculating the curvature of space curves that involves the cross product and eliminates the
need to compute the unit tangent vector function:

I @xr @l llag)x v |
ol v 13

Example 13.11. Compute the curvature «(t) and the radius of curvature for the helix defined by r(t) = (cost, sint, t) for any real
number t.

Solution: Wefirst find the derivative of the unit tangent vector with respect to t.

np14s= Cear [r, T, t, x]
rit_]={Cos[t], Sin[t], t}
r'qtl
ret]

ouf1146]= {Cos[t], Sin[t], t}

ouf1147)= {-Sin[t], Cos[t], 1}

oufi14g8)= {-Cos[t], -Sin[t], 0}

In[L149= k[t _] =
Sqrt [Sinplify[Cross[r'" [t], r' [t]].Cross[r'" [t], r' [t]]]]/Sqrt [Sinplify[r' [t].r' [t]]]3
1

out[1149]= —
2

It followsthat x = % and p = 2 for al values of t. Hence, our helix isacurve of constant curvature.

m Exercises

1. Find r'(t) and T(t) and evaluate T(2):
art)=@B+2t)i+(2-51))+9tk
b) v(t) = (sint, cost, 1)

2. Use Mathematica to find the curvature function k(x) for y = cosx. Also plot x(x) for 0 < x < 1. Where does the curvature
assume its maximum value?

3. Determine the unit normal vectorstor(t) = [ti+sintjlatt= % andt= 3%.
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4. Determine the curvature of the vector-valued functionr(t) = (3+ 2t)i + 6tj + (5-t) k.

5. Find aformulafor the curvature of the general helix r(t) = acosti + asintj + ctk.

m 13.5. Motion in Three Space

Students should read Section 13.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that the velocity vector is the rate of the change of the position vector with respect to time while the acceleration vector
represents the rate of change of the velocity vector with respect to time. Moreover, speed is defined to be the absolute value of
the velocity vector. In short, we have the following:

vty =r'(t), st = liv(Hll and at) = v' (t) =" (1).
One can secure the velocity vector and the position function if the acceleration vector is known viaintegration. More specifically:
v(t) = fot a(u) du + vo where v represents the initial velocity vector and r (t) = fot v(u)du+ Vot +rowherer g istheinitial position.

Example 13.12. Find the velocity vector, the speed, and the acceleration vector for the vector-valued function
r)=ti+1-tj+4t?katimet=1.

Solution:

npis0p= Clear [r, v, s, aj
rt_1={t"3, 1-t, 4t"2}
Vit_1=r"Tt]
S[t_1=Sqrt [v[t].v[t]]
aft_1=r""[t]
v[1]
s[1]
a[l]

oufisi= {t3, 1-t, 4t?}

ou152= {3t 2 .1, 8t I

ouisa \[1+64129t4

ouff1154= {61t, O, 8}

ou1155= {3, -1, 8}

out[1156)= V 74

ou1157)= {6, 0, 8}

Thus,v(1) =r'(1) =3i—-j+8k,s(1)=V74,and a(1) = 6i + 8Kk.

Example 13.13. Findr(t) and v(t) if a(t) = ti +4] subject to theinitial conditionsv(0) = 3i —2j and r(0) = 0.

Solution: Wefirst solve for v(t) by integrating a(t):
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np11ss;= Cl ear [r, v, al
aft_]={t, 4}
v[t_]=Integratefafu], {u, O, t}] + {v0l1l, v02}

ouf1159]= {t, 4}

t2
out[1160]= {? +vO0l, 4t + VOZ}

Here, the constant vector of integration v = (Voy, Vop) = (3, —2) equalstheinitia velocity:
n161):= Sol ve [v[0] = {3, -2}, {vO01, v02}]

ou1161)= {{v01l >3, v02 » -2}}

Thus, v(t) = 5 i +4tj +(3i - 2j).

inf1162)= V[t _] =v[t] /. {v01l -3, v02 » -2}

tZ
out[1162]= {3 + > -2+4t }

Next, we solvefor r(t) by integrating v(t):

in[f1163):= r [t _] =Integrate[v[u], {u, O, t}] + {r01, r02}
t3
Out[1163]= {rOl +3t +—, r02-2t +2t2}
6
Again, the constant vector of integration rq = (roz, roz) = (0, 0) equals the initial position:
in1164):= Sol ve [r [0] == {0, 0}, {r01, r02}]
ouff1164)= {{r01 -0, r02 >0}}
(e i 2 i
Hence, r(t) = (E + 3t)| +(212 - 2t)j.
Components of Acceleration
There are two components of acceleration: tangential and normal. More precisely, the acceleration vector a can be decomposed
d’s _ a-v

. . 2
asa=arT+ayN, where ar = == = [ is the tangential component and ay = K(% = %

Moreover, onehas a2 + &, = [|all sothat ay = V llall’ —ar? andar = v/ [lall® —an? .

Example 13.14. Determine the tangential and normal components of acceleration for the vector functionr (t) = <t3, t2, t).

is the norma component.

Solution:

in[1165):= Cl ear [r, v, S]
rit_1={t"3, t"2, t}
rertl
reertl

Out[1166]= {t3, t2, t}
oufuer= {3t% 2t, 1}

ou1168= {6t, 2, 0}
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in1169):= speed =Sinplify[Sqrt [r' [t].r' [t]1]]

ouiieg= V1 +4t2+9t4

The result in the last output represents the speed at time t. In order to secure the tangential component of the acceleration, we
differentiate the previous output:

n[1170):= at = D[speed, t]

8t +36t3

2+/1+4t24+9t4

The normal component of the acceleration is

out[1170]=

In[1171]:= an=\/r" [t1.r" " [t] —at?

(8t +36t2)°
out[1171]= 4+36t2-
4 (1+4t2+9t4)

inp172):= Sionplify[an]

1+9t2+9t4
ouf1172)= 2 | ———m88M8
1+4t24+9t4

NOTE: The components of acceleration can also be found through the formulas ar = 2% laxvi

= nfirm in
v ad an = ==, co ed using

Mathematica as follows:

n1173)=at =r' " [t].r" [t]/Sqrt[r' [t].r' [t]]
an =Sqrt [Cross[r'' [t], r' [t]].Cross[r'' [t], r' [t1]11/Sqrt[r' [t].r' [t]1]

4t +18t3
out[1173)r —MM
AJ1+4t24+9t4
Ja.36t2.36t4
Out[1174]=

\J1+4t2+9t4

m Exercises

1. Calculate the velocity and acceleration vectors and the speed at the time indicated:
art)=ti+@-9j+(5t9)k, t=2

b) r(t) = costi +sintj + tan (2t k, t = 5.

2. Sketch the path r(t) = (1— tz)i +(1-1)j for =3 < t < 3 and compute the velocity and acceleration vectorsat t =0, t = 1, and
t=2

3. Find v(t) given a(t) and theinitia velocity vo.

@ at)=ti+3j,v(0) = 2i+2].

b) att) = €?'i+ 0j + (t+ 2k, v(0) = i — 3] + 2k.
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4. Find r (t) and v(t) given a(t) together with the initial velocity and position at rest:
aat)=eli+4tj+t-2)k, v(0)=0i+0j +k, r(0) =0i+3j +4k.
b)at) =0i +0j +sintk, v(0) =i+j, r(0) =i.

5. Find the decomposition of a(t) into its tangential and normal components at the indicated point:
Ar)=@-4ti+@t+Dj+tPkat=1
byry=ti+elj+tetkat=0.

6. Show that the tangential and normal components of acceleration of the helix given by r(t) = (cost)i + (sint)j +tk are equal to
0 and 1, respectively.
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Chapter 14 Differentiation in Several Variables

Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives. First place your screen cursor over the plot. Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

m 14.1. Functions of Two or More Variables
Students should read Section 14.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

m 14.1.1. Plotting Level Curves using ContourPlot

We begin with plotting level curves f(x, y) = ¢ of afunction of two variables. The command to plot level curvesis Contour -
Plot[f{x,a,b},{y,c,d}].

Most of the optionsfor Contour Plot are the same as those for Plot. In the following example we consider the option Contours.
Example 14.1. Plot the level curvesof f(x, y) = X + Xy — y?.
Solution: Let usfirst plot the level curves using the default settings of Mathematica.

ni7s= Coear [X, y, f1
fIX_, y 1:=x2+xy -y?

in1177):= Contour Pl ot [f [X, y1, {X, -5, 5}, {y, -5, 5}, | mageSi ze » {250}]

out[1177]=

To get the level curves on the xy-plane without the shading, the colors, and the frame, but with the coordinate axes, we use the
following options of Contour Plot.
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ni7e= Contour Plot [f [x, y1, {x, -5, 5}, {y, -5, 5}, Frane - Fal se,
Axes -» True, Contour Shadi ng -» Fal se, | mageSi ze » {250}]

]

Out[1178]:\““““““““

-4 -2 I 2 4

Contours is an option of ContourPlot that can be used in two different ways: Contour —n displays n equally spaced contour
curves while Contour —list plotslevel curves f(x, y) = c where cisan element of thelist list.

To plot 15 level curves, we evaluate

mi7ep=  Contour Pl ot [f [x, y1, {x, -1, 1}, {y, -1, 1}, Contours - 15, | nageSi ze » {250} ]

10F - .
. " 4

05F

0.0

out[1179]=

-05

Hereisan examplewhen list = {-10, -5, -2, -1, 0,1, 2, 5, 10}.
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m1igop= Contour Pl ot [f [X, y], {X, -5, 5}, {y, -5, 5},
Contours -» {-10, -5, -2, -1, 0O, 1, 2, 5, 10}, InmageSize » {250}]

Out[1180]=

m 14.1.2. Plotting Surfaces using Plot3D

Plot3D is the three-dimensional analog of the Plot command. Given an expression in two variables and the domain for the
variables, Plot3D produces a surface plot.

The basic syntax to plot the graph of afunction of two variables is Plot3D[ f,{x, &, b}.{y, ¢, d}], where f isafunction of x and y
with a< x<bandc=< y=d.

The command to plot the graphs of two or more functions on the same coordinate axes is Plot3D[{f, g, h, .... }, {x, & b}, {y, c,
d}], wheref, g, h, ... arethe functions to be plotted.

We will begin with the default settings of plotting a graph of a function of two variables.
Example 14.2. Plot f(X, y) = sin(x— cosy).

Solution:

ni81= Plot3D[Sin[x - Cos[yl]l, {X, -3, 3}, {y, -3, 3}, ImageSize » {250}]

out[1181]=

Example 14.3. Plot the graphsof f(x, y) = 3x+4y—-3and g(x, y) = 10sin(xy) on the same axes.
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Solution: We will use red color for the graph of f and blue for that of g. Thisis given using the option PlotStyle.

np182= Plot3D[{3x+4y -3, 10Sin[xy]}, {x, -3, 3},
{y, -3, 3}, PlotStyle » {Red, Blue}, |nageSize » {250}]

out[1182]=

NOTE: One of the most significant improvements of Mathematica 6 over the previous editions is its graphics capability. Plot3D
has many options. Evaluate the command Optiong[Plot3D] to see the many options you have to plot a nice graph.

We will discuss some of these options below.
ViewPoint

In Mathematica 6.0, we can rotate the graph of a function of two variables by simply clicking on the graph and dragging the
mouse around to see the graph form any point of view.

The option ViewPoint specifies the point in space from which the observer looks at a graphics object. The syntax for choosing a
view point of a surface is Plot3DI[f[X, y], {X, a, b}, {y, ¢, d}, ViewPoint—<{A, B, C} ]. The default value for {A, B, C} is{1.3,-
2.4,2.0}. This may be changed by entering values directly.

To view a graph from directly in front {0, —2, 0}; in front and up {0, —2, 2}; in front and down {0, —2, —2}; left hand corner
{ —2, =2, 0}; directly above {0, O, 2}.

Plot3D[ f[x, yl, {x, a, b}, {y, ¢, d}, ViewPoint - view ] produces a plot viewed from view. The possible values of view are
Above (along positive z-axis), Below (along negative z-axis), Front (along negative y-axis), Back (along positive y-axis), L eft
(along pnegative x-axis), and Right (along positive x-axis).

Example14.4. Plot f(x, y) = cosxsiny using ViewPoint option to view the graph from various view points.

Solution: We leave it to the reader to navigate all of the above choices. We will consider afew of them.

in[1183:= Cl ear [f ]
fIx_, y_1=Cos[x] Sin[yl]

ouf1184]= Cos [X] Sin[y]

Here isaplot of the graph using the default setting for ViewPoint:
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nies= Plot3D[ F[x, y1, {X, -2Pi, 2Pi}, {y, -2Pi, 2Pi} , PlotRange -» All,
ImageSize » {250} ]

Ou1185)=

View from directly in front:

n1ige;= Plot3D[ F[x, y1, {X, -2Pi, 2Pi}, {y, -2Pi, 2Pi}, ViewPoint -» Front,
PlotRange -» All , ImageSize -» {250}]

10F
05F
outiise)= OOF

-0.5F

-1.0k

View fromin front and up:

n187.= Plot3D[ F[x, y1, {X, -2Pi, 2Pi}, {y, -2Pi, 2Pi}, ViewPoint - {0, -2, 2},
PlotRange -» All, ImageSize » {250}]

out[1187]=

View from in front and down:
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inse;= Plot3D[ F[x, y], {X, -2Pi, 2Pi}, {y, -2Pi, 2Pi}, ViewPoint - {0, -2,

-2},
PlotRange -» All, ImageSize » {250}]

0 5

T T T T

out[1188]=

View from directly above:

n1is0;= Plot3D[ F[x, y1, {X, -2Pi, 2Pi}, {y, -2Pi, 2Pi}, ViewPoint -» Above,
PlotRange -» All, Ticks -» {Automatic, Automatic, {-1, O, 1}},
ImageSize » {250}]

oui1189)= O

! !
-5 0 5

View from theright:

ni00= Plot3D[ F[x, y1, {X, -2Pi, 2Pi}, {y, -2Pi, 2Pi}, ViewPoint -» Right,
PlotRange -» All, ImageSize » {250}]

1.0
: j \/
05 / Ve
out[1190]= 0.0 1
-05 |
5
-1.0 5 o 5

NOTE: As we pointed out earlier, we can also select different viewpoints by clicking on the graph and dragging the mouse
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around until we get the desired viewpoint.

Mesh, MeshStyle, M eshShading

The option M esh specifies the type of mesh that should be drawn.

The option M eshStyle specifies the style in which a mesh should be drawn.

The option M eshShading is an option for specifying alist of colorsto be used between mesh divisions.
Weiillustrate some uses of these optionsin the example below.

Example 14.5. Plot f (X, y) = cosxsiny using various optionsinvolving M esh.

Solution:

inr101):= C ear [f ]
fIx_, y_1=Cos[x] Sin[y]

ouf1192]= Cos [x] Sin[y]

To plot a graph without a mesh we use the setting M esh—~None.

n1103:= Plot3D[ F[x, y1, {X, -2Pi, 2Pi}, {y, -2Pi, 2Pi}, Mesh - None,
ImageSize » {250} ]

out[1193]=

M esh—n plots a surface with only nx n meshes.

269
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no4p= Plo€3D[ F[x, y], {x, -2Pi, 2Pi}, {y, -2Pi, 2Pi}, Mesh- 8,
ImageSize » {250}]

out[1194]=

We can choose the color of the mesh using M eshStyle.

nios= Plot3D[ F[x, y1, {X, -2Pi, 2Pi}, {y, -2Pi, 2Pi}, MeshStyle -»
{Red, Black}, ImageSize -» {250} ]

Out[1195]=

Here is another use of MeshStyle:

noe)= Plot3D[ F[x, y1, {X, -2Pi, 2Pi}, {y, -2Pi, 2Pi} , MeshStyle -»
{Dashing[0.01], None}, ImageSize » {250} ]

Out[1196]=
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To display a plot with selected colors between meshes we use M eshShading:

np1o7):= Plot3DIf [x, y1, {X, -2Pi, 2Pi}, {y, -2Pi, 2Pi},
MeshShadi ng » {{Bl ue, Red, Wiite}, {Purple, Geen, Black}}, I nageSize » {250} ]

out[1197]=

Hereisa"neat example" in Mathematica 6.0:

in119g]:= Pl ot 3D[ (X2 -y"2) / (x"2+y"2)"2, {x, -1.5, 1.5}, {y, -1.5, 1.5},
BoxRati os » Automati c, Pl ot Points - 25, MeshFunctions -» {#3 &},
MeshStyl e -» Purpl e, MeshShadi ng » {None, Green, None, Yell ow}, | nageSi ze » {250}]

out[1198]=
\
' 'r}“ ‘Q" q
f —~ . J
//
//
/
[/
/
‘ //
|/
W
BoxRatios

The option BoxRatios specifies the ratio of the lengths of the sides of the box. This is analogous to specifying the AspectRatio
of atwo-dimensional plot. For Plot3D the default setting is BoxRatios—Automatic.

Example 14.6. Plot f(x, y) = el ¥ ug ng the BoxRatio option.

Solution:
in1199):= Cl ear [f ]
fx_, y_1=E"¢Y

y2.y2
outf1200= @Y
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nz01:= Plot3D[ F[x, y1, {X, -2, 2}, {Y, -2, 2}, ImageSize » {250}]

out[1201]=

n2021= Plot3D[ F[x, y1, {X, -2, 2}, {y, -2, 2}, BoxRatios - {1, 1, 0.627},
ImageSize » {250}]

out[1202]=

Axesl abel

The option AxesL abel isacommand used to label the axes in plotting.

Example 14.7. Plot f(x, y) = y 9— X2 — y? using the AxesL abel option.

Solution:
in[1203:= Cl ear [f ]

fIX_, y_1=49-x%2-y?

oui204= A/ 9 - x2 - y?
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inp20s)= Plot3D[F[X, y1, {X, -3, 3}, {y, -3, 3}, AxesLabel » {"x ", "y ", "z "},
ImageSize » {250}, ImagePadding -» {{15, 15}, {15, 15}}]

3

out[1205]= 7 2
1
0

NOTE: To label agraph, use the PlotL abel option as shown following:

inzoe;= Plot3D[F[X, y1, {X, -3, 3}, {y, -3, 3}, AxesLabel » {*x ", "y ", "z "},
PlotLabel - ""Upper hemisphere', BoxRatios -» Automatic, ImageSize -» {250},
ImagePadding -» {{15, 15}, {15, 25}}]

Upper hemisphere

Out[1206]=
z

Color Function

The option Color Function specifies a function to apply to the values of the function being plotted to determine the color to use
for a particular region on the xy-plane. It is an option for Plot3D, ListPlot3D, DensityPlot, and Contour Plot. The default
setting for Color Function is Color Function—»Automatic. Color Function-»Hue yields arange of colors.

Example 14.8. Plot f(x, y) = sin(x? + y?) + el-**-¥* in various colors using the Color Function option.

Solution:

inf1207):= Clear [f, X, y]
f [X_, y_] =S n[X2 +y2] + E]__xz_yz

g2 2 .
ouizos= €Y+ Sin[x? +y?|
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inz09;= Plot3D[F[X, y], {X, -Pi, Pi}, {y, -Pi, Pi}, ColorFunction - Hue,
ImageSize » {250}]

Out[1209]=

Here are other waysto use Color Function.

nzi0p= Plot3D[F[X, y], {X, -Pi, Pi}, {y, -Pi, Pi}, ColorFunction - "Rainbow",
ImageSize » {250} ]

out[1210]=

ine11= Plot3D[F[X, y1, {X, -Pi, Pi}, {y, -Pi, Pi}, ColorFunction »
"BlueGreenYellow", ImageSize » {250}]

ouf1211)= |

NOTE: We can use PlotStyle option to select color for graphs. The plot below uses this option.
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n2121- Plot3D[F[X, y], {X, -Pi, Pi}, {y, -Pi, Pi}, PlotStyle » Yellow,
ImageSize » {250} ]

out[1212]=

RegionFunction
The option RegionFunction specifies the region to include in the plot drawn.

10sin(Bx-vy), if x¥¥+y?<4;
Example 14.9. Plot f(x, y) :{ ) .
X2+ y? -5, otherwise
Solution: We will use the command RegionFunction to specify the domain x? + y? < 4 as follows. Note that we have used
Show to display the graphs.

n213:= Clear[plotl, plot2]
plotl =Plot3D[10Sin[3x-Vy], {X, -4, 4}, {y, -4, 4}, PlotStyle - Blue,
RegionFunction -» Function[{X, Y, 2z}, X"2+y"2<4]];
plot2 = Plot3D[ x*+y? -5, {x, -4, 4}, {y, -4, 4}, PlotStyle - Red,
RegionFunction -» Function[{X, Yy, z}, X"2+y”"2 > 4]];
Show[plotl, plot2, ImageSize » {250}]

Out[1216]=

If we want to focus on a particular part of a surface defined by a function, we can use the option RegionFunction. The following
example shows this point.
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Example 14.10. Plot the graph of f(x, y) = x> —~3xy—2y? and show the portion of the surface direclty above the unit circle
centered at the origin.

Solution: Wewill use the option ViewPoint.

n217= Clear[plotl, plot2, f, X, y]
FIX_,y ]=%X*>-3xy -2y?
plotl =Plot3D[f[X, y], {X, -4, 4}, {y, -4, 4}, PlotStyle - Blue,
RegionFunction -» Function[{X, Y, z}, X*"2+y"2<11]];
plot2 =Plot3D[f[X, y] , {X, -4, 4}, {y, -4, 4}, PlotStyle -» Red,
RegionFunction -» Function[{X, Y, z}, X™2+y”~2>11];
Show[plotl, plot2 , ViewPoint - Front, ImageSize -» {250} ]

oufiz1g= X2 -3xy -2y2

L
o

out[1221]=

.y, ) 0 2

= 14.1.3. Plotting Parametric Surfaces using ParametricPlot3D

ParametricPlot3D isadirect analog of ParametricPlot. Depending on the input, ParametricPlot3D produces a space curve or
asurface. ParametricPlot3D[{f, g, h}, {t, a, b }] produces a three-dimensional space curve parametrized by the variable t which
runs from ato b. ParametricPlot3D[{f, g, h}, {t, a, b },{u, ¢, d}] produces a two-dimensional surface parametrized by t and u.
Options are given to Par ametricPlot3D the same way asfor Plot3D. Most of the options are the same.

Example 14.11. Plot the curve that is parametrized by x = sint, y=costand z=t/3withO <t < 2x.

Solution:
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T
In[1222]:= ParametricPlot3D[{Sin[t] , Cos[t], E}’ {t, 0, 2=}, ImageSize » {250},

ImagePadding » {{15, 15}, {15, 15}}]

out[1222]=

10

Example 14.12. Plot the surface that is parametrized by x = ucosu(4 + cos(u + V), y = usinu(4 + cos(u + v)), and
Z = usin(u + v).

Solution:

in223= Parametri cPl ot 3D[{u Cos[u] (4 +Cos[u+V]), uSinfu] (4+Cos[u+Vv]), uSinfu+v]},
{u, 0, 4x}, {v, 0, 2}, I mageSi ze » {250}]

out[1223]=

m 14.1.4. Plotting Level Surfaces using ContourPlot3D

ContourPlot3D is the command used to plot level surfaces of functions of three variables. Its syntax is ContourPlot3-
D[f{x,a,b}, {y,c,d}.{z,ef}]. Most of the Options for ContourPlot3D are the same as those of Plot3D. Below we will consider
the option Contours of Contour Plot3D.

Example 14.13. Plot level surfacesof f(x, y, 2) = X2 + Y2 + Z°.
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in[12241= Clear [x, vy, z, f]
fIX_, y_, z_] =x?+y? 422
Contour Pl ot 3D[f [x, y, z], {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, ImgeSize » {250}]

oui225= X2 +y? + 22

out[1226]=

The following displaysfive (5) equally spaced contour surfaces of f.
in[12271:= Cont our Pl ot 3D[f [X, y, z], {x, -3, 3}, {y, -3, 3}, {z, -3, 3},
Contours -5, | mageSi ze » {250} ]

e\l
LTS

out[1227]=

The following displaysthree level surfaces f (X, y, 2 = ¢, wherec =1, 4, 9.



Chapter 14 279

inj122g]:= Contour Pl ot 3D[f [x, y, z], {x, -3, 3}, {y, -3, 3}, {z, -3, 3},
Contours » {1, 4, 9}, I mageSi ze » {250}]

out[1228]=

/
2 I/

Notice that we only see one sphere. The other two are enclosed in the sphere of radius 3 corresponding to c = 9. One way to

remedy thisis to plot the level surfaces one by one. For this we use the GraphicsArray command. First let us define the level
surfaces as function of ¢

in[1229):= Cl ear [c, plot]
plot [c_] :=ContourPl ot3DI[f [x, ¥y, z], {x, -3, 3}, {y, -3, 3}, {z, -3, 3},
Contours - {C}]

Here are the three level surfaces correspondingtoc =1, 4, 9.

in[1231):= Show[Gr aphi csArray [{pl ot [1], plot [4], plot [9]}]]

out[1231]=

m EXxercises

1. Plot the level curves and the graphs of each of the following functions:
a f(x,y)=xy’—x®yfor-10<x<10,-10 < y < 10.
X+2y

b) fx, )= 1432 +y?

c) f(x, y)=(sny)e™S*for-2xr<x=<2n, -2n<y=<2n.
d f(x,y)=sinx+siny) for-4rx<x<4n -4x<y=<4n.

for-10 < x=<10,-10=< y < 10.
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2. Use at least two nondefault optionsto plot the following functions:
a f(x,y=sinx-2y)eYVYfor -2r<x<2nm, -2r<y<2nm

b) f(x, yy=4-3|x|-2|y|for-10<x<10,-10<y<10.
¢) f(x, y)=tanhX(x/y)for—-5<x<5,-5<y=<5.

Plot f Xy —4 ifx2+y?<4
3. Plot f(x, y)={4_xz+3y2 otherwise

4. Plot the portion of the helicoid (spiral ramp) that is defined by:
X =ucosv, y =usinv,z=vforO<=u=3and -27 < Vv <2n.

5. Use Contour Plot3D to plot the level surfaces of the function f(x, y, 2 = 9— X2 — y? — 2.

m 14.2. Limits and Continuity

Students should read Section 14.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

m 14.2.1. Limits

If f(x, y)isafunction of x and y, and if the domain of f contains a circle around the point (a, b), we say that the limit of f at
(a, byisLif and onlyif f(x, y) can be arbitrarily closeto L for al (x, y) arbitrarily close (a, b).

More precisely, for agiven e > 0 there existsa§ > 0 such that for every (X, y) isin the domain of f,

0<\/(><—a)2+()/—b)2 <0 = |f(x, y)-Ll<e
If thisisthe case we write
liMy)s@p) F(X y) =L

The Limit command of Mathematica is restricted to functions of one variable. However, we can use it twice to find the limit of
function of two variables provided the limit exists.

Example 14.14. Find limyy @4 (3 + Y2).

Solution: We can eadliy determine that the limit exists. We can find the limit by evaluating
In[1232):= Limt [Li m t [X2 +y2, X > 3], y - 4]

out[1232]= 25

The plot following confirms this.
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in[1233:= Cl ear [pl ot 1, plot2]
plotl=Plot3D[x?+y? {x, 1, 4}, {y, 3, 5}];
pl ot 2 = G aphi cs3D[ {Red, Poi ntSi ze[.025], Point [{3, 4, 25}1}1;
Show[pl ot 1, plot2, I mageSi ze » {250}, | magePaddi ng -» {{15, 15}, {15, 15}}]

out[1236]=

Example 14.15. Find limy )1 %.

Solution: Wewill evaluate the limit in two different orders. The limit in which we use limit with x first and then with y is

in[12371= Cear [f, X, y]

; 3x +y?
[x_, y_1-=
X -4y
3x+y2
Out[1238]=
X -4y

The limit in which we use limit with x first and then with y is
in[239):= Limt [Limt[f[x, y], X=>4], y->1]

Oout[1239]= —

The limit in which we use limit with y first and then with x is
inf1z40= Limt [Limt[f[x, y], Yy >1], X >4]

Out[1240]=

Here is the plot of the graph near the point (4, 1). Observe that the graph of the function isin green and the point (4, 1, 0) isin
red. For a better comaprison, we have colored the xy-plane light blue. Y ou may need to rotate the graph to see the point (4, 1, 0)
on the xy-plane and see how the graph behaves when (x, y) iscloseto (4, 1).
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in[1241:= Cl ear [pl ot 1, plot2]
plotl =Pl ot3D[{f [x, Y], 0}, {X, 3, 5},
{y, 0, 23}, PlotStyle - {Green, LightBlue}, PlotPoints - 100];
pl ot 2 = G aphi cs3D[{Red, Poi ntSi ze[.025], Point [{4, 1, 0}]1}1;
Show[pl ot 1, plot2, | mageSi ze » {250},
| mmgePaddi ng » {{15, 15}, {15, 15}}]

out[1244]=

Here is the animation with x as the animation parameter.

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-
tions generated from the Animate command in this chapter. If you are reading the electronic version of this publication format-
ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation. Just click on the
arrow button to start the animation. To control the animation just click at various points on the sliding bar or else manually drag
the bar.

n1245:= Animate [Pl ot [f [x, y], {y, O, 3}, PlotRange » {-20, 20}], {X, 3, 5}]

ouizas _

sinxsiny
xy

Example 14.16. Find limyy)-0,0)

Solution: We will evaluate the limit in two different orders.
in[1246:= O ear [f, X, y]
Sin[x y]
f [X_, y_.]= ——
Xy
Sin[xy]

Xy

out[1247]=
in[124s= Limt [Limt [f [X, y], x=>0], y - 0]
out[1248]= 1
in[1249;= Limt [Limt [f[X, y], y->0], x->0]
out[1249]= 1

Here isthe plot of the graph and the point (O, O, 1).
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n[12s0:= Cl ear [pl ot 1, plot2]
plotl =Pl ot3D[f [x, Y], {x, -1, 1}, {y, -1, 1}, PlotStyle - Geen];
pl ot 2 = G- aphi cs3D[{Red, PointSi ze[.02], Point [{0, O, 1}]1}1;
Show([pl ot 1, plot2, | mageSi ze » {250}]

out[1253]=

If we rotate this graph to a suitable position, we notice that the limit exists. Here are animations with x and y as animation
parameters, respectively.

in[12541= Ani mat e [Pl ot [f [x, y], {X, -2, 2}, PlotRange -» {0, 1}1, {y, -2, 2}]

ouizsa _

n[12ssi= Ani mat e [Pl ot [f [x, y1, {y, -2, 2}, PlotRange » {0, 1}], {x, -2, 2}]

ouizesl= _

Example 14.17. Find limy y)- 00 XINY.

Solution:

in2sel= O ear [f, X, y]
fIx_, y_l=xLoglyl

ouf1257)= X Log[y]

inf1zsel= Limit [Limt[f[x, y], x->0], y-0]
out[1258]= O

infzs9)= Limt [Limt[f[x, y], y>0], x->0]

ouff1259)= | ndet erm nate

283
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inf1260:= Cl ear [pl ot 1, plot2]
plotl =Pl ot3D[{f [x, Y], 0}, {Xx, -1, 1}, {y, -1, 1}, PlotStyle » { Geen, LightBlue}];
pl ot 2 = Graphi cs3D[ {Red, Poi ntSi ze[.025], Point [{0, O, 0}]1}1;
Show([pl ot1, plot2, | mageSi ze » {250},
| mgePaddi ng -» {{15, 15}, {15, 15}}]

Out[1263]=

Here is the animation with x as the animation parameter.

n1264:= Ani mat e [Pl ot [f [x, y], {y, -2, 2}, PlotRange » {-10, 10}], {x, -2, 2}]

ouilzet _

Example 14.18. Consider the function f (x, y) = -~

X2+

Show that limyy)-0,0 (X, y) does not exist.

Solution:

in[1265= C ear [f, X, y]

X y?2
f [X_, y_] = 2 ,
X“+Yy
X y?
out[1266]=
x2 +y*

in1267):= Limt [Limt [f[x, y], Xx=>0], y->0]
out[1267]= O

in[i26gl= Limt [Limt[f[x, y], y->0], x-0]
out[1268]= O

inf1269;= Limt [Limt[f[x, y]I, y > mx], x 0]

out[1269]= O
However, note that the limit along the curve y = V'x is

In[1270]:= Lim't[Lim't [f [x, yl, y » \/x_] x->0]

1
out[1270]= —
2
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Hence, the limit does not exist. Hereisthe plot of the function:

npi271:= Pl ot 3D[f [X, y1, {X, -1, 1}, {y, -1, 1}, I mageSize -» {250}]

m 14.2.2 Continiuty

Recall that afunction f of two variables x and y is continuous at the point (a, b) if and only if limiy y@p (X, y) = f(a, b).

1-x2-y? ifx2+y? <1 _
Example14.19. Let f(x, y) = . Is f continuous?
0 ifx2+y?>1

Solution: Clearly f iscontinuous at al pointsinside and outside the circle of radius 1. To check continuity on the unit circle, we

let x=rcostand y =rsint. Wethenletr - 1.

inpz72p= Clear [x, y, r, s, t, f]

fIX_, y_1=1-4/X

ou1273= 1 -/ X2 + y?

inf1274]= X =1 Cos [t ]
y=r Sin[t]

+y

out[1274)= r Cos [t ]

ou1275= r Sin[t]
infr27el= Sinmplify[f [x, yI11

our1276)= 1 =/ r?

in277):= Limt [f [x, y], r » 1]

ou[12771= 0

The command below evaluates f on the circle.
npz7gr= Sinplify[f[x, y1 /.1 1]

out[1278]= O

Thus, the limit and the value of f are equal at all pointson the unit circle. Hence, f is continuous everywhere. Hereisthe graph.



286 Mathematica for Rogawski's Calculus

nz7ep= Clear [plotl, plot2]
plotl = Plot3D[f[X, y], {X, -5, 5}, {y, -5, 5}, PlotStyle -» Red,
RegionFunction -» Function[{X, Y, 2}, X*"2+y~2 < 1], Mesh -» None];
plot2 = Plot3D[ O, {x, -5, 5}, {y, -5, 5}, PlotStyle - LightBlue,
RegionFunction -» Function[{X, Yy, 2z}, X"2+y”~2 >1], Mesh - None] ;
Show[plotl, plot2, ImageSize » {250}]

m Exercises

1. Find each of the follwoing limits, if it exists.
. . 32
3 liMgya-1 (2X7y +xy?) B) 1iMecy- :2—_+yyz
tanxsiny
xy

€) limyy00 d) limyy-00 SinxIny

X2 +y?

2. Consider the function f(x, y) = v Show that limyy)-0,0) (X, y) does not exist.

2
X+
X2 —y?, if x+y<0
3. Let f(x, y):{ , .
2x+y, ifx+y=0
Is f continuous?
4. Let f(x y) = % The domain of f isthe whole plane without the origin. Isit possible to define f (0, 0) so that f is continu-
ous everywhere? Plot the graph of f to support your conclusions.

y

5. The domain of f(x, y) = :Ty is the whole plane without the line y = —x. Isit possible to define f (0, 0) sothat f is continu-

ous everywhere? Plot the graph of f to support your conclusions.

m 14.3. Partial Derivatives

Students should read Section 14.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.
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Recall that the Mathematica command for the partial derivative of a function f with respect to x is D[f, x], and D[f,{x,n}] gives
the nth partial derivative of f with respect to x. The multiple (mixed) partial derivative of f with respect to x4, X, X3, ... iS
obtained by D[f, X1, X2, X3, ...]. We can access this command from BasicM athlnput. The symbolsared, o and 0,0 .

Example 14.20. Find the first partial derivatives of x° + y? with respect tox and y .
Solution: We give two methods of input.
Method 1: We can type all the inputs and the command as follows:

nzs3= G ear [X, Y]
D[x*"3+y”"2, X]

ou1284)= 3 x2
nzssi= D[X*3 +y"2, y]
out[1285]= 2y
Method 2: We can use the Basiclnput palette to enter the inputs.
In[1286]:= Ox (X3 + y2)
ouff1286)= 3 X2
n1287:= Oy (X3 + y2)
out[1287]= 2y
Example 14.21. Find the four second partial derivatives of X3 sin(y) + €*V.
Solution: Let z= x3siny + €Y. We again demonstrate two methods of input.
Method 1:
We can find z by

inzssi= C ear [X, Y]
D[x"3xSin[y] + EM (x*y), {X, 2}]

ou1289= €Y y2 +6xX Sin[y]
We can find z,, by

nizoop= DIXMA3 % Sin[y] + EN (x*y), {y, 2}]
our290= €Y x2 - x3Sin[y]
We can find z, by

niz2o1= D[X"A3 % Sin[y] + EN (X *Y), y]
our201)= €Y + @Y xy + 3x2 Cos [y]

2, isgiven by
in1292)= D[X"3*Sin[y] + EM (X *y), Yy, X]

oui292= €Y + Y xy +3x%2Cos [y]
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NOTE: Clairaut's Theorem states that if the mixed partial derivatives fyy and f,, are continuous at a point (x, y), then they are

equal: fyy = fyy. Thelast two outputs confirm Clairaut's Theorem for this particular example.
Method 2: Here is the input using the palette symbol 9, o:

n2oz;= G ear [X, Y]
B, x (X3 *Sin[y] +e*)
dy.y (x}*Sin[y] +e**)
Ox,y (X3 *Sinfy] + ex*y)
By, x (X3 *Sin[y] +e*)
ouf1204= €Y y2 +6xSin[y]
ou129s= €Y x2 - x3Sin[y]
our206)= €Y + €Y xy +3x2Cos[y]

our1297= @Y + €Y xy + 3x2 Cos [y]

Example 14.22. Evaluate the first partial derivativesof xy+ yZ> + xzat (-1, 2, 3).

Solution: Recall that Expr /. {X; = &1, X = @, X3 > &g, ... } is the command for substituting X, by ay, X, by @, X3 by ag, ...

Expr.

infzo8i= Cl ear [ X, vy, z]
D x*y + y*z"2 + x*z,x]/.{x-> -1, y->2, z->3}

out[1299]= S

n1300;= DX %y + Y*2Z2"2 + X%z, Y] /. {XxX->-1, y->2, z->3}

out[1300]= 8

n1301)= DX *y +y %22 +X %2z, 2] /. {Xx->-1, y->2, z->3}

ou1301)= 11

Example14.23. Let f(x, y, 2 = ye'+ xeYInz Find fxyxx fxyz fxzz foxz, and oo«

,in

Solution: First we define f(x, y, 2) in Mathematica. We can use the 4., o notation. Since the palette gives only two boxes for
the variables, we need to add one more box. This can be done by using CTRL +, (comma), i.e., hold the CONTROL key and

press the COMMA button. Note also that the command D[f[x,y,Z] x,y,z] gives f,y,. We demonstrate both methods.

nz021= O ear [x, Yy, z, f]
fIX ,y,z l:=y*xe*+Xx xLog[z] xe”

In[1304]:= ax,x,x f [X, Y, Z]
outf1304]= €X'y

ni1sosi= Ox,y,z f [X, Y, Z]

eV
out[1305)= — —
z
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in130sl= Ox,z,z T [X, Y, 2]
e

out[1306]= - —
22

np3o7):= DIf [X, Yy, z], z, X, 2]

eV
out[1307)= - —
22

infzoep= DIF [X, y, 2], z, z, X]

eV
out[1308]= — —
22

Example14.24. Let f (x, y) = xyi:i
a) Find fy(x, y) and fy(x, y) for (x, y) # (0, 0).

b) Use the limit definition to find f,(0, 0) and f,(0, 0).
c) Find fyy (x, y) and fyx(x, y) for (x, y) # (0, 0).

d) Use the limit definition to find fy (0, 0) and f, (0, 0).

if (X, y)#(0,0)and f(0,0) =0

Solution: We will first define f using the If command.

np309):= Cear [x, y, f, fx, fy, fxy, fyx]

X2 _y2
Xyl =If[{x, y}#10, 0}, xy ——, 0]
X“+y
Xy (x2-y?)
ouf1310= | f [{X, y} # {0, 0}, ) 0]
X2+y2

a) Let fx and fy denote the partial derivatives with respect to x and y, respectively. Then

In[1311]:= fX[X_, y_] = D[f [Xr y]: X]
fy[x_, y_1=DIf [x, yI, ¥]

2x (x2-y?) 2 x y (x2-y2)
ouf1311)= | f [{X, y} # {0, 0}, |- N (Xy) + , O]
(x2+y2)®  XEey? 21 y2
2 -y? 2 X (x2 - y2
our3iz= | f [{x, y} # {0, 0}, |- ( ) - y xy) + ( ) O]
(x2+y2)2 x? +y? +y?

If we use the FullSimplify command to simplify the preceding output, we get

n313):= Ful I Simplify [fx[x, y11
Full Simplify[fy[x, y11

y (x#+4x2y2-y4)

(x2+y2)2 X¢0Hyio

out[1313]= {

x5-4x3y2_xy4

2\2

Xx+0[]y+0
(x24y2)

out[1314]= {

Y43 Y-y and f,(x, y) = XX-4x y-y!)

Thus fy(x, y) =
(x2+y2) (x2+y2)

if (X, y)# (0, 0).

289
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f(0+h,0- (0,0
h

f(0,0+k)—f(0,0)

b) We use the limit definition (0, 0) = limy_q "

(0, 0).

and fy(0, 0) = limy_,0 to find the partial derivatives at

in1315:= C ear [h, k]
f{0O+h, 0] -f[0, O
Lim‘t[ [ :] ©. 91 h-»O]

out[1316]= O

f [0, 0+k]-f[0, O]
k

in[1317):= Limt [ , k> O]

out[1317]= O
Hence f,(0, 0) = 0 and f,(0, 0) = 0.

¢) To find the mixed second partia derivatives, we use fx and fy from the outputsin part @). Note that the FullSimplify com-
mand is used to to get a simplified form of the mixed partial derivatives.

np31g)= FXy[X_, y_1=Full Sinmplify[D[fx[x, y], Y11
fyx[x_, y_1=FullSinplify[D[fy[x, yl, x11

(X-y) (x+y) (x*#+10x?2 y2+y“)

out[1318]= { ) X#0]|y=+0
(X-y) (x+y) (x*+10x2 y2+y*
out[1319]= { AR y<xz<xy2>3 y? ) Xx#01]|y=+0
- X+10 X2 — X+10 X2 .
Thus fyy = Oy 04y (€410 '+ ) and fyy = 0y ety (X+10,€ 4 ) for (x, y) # (0, 0). Note that these two functions are equal for

(e+y?)? (e+y?)?
(%, y) # (0, 0) in conformity with Clairaut's Theorem, since both are continuous when (x, y) # (0, 0).

d) We use the limit definition of a partial derivative to compute f,,(0, 0) and f,,(0, 0). Recall that we have defined f, as fx[x,y]
and f, asfy[x,y].

Then f,,(0, 0) isgiven by

. fx[0, 0+k] -fx[O, O]
in[1320]:= Limt [ .k —>0]
k
out[1320= -1
and f,,(0, 0) isgiven by
. rfyl0+h, 01 -fy[0, O]
n[1321]:= Limt [ - , h —>O]

out1321]= 1

Thus, f,y(0, 0) = —-1and f,(0, 0)=1. Note that this implies that the mixed partial derivatives are not continuous at
(X, y) = (0, 0). To see this graphicaly, first consider the following graph of f, which confirmsthat f has partial derivatives
everywhere.
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in3221= Pl ot 3D[f [x, y1, {x, -3, 3}, {y, -3, 3}, I mageSi ze » {250}]

out[1322]=

Here are the graphs of f, and f,, which now show why the second mixed partials at the origin are not equal.

in1323):= Cl ear [plot1, plot2]
plotl = Plot3D[fx[x, Y], {x, -3, 3}, {y, -3, 3},
Pl ot Styl e » Red, AxesLabel - {"Graph of z=f,", None, None}l;
plot2 = Plot3D[fy[x, yI, {x, -3, 3}, {y, -3, 3}, PlotStyle-Blue,
AxesLabel - {"Graph of z=f,”, None, None}]:;
Show[Gr aphi csArray [{plot1, plot2}], | nageSi ze » {420}]

ou[1326= |

Graph of z=fy 0 Graphof z=f, 0

In addition, the graphs of f., and f,, show the mixed partials are not continuous at the origin. This is the main reason why the
inequalities of the mixed partials at the origin does not contradict Clairaut's Theorem.
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n13271:= Cl ear [pl ot 1, plot2]
plotl=Plot3D[fxy[x, y], {x, -3, 3}, {y, -3, 3},
Pl ot Styl e » Red, Axeslabel —»{"Graph of z=f,", None, l\bne}];
plot2 =Plot3D[fyx[x, y], {x, -3, 3}, {y, -3, 3}, PlotStyle - Bl ue,
AxeslLabel —»{"Gaph of z=f,", None, None}];
Show[Gr aphi csArray [{pl ot1, plot2}], | nageSi ze » {420}]

ouf1330)=

Graph of z=1yy, 0 Graph of z=1fyy 0

m Exercises

Llietf(x,y)= 2:322 Find:

a) fyx (1,0) b) f,(1, 0) C) fy d) fyx €) fuy
2. Find the first partial derivatives of z= x3 y? with respect to x and y.
3. Find the four second partial derivatives of X% cog(y) + tan(x eY).

4. Evaluate the first partial derivativesof f(x, y, 2) = € 2xy + yZ2 + xzat (-1, 2, 3).
Xy

5.Let f(x,y,2= Zran Find fuo, fxyz, iz o, @nd

xy?

XC+y

a) Find fy(x, y) and fy(x, y) for (x, y) # (0, 0).

b) Usethelimit definition to find f,(0, 0) and fy(0, 0).

€) Find fyy (X, y) and fy(x, y) for (x, y) # (0, 0).

d) Usethelimit definition to find f,,(0, 0) and fy(0, 0).

6.Let f(x, y) = if (x, y)# (0,0 and (0,0 =0.

m 14.4. Tangent Planes

Students should read Section 14.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let z= f(x, y) beafunction of two variables. The equation of the tangent plane at the point (a, b, f(a, b)) isgiven by
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z=fa b)(x-a + fya b (y-b) + f(a b

Example14.25. Let f (x, y) = X°+ Y2
a) Find the equation of the tangent plane to the graph of f at the point (2, 1, 3).
b) Plot the graph of f and itstangent plane at (2, 1, 3).

Solution: Herea=2,b=1.
a)

n331= Cear [f, X, y, z]
fIx_, y 1=x%+y?

Out[1332]= x2 + y2
Thus, the equation the of the tangent planeis

333 A=0x F X, Y] /. {Xx=2, y->1};
B=9oy f[x, y]l /. {x>2, y-1};
z=A((X-2) + B(y-1) +f[2, 17;
Sinplify[z]

out[1336]= -5 +4X +2Yy

b) Hereisaplot of the graph of f:

in337):= plotl =Pl ot3D[{f [X, Y], 2}, {x, -10, 10}, {y, -10, 10}, PlotStyle » {Blue, Geen}];
plot2 = ListPointPlot3D[{ {2, 1, 3}}, PlotStyle » {Red, PointSize[Large]} I;
Show([pl ot 1, plot2, I mageSi ze » {250}, | magePaddi ng -» {{15, 15}, {15, 15}}]

Out[1339]= 100

1010

Example 14.26. Let f (x, y) = X2 y—6xYy?+ 3y. Find the points where the tangent plane to the graph of f is parallel to the
xy-plane.

Solution: For the tangent plane to be parallel to the xy-plane, we must have fy = 0 and f, = 0.

in[1340:= G ear [f, X, ¥ ]
fIX ,y 1=x>y-6xy?+3y

oufiza1= 3y + X%y -6 xy?

A tangent plane is parallel to the xy-plane at
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in342:= Sol ve [{ D[f [X, y1, x] =0, D[f[X, y], y] =0}]

1 1
out[1342]= {{ye—g, Xe—l}, {yeo, X%—]'l'\/S_}, {yeO, Xei\/S_}, {yeg, X—>1}}
Rotate the following graph to see the points of tangencies.

np343:= Plot3D[{f [x, y], f[-1, -1/3], f[1, 1/31}, {x, -1, 13},
{y, -1, 1}, PlotStyle » {LightBlue, Geen, Red}, PlotRange - Al |,
| mageSi ze » {250}, | magePaddi ng » {{15, 15}, {15, 15}}]

out[1343]=

m EXxercises

Lliet f(x,y)=x3y +xy*-3x +4.
a) Find a set of parametric equations of the normal line and an equation of the tangent plane to the surface at the point (1, 2).
b) Graph the surface, the normal line, and the tangent plane found in a).

2.Let f(x y) = ¥+Vy2
a) Find the equation of the tangent plane to the graph of f at the point (2, 1, 5).
b) Plot the graph of f and itstangent plane at (2, 1, 5).

3.Letf(x, y) = eV
a) Find the equation of the tangent plane to the graph of f at the point (1, O, 1).
b) Plot the graph of f and itstangent plane at (1, O, 1).

4. Let f (X, y) =cos(xy). Findthe pointswhere the tangent plane to the graph of f isparallel to the xy-plane.

m 14.5. Gradient and Directional Derivatives

Students should read Section 14.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that the notation for avector suchasu = 2i + 5] — 6k in Mathematica is {2,5,-6}. The command for the dot product of
two vectors u and v is obtained by typing u.v.

The gradient of f, denoted by V f, at (a, b) can be obtained by evaluating V f (a, b) = (dx f (a, b), 9y f(a, b)).
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The directional derivative of f at (a, b) in the direction of a unit vector u isgivenby D, f =V f(a, b)-u.

Example 14.27. Find the gradient and directional derivative of f(x, y) = x?sin2y at the point (1, % O) in the direction of
3 4

v=(5 -3)

Solution:

in1zaap= C ear [f, V]
fIX_, y_1:=x2%Sin[2y]

3 -4
v-{z 5}
out[1346]= {g, —i}

The gradient of f at (1, %) is

Tt
npaary= VB o= {0x f[X, ¥y], 6y f[X, y1} /. {X ->1,y-> E}
ouf1347)= {0, -2}
Since v isaunit vector, the directional derivativeis given by

inz4g= di recderiv = v. vf

8
out[1348]= —
5

Example 14.28. Find the gradient and directional derivative of (X, y, 2 = xy+ yz+ xzat thepoint (1, 1, 1) inthedirection
ofv=2i+j-k.

Solution:

in1349):= Cl ear [X, Yy, z]

W=X*Y +Y*Z +X=*Z
v={2 1, -1}

Oul1350|= XYy +XZ +y z
oufizsi= {2, 1, -1}
We normalize v:

in13s2:= Uni tvector =v /Norm[v]

{ 2 1 1 }
out[1352]= -, .,
V3 ve Ve

Thegradientof w= f(x,y,2a (1,1, 1)is

nssa= VW= {D[w, Xx], D[w, y1, D[w, z1} /. {x->1, y->1, z->1}
ou13s3= {2, 2, 2}

Hence, the directional derivativeis given by
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in3s4;= di recderiv = unitvector.vw

2
out[1354]= 2 .| —
3

Example 14.29. Plot the gradient vector field and the level curves of the function f(x, y) = X?sin2y.

Solution:

npassi= Clear [f, fx, fy, X, y]
fIx_, y_1=x*-3xy+y-y?
fx =D[f [X, y], X]
fy =DIf [x, y1, y1]

ou1zsel= X2 +y -3xy -y?

oui1357= 2X -3y

oufissgl= 1 -3x -2y

Thus, the gradient vector fieldisV f(x, y) = (2x-3y, 1-3x-2Yy). To plot this vector field, we need to download the pack-
age Vector FieldPlots, which is done by evaluating

in[1359:= Needs [" Vect orFi el dPlots™ "]
Hereisaplot of somelevel curves and the gradient field.

in1360):= Cl ear [plot1, plot2]
plotl = ContourPl ot [f [Xx, Y], {X, -5, 5}, {y, -4, 4},
Axes -» True, Frame - Fal se, Contours -» 15, Col or Function -» Hue] ;
plot2 = VectorFi el dPl ot [{fx, fy}, {X, -5, 5}, {y, -4, 4}, Axes » True, Frane - Fal se];
Show[plotl, plot2, ImageSi ze » {250}]

Out[1363]=




Example 14.30. Let thetemperature T at apoint (X, y) on ametal plate be givenby T(x, y) =

a) Plot the graph of the temperature.

b) Find the rate of change of temperature at (3, 4), inthedirection of v =i — 2j.
¢) Find the unit vector in the direction of which the temperature increases most rapidly at (3, 4).

Chapter 14

d) Find the maximum rate of increase in the temperature at (3, 4).

Solution:
a) Hereisthegraphof T.

X

nf1364= T[X_, Y_] = Pa—
X“+y

X
out[1364]=

X +y2

inzes)= graphof T =

Pl ot 3D[T[X, Y], {X, -5, 5}, {y, -5, 5}, BoxRatios » {1, 1, 1}, ImageSi ze » Smal | ]

Out[1365]=

b) Let u= ﬁ Then u is a unit vector and the rate of change in temperature at (3, 4) in the direction of v is given by

DT3B, 49=VIi@3B 4-u.

In[1366].= VT: {D[T[Xv y]l X]v D[T[Xv y]l Y]}

V = {l, —2}
\"
u-=
VV.V
u.vT /. {(x->3, y->4} // N
2 x2 1 2Xy
Out[1366]= {— + - }
(x2+y2)2 x2 +y? (x2+y2)2

ouf1367]= {1, -2}

1 2
Out[1368]= {— ——}
V5 A5

out1369)= 0. 0393548

X

X2y

297

Thus, the rate of change at (3, 4) in the direction v is0.0393548. NOTE: The command //N in the last line of the previous input



298 Mathematica for Rogawski's Calculus

converts the output to decimal form.
¢) The unit vector in the direction of which the temperature increases most rapidly at (3, 4) is given by

Al /. { 3 43
In[1370))= —— /. {X => 9o, ->
el Nor m[vT] y

owzror {1 211

d) The maximum rate of increase in the temperature at (3,4) is the norm of the gradient at this point. This can be obtained by:

7= Norm[vT] /. {X ->3, y -> 4}

1
Out[1371]= —
25

m Exercises
1. Find the gradient and directional derivative of f(x, y) = sin"}(xy) at the point (L1, g) inthe direction of v = (1, —1).

2. Let T(x, y) =YY,
a) FindV T(x, y).

b) Find the directional derivative of T (x, y) at the point (3, 5) inthe dierectionof u = 1/2i + ﬁ/zj.
¢) Find the direction of greatest increase in T from the point (3, 5).

3. Plot the gradient vector field and the level curves of the functiona f (x, y) = cosxsin?y.

4. Find the gradient and directional derivative of f (X, y,2 = xyeY?+ sin(x2) at the point (1, 1, 0) in the direction of
v=i—-j—k.

m 14.6. The Chain Rule

Students should read Section 14.6 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Example14.31. Letx=t’+s,y=t+ and z= xsiny. Find thefirst partial derivatives of zwith respect tosand t.

Solution:

np372)= Clear [X, Yy, z, s, t]
X=t24+s
y=t+s?
z=XxSin[y]

ou1373= S +t?

out1374)= S2 +t

oufia7s)= (s +t?) Sin[s?+t |
in[1376):= D[z, s]

oufizzel- 2s (s +t?) Cos[s?2+t] +Sin[s?+t ]
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inf13771:= D[z, t]
outf1377)= (S +t2) Cos[s?+t]+2t Sin[s?+t]

Example 14.32. Find the partial derivatives of z with respect to x and y assuming that the equation x? z— y z2 = X y defines z as
afunction of x and y.

Solution:

np137g)= Clear [X, y, z, r, t, s]
eq=x*z[x, y] -yz[x, yl>=xy

Sol ve [D[eq, x1, D[z[x, y], Xx]1]
Sol ve [D[eq, Y1, D[z[X, yI, Y11
}2

ounsra= X2z (X, yl -y z[x, y]2=xy

-y +2XZ[X, Y] H

Out[1380]= Hz(l'o) T
-X“+2yZ[X, Y]

X+2Z[x, y]?
- }

out[1381]= {{Z(O’l) [x, yl - X2_2yz(x, y]
Xc-2yz[X, Y]

Example14.33. Let f(x, Yy, 2) = F(r), wherer = / x> + y? + 72 and F isatwice differentiable function of one variable.
a) Showthat V f = F'(r) 2 (xi +yj +zk).
b) Find the Laplacian of f.

Solution:
a)

np3s2)= Clear [x, Yy, z, r, f, F]
fIx_, y_, z_1=F[r]

r=ax%+y?+2z?

out[1383)= F[r]

ou13sal= A/ X2 + y? + z2

Here isthe gradient of f:

npsesp= gradf = {DIf [x, y, z1, x], DIf [x, y, z], y1, DIf [x, y, 21, z1}
xF’[«/x2+y2+22} yF’[«/x2+y2+22} zF’[«/x2+y2+22}\JL
A X2 ry? 4+ z2 A X2 ry? 4 z2 A X2 ry? 4 z2

Withr =/ x>+ y? + 7 the preceding output becomes

xF'(n  YF'(M) zF'(r)
r '’ r r

out[1385]=

Vi y 2= J=F0ixy,2),

which proves part a).

b) Recall that the Laplacian of f, denoted by A f, isdefined by A f = fy + fyy + .
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npssel= DI [X, y, z1, {x, 2}1 +DIf [x, y, z], {y, 2}]1 +DIf [x, y, z1, {z, 2}]

e[ yiezz |y xayiezz | 2E[xayiez? |

out[1386]= - - - +

(x2+y2+22)3/2 <x2+y2+22)3/2 (x2+y2+22)3/2
3F’[xlx2+y2+22 } x? F”[xlx2+y2+22 } y? F”{«/x2+y2+22 ] z2 F”{«/x2+y2+22 ]

+ + i
'x2+y2+22 x2 +y2 472 x2 +y2 4 72 X2 +y2 ¢ 22
We simplify thisto get

in[1387):= Si npl i fy[%]

2F’{«/x2+y2+22 ]
2 2 2 2
Out[1387]= +F {\/X +y“+2 ]
A X2 +y? 422

which is the same as % F'Ir]+F"[r].

m Exercises
Lletx=w+sinv,y=ue’, and z= y3Inx . Findthefirst partial derivatives of z with respect to u and v.

2. Find the partial derivatives of zwith respect to x and y assuming that the equation x? z— y 72 = x y defines z as a function of x
andy.

3. Find an equation of the tangent plane tothe surface xz + 2x2y + y?Z = 11at (2, 1, 1).

m 14.7. Optimization

Students should read Section 14.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Second Derivative Test: Suppose fy(a, b) = 0 and fy(a, b) = 0. Define

2
DX, y) = fxx fyy = (fxy)
The function D is called the discriminant function.

i) If D(@a, ,b)>0and fyx(a, b) > 0, then f(a, b) isalocal minimum value.
ii) 1f D(a,, b)>0and fyx(a, b) <0, then f(a, b) isaloca maximum value.
iii) If D(a, , b) < 0, then (a, b, f(a, b)) isasaddle point on the graph of f.
iv) If D(a, b) = 0, then no conclusion can be drawn about the the point (a, b).

Example14.34. Let f(x, y) = X*—4xXy+ 2y
a) Find all critical pointsof f.
b) Use the second derivative test to classify the critical pointsaslocal minimum, local maximum, saddle point, or neither.

Solution: Since D isused in Mathematica as the command for derivative, we will use disc for the discriminant function D.
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inj13sg)= O ear [f, X, y]
fIx_,y 1=x*-4xy +2y?

ou13sg)= X4 -4 xy +2y?

a) The critical pointsare given by

in[1390:= cp = Sol ve [{DI[f [x, y1, x] =0, D[f [X, y], Y] =0}]
oufz90= {{y » -1, x> -1}, {y -0, x>0}, {y->1, x->1}}
b)

in301):= C ear [fxx, disc]
fxx[x_, y_1=DIf X, yI, {X, 2}]

discix_, y_1=DIf [, y], {X, 2}]1*DIf [x, Y1, {y, 2}1 - (D[DIf [x, y1, X1, y1)?

ou1392)= 12 x?

ou1393= —16 + 48 x2

In[1394]:= Tabl eForm[TabIe[{cp[[k, 2, 211, cpllk, 1, 211, disc[cpl[k, 2, 211, cp[[k, 1, 2111,
fxx[epl[[k, 2, 211, cpl[[k, 1, 2111, flep[Lk, 2, 211, cp[[k, 1, 2111}, {k, 1, Length[cp]}],

Tabl eHeadings » {{}, {"x ", "y ", " Dy) ", " fu ", "f0y)"}}]
Out[1394]//TableForm=
|x Y D(x,y) fx  fOXY)
-1 -1 32 12 -1
0 O -16 0 0
1 1 32 12 -1

By the second derivative test we conclude that f has alocal minimumvalue of —1 at (-1, —1) and (1, 1), and a saddle point at
(0, 0).

Here isthe graph of f and the relevant points.

in[1395):= C ear [pl ot 1, plot2]
plotl =Pl ot3D[f [x, Y], {X, -2, 2}, {y, -2, 2}, PlotStyle - LightBlue, PlotRange -» 107;
pl ot 2 = G aphi cs3D[ {Poi nt Si ze[Large], Red,
Point [Table[{cp[[k, 2, 211, cplLk, 1, 211, flepllk, 2, 211, cplLk, 1, 2111},
{k, 1, Length[cp]}11}, PIotRange - 1071;
Show[pl ot1, plot2, | mageSi ze » {250}]

out[1398]=
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Example14.35. Let f(x, y) = x>+ y* - 6x -2y
a) Find all critical pointsof f.
b) Use the second derivative test to classify the critical pointsasloca minimum, local maximum, saddle point, or neither.

Solution: Again, we will use disc to denote the discriminant function D since the letter D is used in Mathematica for the deriva-
tive command.

in[1399;= Cl ear [f, X, y]
fixs, y_1=x3+y*-6x -2y?

ou1400= -6 X +x3 - 2y? 4+ y*

a) The critical points are given by

in[1401:= cp = Sol ve [{DI[f [x, y1, x] =0, DIf [X, y], Y] ==0}]

Out[1401]= Hy—>—1, X%—\/Z_}, {ye—l, X—H/Z_}. {yeO, X%—\/Z_},
{y»o, x»\/Z_}, {y»l, x»—\/Z_}, {yel, x»\/Z_}}

b)

in1402):= C ear [fxx, disc]
fxx[x_, y_1=DIf [X, y1, {X, 2}]
disc[x_, y_1=DIf [x, y1, {x, 2}1*DIf [x, y1, {y, 2}1- (DIDIf [x, y1, x], y1)?

out[1403= 6 X
ouf1404)= 6 X (-4 +12 y2)

In[1405):= Tabl eForm[TabIe[{cp[[k, 2, 211, cpllk, 1, 211, disc[cplk, 2, 211, cpl[k, 1, 2111,
fxx[epl[[k, 2, 2]1, cpllk, 1, 2111, flcp[[k, 2, 211, cp[[k, 1, 2111}, {k, 1, Length[cp]}],

Tabl eHeadings » {{}, {"x ", "y ", " Dy) ", " fu ", "fxy)"}}]
Out[1405]//TableForm=
X y D(x,y) fxx f(x,y)

N2 -1 -a8+2 62 14442
V2. -1 482 62  -1-4+2
N2 0 24+2 62 a2

V2o 0 -24+2 62 -4N2
V2 1 -48+2  -6V2 -1+442
V2 1 4842 62  —1-4+/2

By the second derivative test we conclude that f has local maximum value of 4V2 a (—\/7 , 0), local minimum value of

—1-4V2 a (ﬁ —1) and (V2 1), and saddle pointsat (-2, -1), (V2 0), and (—«/?, 1).

Here isthe graph of f and the relevant points.
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in[1406]:= Cl ear [pl ot 1, plot2]
plotl=
Pl ot 3D[f [x, Y1, {X, -2.5, 2.5}, {y, -2.5, 2.5}, PlotStyle - LightBlue, PlotRange » 107;
pl ot 2 = G aphi cs3D[{Poi nt Si ze[Large], Red, Point [Table[{cp[[k, 2, 2]], cp[[k, 1, 211,
flcplLk, 2, 211, cpl[k, 1, 2111}, {k, 1, Length[cp]}]1]1}, PlotRange - 101;
Show[pl ot1, plot2, I mageSi ze » {250}]

out[1409]=

Example 14.36. Let f(x, y) =2x>-3xy—Xx+ Y+ y? and let R be the rectangle in the xy-plane whose vertices are at (0,0),
(2,0), (2,2), and (0,2).

a) Find all relative extreme values of f inside R.

b) Find the maximum and minimum values of f on R.

Solution:

npat0p= G ear [f, X, y, disc]
fIx_, y_]=2X2-3X*y—X+y+y2+5

oufiai= 5-x+2x%2+y -3xy +y?
inpaiz;= Solve[{ox f [X, y]1 ==0, 8y f [X, y] ==0}, {X, y}]

ouf1412)= {{X >1, y »1}}

nparzp= di SCIX_, Y_1 = 0x xf [X, Y1 %8y yf [X, Y] - (0xyf X, y1)?
out[1413= -1
npata= Ox, xF [X, Y1 /7. {x->1, y->1}

disc[x, yl1/. {x->1, y->1}

out[1414]= 4
out[1415= -1

Thus, (1, 1) isthe local minimum point of f inside R and its local minimumvalueis f (1, 1) = 5. Next we find the extreme values

of f on the boundary of the rectangle. Thisis done by considering f as a function of one variable corresponding to each side of R.
Let f; = f(x, 0), f = f(X, 2), for x between 0 and 2, and f; = f(0, y) and f4 = (2, y), for y between 0 and 2. We now proceed
asfollows:
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nat6p= Clear [f1, f2, 3, f4]

fl1="f[x, 0]
f2="1[x, 2]
f3=F[0, y]
f4=1[2, y]

ou1417= 5 - X + 2 x2

oui418= 11 -7 x + 2 x2

ou1419= 5 +y +y?

ouf1420= 11 -5y +y?

inpaz1= Sol ve [D[f1, x] ==0]
1

Out[1421]= {{X - Z}}

inf4a221= Sol ve [D[f 2, x] ==0]
7

out[1422}= Hx N Z}}

inpazsi= Sol ve [D[f3, y] ==0]

Out[1423]= Hy -> - E}}

2

in1a241= Sol ve [D[f 4, y] ==0]
5

Out[1424]= Hy - E}}

Thus, points on the boundary of R that are critical points of f are (% 0) and (% 2). Observe that the points (0, —1/2) and

(2, g) are outside the rectangle R. The four vertices of R at (0,0), (2,0), (0,2) and (2,2) are also critical points. Can you explain
why? We now evaluate f at each of these points and at (1, 1) (the relative minimum point found earlier) using the substitution
command and compare the resullts.

1 7
nazsp= fIX, y1 /. {{X -> Z, y -> 0}, {X -> Z, y -> 2},
{x->0, y->0}, {x->2,y->0},
{XxX->0, y->2}, {(x->2,y->2}, {x->1,y-> 1}}

39 39
out[1425]= {? ? 5, 11, 11, 5, 5}

Thus, the minimum value of f is39/8, which occurs at (1/4, 0) and also at (7/4, 2). The maximum value of f is6, whichis
attained at (2, 0) and also at (0, 2). Hereisthe graph of f over therectangle R.
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inj1426):= Cl ear [pl ot 1, plot2, plot3]
plotl =Pl ot3D[{f [X, Y], 0}, {X, O, 2}, {y, O, 2}, PlotStyle » {Geen, Blue}, PlotRange - All ];
pl ot 2 = G- aphi cs3D[ {Poi nt Si ze[Large], Red,
Point[{{1/4, 0, f[1/4, 01}, {7/4, 2, f[7/4, 21} }1}, PlotRange -» Al 1;
pl ot 3 = G aphi cs3D[{Poi nt Si ze[Large], Black, Point[{ {2, 0, f[2, 0]}, {0, 2, f[2, O]}}1},
Pl ot Range -» Al | 1;
Show[plotl, plot2, plot3, | mageSi ze » {250}, | nagePaddi ng » {{15, 15}, {15, 15}}]

Out[1430]=

m Exercises

LLetf(x,y)=x*—4xy+2y2
a) Find dl critical pointsof f.

b) Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.
c) Plot the graph of f and the local extreme points and saddle points, if any.

2. Let f(x, y) = (x+y)In(x2 + y?), for (x, y) # (0, 0).
a) Find dl critical pointsof f.

b) Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.
c) Plot the graph of f and the local extreme points and saddle points, if any.

3. Let f(x, y)=2x2-3xy—x+ Y+ y? and let R be the rectangle in the xy-plane whose vertices are at (0, 0), (2, 0), (2, 2), and
0, 2).

a) Find all relative extreme values of f inside R.

b) Find the maximum and minimumvaluesof f on R.

c¢) Plot the graph of f and the local extreme points and saddle points, if any.

m 14.8. Lagrange Multipliers

Students should read Section 14.8 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Example14.37. Let f(x, y)=xyand g(x, y) = x> + y* — 4.
a) Plot the level curves of f and g aswell as their gradient vectors.
b) Find the maximum and minimum values of f subject to the constraint g(x, y) = 0.

Solution:
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a) We will define f and g and compute their gradients. Recall that we need to evaluate the command Needs[" "Vector Field-
Plots™] before we plot the gradient fields.

nas1= Cear [f, g, fx, fy, gx, gy, x, y]
fIX_, y_1=2x+3y
glx_, y_1=x*+y*-4
fx =D[f [X, y1, X]
fy =DIf [x, ¥1, V]
gx =D[g[x, y1, X]
gy =D[g[x, y1. VI

outf1432]= 2X + 3y

ou1433)= -4 +x2 +y?

out[1434]= 2

out[1435]= 3

out[1436]= 2 X

ouf1437]= 2y

14381~ Needs [" Vect or Fi el dPl ots™ "]

in[1439):= C ear [plot1l, plot2, plot3, plot4]
plotl=ContourPlot [x*+y?-4, {x, -2, 2}, {y, -2, 2},
Frame - Fal se, Axes -» True, Contour Shadi ng -» Fal se, Pl ot Range - Al | ];
plot2 = ContourPlot [2x +3Yy, {X, -2, 2}, {y, -2, 2}, Franme - Fal se,
Axes - True, Contour Shadi ng -» Fal se, Pl ot Range -» Al'l 1;
plot3 =VectorFieldPlot [{fx, fy}, {Xx, -2, 2}, {y, -2, 2},
Axes - True, Franme -» Fal se, Col or Functi on -» Hue];
pl ot 4 = Vector Fi el dPl ot [{gx, gy}, {X, -2, 2}, {y, -2, 2},
Axes -» True, Frane - Fal se, Col or Functi on » Hue];
Show[plotl, plot2, plot3, plot4, | nageSi ze » {250} ]
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b) Let ususel for A. To solve V f =1 Vg we compute
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inf44s)= Solve[{fx = 1 gx, fy =19y, g[Xx, y]=0}]

V13 4 6 V13 4 6
out[1445]= {{l S X > - Y o - }, {I > , X > , Y- }}
4 V13 V13 4 V13 V13
Thus, (— %, - %) and (% %) are the critical points. We evaluate f at these points to determine the absolute maximum

and the absolute minimum of f on the graph of g(x, y) = 0.

4 6
in[1446):= f [ -——
V13 V13
4 6
fl— —
V13 V13
out[1446)= -2 V13
out[14471= 2V 13
Hence, f attains its absolute minimum value of -2V 13 at (—L, - L) and absolute maximum value of -2V 13 at
V13 V13

(L L)
vz vz /[
Here isacombined plot of the gradients of f (in black) and g (in red) at the critical points.

in[144g):= Cl ear [plot1l, plot2, plot3, plot4, plot5, plot6]
plotl = ContourPlot [g[X, Y], {X, -3, 3}, {y, -3, 3},
Contours -» {0}, Frame - Fal se, Axes - True, Contour Shadi ng -» Fal se];

4 6 4 6
lot2 =Li PI - , - , , ;
roe-tste (- - = A
in[1451):= pl ot 3 = Graphi cs [
Arrow[{{—L, —L , {—L —L + {fx, fy} /. {X -> - , Y -> -° }}”
V13~ 413 V13 13 V13 V13
in[1452:= plot4 =
4 6 4 6 4 6
G aphi Ar , , , + {fx, fy} /. -> , -> ;
enesrelis =i = b oo FHl
in[1453):= pl ot 5 = Graphi cs [{Red,
4 6 4 6 -4 -6
Ar - , - , - , - + , /. -> s -> ;
lm w U mee ve  l
In[1454]:= pl ot 6 = G- aphi cs [
4 6 4 6 4 6
Red, Ar s s s + , . -> s -> ;
(oo meonf{{—= ) o e o o <y <]
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in[1455):= Show[pl ot 1, plot2, plot3, plot4, plot5, plot6,
Pl ot Range -» Al | , AspectRati o » Automatic, | mageSi ze » {250}]

Out[1455]= * * ] * *
-3 -2 -1 L 1 2 3

m Exercises

Lletf(x,y)=4x2+9y?andg(x, y)=xy-4.
a) Plot the level curves of f and g aswell astheir gradient vectors.
b) Find the maximum and minimum values of f subject to g(x, y) = 0.

2. Find the maximum and minimum values of f(x, y, 2) = x® — 3 y? + 4 z subject to the constraint g(x, y, 2 = X + yz—4=0.

3. Find the maximum area of arectangle that can be inscribed in the ellipse :—z + :)'2—2 =1

4. Find the maximum volume of a box that can be inscribed in the sphere X2 + y? + 72 = 4.



Chapter 15 309

Chapter 15 Multiple Integration

Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives. First place your screen cursor over the plot. Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

m 15.1. Double Integral over a Rectangle

Students should read Section 15.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Integration can be generalized to functions of two or more variables. Astheintegral of asingle-variable function defines area of
a plane region under the curve, it is natural to consider a double integral of atwo-variable function that defines volume of a solid
under a surface. This definition can be made precise in terms of double Riemann sums where thin rectangular columns (as
opposed to rectangles) are used as building blocks to approximate volume (as opposed to area). The exact volume is then
obtained as a limit where the number of columnsincreases without bound.

m 15.1.1. Double Integrals and Riemann Sums

Let f(x,y) be a function of two variables defined on a rectangular domain R=[a, b]x[c,d]. Let
P={a=X<X1<..<Xn=Db,C=Yo< VY1 <..<Y,=d} bean arbitrary partition of R where m and n are integers. For each
sub-rectangle R;j = [Xi_1, xi]x[y,-_l, yj] denote by AA;; its area and choose an arbitrary base point (xi,-, yij) € R;j, where

% € [%i_1, %] and y; € [yj-1, y;|. The product f(x;, yij) AA; represents the volume of a rectangular column. We then define
the double Riemann sum of f(x, y) on Rwith respect to P to be the total volume of all these columns:

Se=> > T yi)A

i=1 j=1

Define || P || to be the maximum dimension of al the sub-rectangles. The double integral of f(x, y) on the rectangle R is then
defined asthelimitof Sp as || P|| — oo:

m n
f f(x, y)clA_ I| Z:Z:fx.,,yII AA;

i=1 j=1

If the limit exists regardless of the choice of partition and base points, then the double integral is said to exist. Otherwise, the
double integral does not exist.

MIDPOINT RULE (Uniform Partitions): Let us consider uniform partitions P where the points {x;} and {y,—} are evenly spaced,
ie, Xx=a+iAx, yj=b+jAyfori=0,1, ..,mand j=0,1, .., nwith Ax=(b—a)/mand Ay = (d - c)/n. Then the
corresponding double Riemann sumis

m n
ZZf X, Vi) AXAy

i=1 j=1

Here is a subroutine called MDOUBL ERSUM that calculates the double Riemann sum of f(x, y) over arectangle R for uniform
partitions using the center midpoint of each sub-rectangle as base point, i.e., Xj = (Xi-1+X)/2=a+(—-1/2)Ax and
yi = (Yj-1 + YJ)/2= c+(j—1/2Ay.
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in[14s6):= Cl ear [f ]
MDOUBLERSUM[a_, b_, ¢_, d_, m, n_]:=Sum[
fla+ (i -1/2)y*x(b-a)/m c+( -1/2)x(d-c)/nl«(b-a)/mx(d-c)/n, {i, 1, my, {j, 1, n}]

Example 15.1. Approximate the volume of solid bounded below the surface f(x) = x> + y? and above the rectangle
R=[-1, 1]x[-1, 1] using a uniform partition with m= 10 and n = 10 and center midpoints as base points. Then experiment
with larger values of mand n and conjecture an answer for the exact volume.

Solution: We calculate the approximate volume for m = 10 and n = 10 using the subroutine MDOUBLERSUM:

nasep= F[X_, y_1=xX"2+y"2;
MDOUBLERSUM[ -1, 1, -1, 1, 10, 10]

66
out[1459]= —
25

in[1460;:= N[%]
out[1460]= 2. 64
in[1461):= Tabl e [MDOUBLERSUM[-1, 1, -1, 1, 10+k, 10+k], {k, 1, 10}]

{66 133 1798 533 1666 3599 3266 2133 16198 3333}
25" 50 675 200 625 1350 1225 800 6075 1250

Out[1461]=

in[1462]:= N[%]
out1462)= {2. 64, 2.66, 2.6637, 2.665, 2. 6656, 2.66593, 2. 66612, 2.66625, 2.66634, 2.6664)

It appears that the exact volumeis 8/3. To provethis, we evaluate the double Riemann sum Sy, inthe limitasm, n - o:

in[463:= Cl ear [S, m n];
S[m, n_] =Sinplify[MDOUBLERSUM[-1, 1, -1, 1, m n]]

out1464= — |2 - — - —
3

4 1 1
[mzn2

infr465;:= Limt [Limt [S[m n], maInfinity], nsInfinity]

8
out[1465]= —
3

To see this limiting process visually, evaluate the following subroutine, called DOUBLEMIDPT, which plots the surface of the
function corresponding to the double integral along with the rectangular columns defined by the double Riemann sum considered
in the previous subroutine M DOUBL ERSUM.

inf466):= Cl ear [f1;

DOUBLEM DPT[f _, {a_, b_, m}, {c_, d_, n_}]:=NMdule[
{dx, dy, i, j, xstar, ystar, nrect, plot},
dx =N[(b-a) /m];
xstar =Table[a+i » dx, {i, 0, m}];
dy =N[(d -c) /n]J;
ystar =Table[c +] = dy, {j, 0, n}];
ncol um = Tabl e[Cuboi d[{xstar [[i ]], ystar [[j 1], O},

{xstar [[i +1]], ystar [[j +1]1], f[(xstar[[i]]+xstar[[i +1]])/2,
(ystar [[j 11 +ystar [[j +111) /2]}1, (i, 1, m, {j, 1, n}];

pl ot = Pl ot3D[f [Xx, Y], {X, &, b}, {y, ¢, d}, Filling - Bottom];
Show[pl ot, G aphi cs3D[ntol um], | nmageSi ze » {300}1]
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npassl= f[X_, y_]:=x2+y"2;
DOUBLEM DPT[f, {-1, 1, 10}, {-1, 1, 10}]

Out[1469]=

Here is an animation that demonstrates how the volume of the rectangular columns approach that of the solid in the limit as
m, N = oo:

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-
tions generated from the Animate command in this chapter. If you are reading the electronic version of this publication format-
ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation. Just click on the
arrow button to start the animation. To control the animation just click at various points on the sliding bar or else manually drag
the bar.

470/~ Ani mat e [DOUBLEM DPT[f, (-1, 1, a}, {-1, 1, a}], {a, O, 50, 5}]

ouiaror _

m 15.1.2. Double Integrals and Iterated Integrals in Mathematica

The Mathematica command for evaluating double integrals is the same as that for evaluating integrals of a single-variable
function, except that two limits of integration must be specified, one for each independent variable. Thus:

I ntegrate[f[x,y].{x,a,c},{y,c,d}] anaytically evaluates the double integral f fR f(x, y)d A over therectangle R = [a, b]x[c, d].
NIntegrate[f[x,y].{X,a,c}{y,c,d}] numerically evaluates the double integral f fRf (%, y) d A over therectangle R = [a, b] x[c, d].

Iterated Integrals: In practice one does not actually use the limit definition in terms of Riemann sums to evaluate double
integrals, but instead apply Fubini's Theorem to easily compute them in terms of iterated integrals:

Fubini's Theorem: (Rectangular Domains) If R={(X, y):a<x<b, c < y=dj}, then

b ~d d b
fff(x, y)dA:ff f(x, y)dydx:ff f(x, y)dxdy
R a Cc [ a

Thus Mathematica will naturally apply Fubini's Theorem whenever possible to anaytically determine the answer. Depending on
the form of the double integral, Mathematica may resort to more sophisticated integration techniques, e.g., contour integration,
which are beyond the scope of thistext.
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Example 15.2. Calculate the volume of the solid bounded below by the surface f(x) = x? + y? and above the rectangle
R=[-1, 1]x[-1, 1].

Solution: The volume of the solid is given by the double integral f fRf(x, y)d A. To evauate it, we use the I ntegr ate command:

na7i)= FIX_, y_1:1=X"2+y"2;
Integrate[f [x, y1, {x, -1, 1}, {y, -1, 1}]

8
out[1472]= —
3

This confirms the conjecture that we made in the previous example for the exact volume.

NOTE: Observe that we obtain the same answer by explicitly computing this double integral as an integrated integral. Moreover,
for rectangular domains, the order of integration does not matter.

ni473= Integrateflntegrate(f [x, y], {X, -1, 1}1, {y, -1, 1}]
Integratef[lntegrate[f [x, yI, {y, -1, 1}1, {Xx, -1, 1}]

Out[1473]=

out[1474]=

w| o w| oo

Example 15.3. Compute the double integral f fo e ¥ d Aonthe rectangle R = [0, 1] [0, 1].

Solution: Observe that the I ntegrate command here fails to give us an elementary answer:

np47s)= I ntegrate[x «EM (-y”2), {x, 0, 1}, {y, 0, 1}]
1
out[1475]= Z\/?Erf [1]

This is because the function f(x, y) = xe ¥ has no elementary anti-derivative with respect to y. Thus, we instead use the
NIntegrate Command to numerically approximate the double integral:

inf14761= NI ntegrate[x «EN (-y"2), {x, 0, 1}, {y, 0, 1}]

out1476)= 0. 373412

m Exercises

1. Consider the function f(x, y) = 16 — x2 — y? defined over the rectangle R = [0, 2]x[-1, 3].

a) Use the subroutine M DOUBL ERSUM to compute the double Riemann sum S, of f (X, y) over Rfor m= 10 and n = 10.
b) Repeat part a) by generating a table of double Riemann sums for m= 10k and n= 10k wherek =1, 2, ..., 10. Make a
conjecture for the exact value of [ fRf X y)dA.

¢) Find aformulafor Sy interms of mand n. Verify your conjecture in part b) by evaluating limmpc Snn-

d) Directly compute [ [ f(x, y) d A using the | ntegr ate command.

2. Evaluate the double integral ff\/ x*+ y* d A over the rectangle R = [-2, 1]x[—1, 2] using both the Integrate and NInte-
grate commands.

3. Calculate the volume of the solid lying under the surface z = e‘y(x + y2) and over the rectangle R = [0, 2] %[0, 3]. Then make
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aplot of thissolid.

4. Evaluate the double integral [ [ f(x, y)d A where f(x, y) = xycogx? + y?) and R = [, z1]x[-7, 7]. Does your answer
make sense? Make aplot of the solid corresponding to this double integral to intuitively explain your answer.

m 15.2. Double Integral over More General Regions

Students should read Section 15.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

For domains of integration that are non-rectangular but still simple, i.e., bounded between two curves, Fubini's Theorem contin-
uesto hold. There are two typesto consider:

Fubini's Theorem: (Simple Domains)

Typel (Vertically Simple): If D = {(x, y):a=< X< b, a(X) = y < B(X)}, then

b ~B(X)
fff(x, y)clA=f f(x y)dydx
D a Ja(x)

The corresponding Mathematica command is | ntegr ate[f[X,y].{x,a,b} {y,a[x],8[X]}].

Typell (Horizontally Simple): If D = {(x, y):c <y =d, a(y) < X = S(y)}, then

d ~B(Y)
fff(x, y)dA=ff f(x, Y dxdy
D c Ja(y)

The corresponding Mathematica command is I ntegr ate[f[x,y] {y,c,d} {x,e[y].B[Y]}].

Warning: Be careful not to reverse the order of integration prescribed for either type. For example, evaluating the command
Integrate[f[x,y].{y,a[X],B[X]} {x,a,b}] for Typel (x and y are reversed) will lead to incorrect results.

Example 15.4. Calculate the volume of the solid bounded below by the surface f(x, y) = 1 — x? + y? and above the domain D
bounded by x=0,x=1,y=x andy= 1+ x°.

Solution: We observe that x = 0 and x = 1 represent the left and right boundaries, respectively, of D. Therefore, we plot the
graphs of the other two equations along the x-interval [0, 2] to visualize D (shaded in the following plot):

inp477):= Cl ear [X, Y]
plotl=Plot[{Xx, 1+x"2}, {X, 0, 1}, Filling - {1- {2}}]

20+

15

out1478)= 10T

05

0.2 0.4 0.6 0.8 1.0
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Hereisaplot of the corresponding solid situated over D:

na7oy= FIX_, y_1=1-x"2+y"2;
plot3 = Pl ot 3D[f [Xx, y1, {X, 0, 1}, {y, X, 1+x"2},
Filling - Bottom ViewPoint » {1, 1, 1}, Pl ot Range -» {0, 4}, | mageSi ze » {250}]

20710

To compute the volume of this solid given by f fD f(x, y)d A, we describe D as a vertically simple domain where 0 < x < 1 and

X <y =1+ x% and apply Fubini's Theorem to evaluate the corresponding iterated integral fol f Lo f(x, y)dydx (remember to

X
use the correct order of integration):

npasi= I ntegrate[f [x, y1, {x, 0, 1}, {y, x, 1 +x?}]

29
out[1481]= —
21

Example 15.5. Evaluate the doubleintegral [ [ sin(y?)d A where D isthe domain bounded by x =0, y = 2, and y = x.

Solution: Wefirst plot the graphsof x =0, y =2, and y = x to visualize the domain D:

in[1482):= plotl = ContourPlot [{X =0, y =2, y=X}, {X, -0.5, 2.5}, {y, -0.5, 2.5}, ImageSi ze » {250}]

20} 1
15} 1
out[1482]= 1or ]

osf ]

oof ]

_0_5:‘ L ]

-05 0.0 0.5 10 15 2.0 25

It followsthat D isthe triangular region bounded by these graphs, which we shade in the following plot to make clear:
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in[1483:= plot2 =Plot [x, {x, 0, 2}, Filling-2];
Show[pl ot 1, plot2, I mageSi ze » {250}]

20f 1

oufuasal=  +Of ]

oof 1

-05 0.0 0.5 1.0 1.5 2.0 25

To compute the given double integral, we describe D as a horizontally simple domainwhere 0 < y <2 and 0 < x < y and apply
Fubini's Theorem to evaluate the corresponding iterated integral f: foysi n(y?) dxd'y (again, remember to use the correct order of
integration):

n[1485):= I ntegrate[Sin[y”2], {y, 0, 2}, {X, O, y}]

ouiass)= Sin[2]?

in[1486]:= N[%]

out[1486)= 0. 826822

NOTE: It is aso possible to view D as a vertically smple domain where 0 < x < 2 and x < y < 2. The corresponding iterated
integral foz I ’s n(y?) d'y d x givesthe same answer, as it should by Fubini's Theorem:

n[1487):= I ntegrate[Sin[y”2], {x, 0, 2}, {y, X, 2}]

ou[1487]= Si N [2]2

Observe that it is actually impossible to evaluate this iterated integral by hand since there is no elementary formula for the anti-
derivative of sin(yz) with respect toy. Thus, if necessary, Mathematica automatically switches the order of integration by

converting from one type to the other.

m Exercises

1. Evauate the following iterated integrals and plot the solid corresponding to each one.
a) folfoxz(4 - X2+ y?)dydx.

o

X2 ydxdy.

NN Osmgr2 codr db.

2. Evaluate the following double integrals and plot the solid corresponding to each one.
a) [Jox+y)dA D={(x,y):0=x=<30=y= \/7}
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b)ffD x+y dA D={(x, y):0=x=<1-y? 0=<y=<1]
c)ffex*ydA,whereD:{(x, y) X2+ y? <4
d [ fD d A, where D is the following shaded diamond region:

10

051

0.5 1.0

3. Calculate the volume of the following solids:
&) Under the paraboloid z = 16 — x? — y? and above the region bounded between the line y = x and the parabola 'y = 6 — X2.

b) Under the right circular conez= +/ X2 + y? and abovethedisk x? + y? < 1.
¢) Bounded between the plane z= 5+ 2 x + 2y and the paraboloid z= 12 — x2 — y2. Hint: Equate the two surfaces to obtain the
equation of the domain.

4. Calculate the volume of the solid bounded between the cylinders x> + y? = 1 and y? + 22 = 1.

m 15.3. Triple Integrals

Students should read Section 15.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Once the notion of a double integral is well established, it is straightforward to generalize it to triple (and even higher-order)
integrals for functions of three variables defined over a solid region in space. Here isthe definition of atripleintegral in terms of
triple Riemann sums for a function f (X, y, 2) defined on abox region B={(X, y,2:a<Xx=<b,c=<sy=d, p=<z=q} (refer to
your calculus text for details):

m n

p
ff Bf(x, ydV = HFI’li‘mmZJZ:Z:f Xijics y.Jk AVijk,

i=1 j=1k=1

where the notation is analogous to that used for double integrals in Section 15.1 of this text. Of course, Fubini's Theorem also
generalizes to triple integrals:

Fubini'sTheorem: (Box Domains) If B={(X, y,2:a<x=<b,c<y=d, p<z=<q},then

b q
ff f(x, y)alV:ffdf f(x, ydzdydx
B a Jc Jp

The corresponding Mathematica commands are:

Integrate[f[x,y,Z] {x,a,c}.{y.c.d},{zef}] analyticaly evaluates the triple integral [[ [ f(x, y)dV over the box
= [a, b]x[c, d]x[e, f].

Nintegrate[f[x,y].{x,a,c}{y.c.d}.{z.ef}] numerically evaluates the triple integral [[ [ f(x, y)dV over the rectangle
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B =[a, b]x[c, d]x[e, f].

NOTE: For box domains, the order of integration does not matter so that it is possible to write five other versions of triple iterated
integrals besides the one given in Fubini's Theorem.

Example 15.6. Calculatethetripleintegral [ [ [,xyzdV over thebox B = [0, 1]x[2, 3]x[4, 5.

Solution: We use the I ntegrate command to calculate the given triple integral.
in[1488)= I ntegrate[xyz, {x, 0, 1}, {y. 2, 3}, {z, 4, 5}]

45
out[1488]= —
8

Volumeas Triple Integral: Recal that if asolid region W is bounded between two surfaces y(x, y) and ¢(x, y) where both are
defined on the same domain D with ¥(X, y) < ¢(X, ¥), then its volume V can be expressed by the triple integral

(X,Y)
V=fffldv=ffﬁ 1dzdA
w DJy(xy)

Example 15.7. Calculate the volume of the solid bounded between the surfaces z=4x? + 4y? and z= 16 — 4x° — 4y? on the
rectangular domain [-1, 1]x[-1, 1].

Solution: Hereisaplot of the solid:

in[1489:= Pl ot 3D[{4Xx"2 +4y"2, 16 -4x"2-4y"2}, {x, -1, 1}, {y, -1, 1},
Filling » {158, 28}, ImageSi ze » {250}, | magePaddi ng -» {{15, 15}, {15, 15}}]

Out[1489]=

1 16-4x°-4y?

The volume of the solid is given by the triple iterated integral f_llf_l 20y ldzdydx:

inf1490;= I ntegratef[l, {x, 0, 1}, {y, -1, 0}, {z, 4x"2+4y"2, 16-4x"2-y"2}]

35
out[1490]= —
3

Mass as Triple Integral: Recall that if a solid region W is bounded between two surfaces y(x, y) and ¢(x, y) where both are
defined on the same domain D with ¢/(X, y) < ¢(X, y) and has density defined p(X, Y, 2), then its mass m can be expressed by the
triple integral
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(X,Y)
m=fffp(x, Ys 2)dV=fffp oX Yy, 2dzd A
w DYy (xy)

Example 15.8. Calculate the mass of the solid region W bounded between the planesz=1- x—yand z= 1 + x+ y and situated
over the triangular domain D bounded by x=0, y=0, and y=1-Xx. Assume the density of W is given by
P Y, 2) =14+ X2+ Y2

Solution: Hereisaplot of the solid region W:

in[401):= Plot3D[{1-x-y, L+x+y}, {Xx, 0, 1}, {y, O, 1-x}, ViewPoint -» {1, 1, 1},
Filling-»{1-1, 251}, Ticks » {Autormatic, Automatic, {1, 2}},
| mageSi ze » {250}, | magePaddi ng » {{15, 15}, {15, 15}}]

out[1491]=

05 0.5

1.0 1.0

=X rl+x+y

The mass of the solid is given by the triple iterated integral fol 01 hoxy

(1+X2+y?)dzdydx:

n[1492]:= Integrate[l+x"2+y”"2, {x, 0, 1}, {y, 0, 1-x}, {z, 1 -x-y, 1+X+Yy}]

14
Out[1492]= ——
15

m Exercises

1. Evaluate the following iterated integrals:
a) folfoxfoyz(x+ y+2dzdydx

b) f03fosmy OY+nyzdxdzdy

0 foﬂfog Or S 2 dzdr do.

2. Evaluate the following triple integrals:

a)ffﬁN(x+ y2dV,whereW ={(x,y,2:0=<x=<10=<y=< Vx,0<z< y?

b) [[f,SinydV, where W lies under the plane z= 1+ x+y and above the triangular region bounded by x =0, x = 2, and
y=3X

c) [[},zdV, where W isbounded by the paraboloid z= 4 — x* - y? and z= 0.

3. Find the mass of the solid tetrahedron enclosed by the planes x=0, y=0, z=0, z=1- x-y and have density
,O(X, Y, Z) =1l-z
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4. Midpoint Rule for Triple Integrals:
a) Develop a subroutine called MTRIPLERSUM to compute the triple Riemann sum of the triple integral [ [, f(x, y, 2dV

over thebox domainB={(x, y,2:a<x<b,c<y=d, p=z=q} for uniform partitions and using the center midpoint of each
sub-box as base point. Hint: Maodify the subroutine M DOUBL ERSUM in Section 15.1 of thistext.

b) Use your subroutine MTRIPLESUM in part &) to compute the triple Riemann sum of f f fB(x2 +y2+ 22)3/ 2 4V over the box
={(XY¥,2:0=x=<1 0=<y=<2 0=<z=< 3} bydviding B into 48 equa sub-boxes, i.e., cubes having side length of 1/2.

¢) Repeat part b) by dividing B into cubes having side length of 1/4 and more generally into cubes having side length of 1/2" for
n sufficiently large in order to obtain an approximation accurate to 2 decimal places.

d) Verify your answer in part c) using Mathematica's NI ntegr ate command.

m 15.4. Integration in Polar, Cylindrical, and Spherical Coordinates

Students should read Section 15.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

m 15.4.1. Double Integrals in Polar Coordinates
The following Change of Variables Formula converts a double integral in rectangular coordinates to one in polar coordinates:
Change of Variables Formula (Polar Coordinates):

I. Polar Rectangles: If R={(r, ) :60, <=0 <6,,r; <1 <5}, then

f f(x, dA= fff(rcosersne)rdrcle

I1. Polar Regions: If D = {(r, 0): 0, < 0 < 0,, a(0) <1 < B()}, then

b ~BO)
fff(x, y)alA:ff f(rcosd, rsndrdrdo
D 0 Ja)

Example 15.9. Calculate the volume of the solid region bounded by the paraboloid f(x) = 4 — x? — y? and the xy-plane using
polar coordinates.

Solution: Wefirst plot the paraboloid:
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nao3y= fF[X_, y_1=4-x"2-y"2
Plot3DIf [x, 1, {x, -2, 2}, {y, -2, 2}, PlotRange - {0, 4}, |mageSi ze » {250}]

ou1493)= 4 - x2 - y?

The circular domain D can be easily described in polar coordinates by the polar rectangle R={(r,6):0<r=<2,0<0<2nx}.

Thus, the volume of the solid is given by the corresponding double integral foz i f02 f(rcosd, rsind)rdrdoinpolar coordinates:

in[1495):= C ear [r, 61;
Integrate[r «f [r xCos[e], r xSin[e]], {r, 0, 2}, {e, 0, 2Pi}]

out[1496]= 8 7T
Observe that here f (X, y) simplifies nicely in polar coordinates:

in[1497:= T [r *Cos[©], r *Sin[6]]
Sinplify (%]

ouf1497- 4 -r2Cos[e]12-r2Sinje]?

out[1498)= 4 - r?

NOTE: Evauating the same double integral in rectangular coordinates by hand would be quite tedious. Thisis not a problem
with Mathematica, however:

n[a09):= I ntegrate[f [x, y1, {X, -2, 2}, {y, -Sqrt [4-x"2], Sqrt [4-Xx"2]}]

out[1499]= 8 7

m 15.4.2. Triple Integrals in Cylindrical Coordinates
The following Change of Variables Formula converts atriple integral in rectangular coordinatesto onein cylindrical coordinates:

Change of Variables Formula (Cylindrical Coordinates): If asolid region W is described by 6, < 6 < 6,, a(6) <r < (), and

z(r, 0) < z< z(r, 6), then
b ~BO) (1 6)
ff f(xy, z)dvzfef f f(rcosd,rsing, 2rdzdrdo
W 0, Ja®) Jz(r,0)

Example 15.10. Use cylindrical coordinates to calculate the triple integral [ [ [, zd'V where W is the solid region bounded
above by the plane z= 8 — x— v, below by the paraboloid z = 4 — x? — y?, and inside the cylinder x? + y? = 4.
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Solution: Since W lies inside the cylinder X2 + y? = 4, this implies that it has a circular base on the xy-plane given by the same
equation, which can be described in polar coordinatesby 0 <8 <2nrand 0O <r < 2. Hereisaplot of al three surfaces (plane,
paraboloid, and cylinder):
in1s00):= pl ot pl ane = Plot3D[8 -Xx -y, {X, -2, 2}, {y, -2, 2}1;

pl ot parabol oid =Pl ot 3D[4 -x"2 -y"2, {x, -2, 2}, {y, -2, 2}];

pl otcylinder = ParanetricPl ot3D[{2*Cos[e], 2xSin[e], z}, {6, O, 2x}, {z, 0, 12}1;

Show[pl ot pl ane, pl ot parabol oi d, plotcylinder, PlotRange - Al l, | nageSi ze » {250}]

Out[1503]=

Since Wisbounded inzby 4 - x? — y> < z< 8 — x—y, or in cylindrical coordinates, 4—r cosé —rsinf < z< 4—r?, it follows
that the given triple integral transformsto

27 ZJA—roose—rs'né)
Il A zrdzdrd6

Evaluating this integral in Mathematica yields the answer
ns04):= I ntegratef[z«r, {6, 0, 2x}, {r, 0, 2}, {z, 4-r xCos[B] -r *Sin[6], 8+r *xCos[6] +Ir *Sin[6]}]

out[1504]= 96 7t

m 15.4.3. Triple Integrals in Spherical Coordinates
The following Change of Variables Formulaconverts atripleintegral in rectangular coordinates to one in spherical coordinates:

Change of Variables Formula (Spherical Coordinates): If a solid region W is described by 61 < 6 < 6,, ¢1 < ¢ < ¢, and
p1(0, §) < p < p2(6, ¢), then

2 2 P20.9)
ffff(x, Y, z)dvszfq}f f(pcosfsing, psingsing, pcose) p?singdpdd do
w 0, Jé1 Jpi(0.9)

Example 15.11. Use spherical coordinates to calculate the volume of the solid W lying inside the sphere X2 + y? + 72 = z and

abovetheconez=/ X% + y? .

Solution: In spherical coordinates the equation of the sphere is given by
p?=p cosg,

or equivaently, p = cos¢. Similarly, the equation of the cone transformsto
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pCOS¢ = \/(pcosesin¢)2+ (psin@sing)® = p sing.

It followsthat cos¢ = sing, or ¢ = n/4. Therefore, the cone makes an angle of 45 degrees with respect to the z-axis, as shownin
the following plot along with the top half of the sphere:

in[1s05):= Cl ear [p]
pl ot cone = Paranetri cPl ot 3D[
{pCos[e] Sin[Pi /4], pSin[e] Sin[Pi /4], pCos[Pi /4]1}, {6, 0, 2Pi }, {p, O, Sqrt [2] /2}];
pl ot sphere = Paranetri cPl ot 3D[{Cos [¢] Cos[e] Sin[¢], Cos[¢] Sin[e] Sin[¢], Cos[¢] Cos[¢4]},
{e, 0, 2Pi }, {¢, O, Pi /74}1;
Show[pl ot cone, pl ot sphere, Pl otRange -» All, ViewPoint » {1, 1, 1/4}, | mageSi ze » {250}]

out[1508]=

.05

It isnow clear that the solid Wisdescribedby 0 <6 <27, 0<¢ <n/4,and 0 < p < cos¢. Thus, itsvolumeisgiven by thetriple

integral
271 /4 ~COSP
fff p?singdpd¢db,
0 0 0

ns09):= I ntegrate[p”2+Sin[¢], {6, 0, 2Pi }, {¢, 0, Pi /4}, {p, 0, Cos[¢]}]

which in Mathematica evaluates to

7T
out[1509]= —

m EXxercises

1. Evauate the double integral foz fo' 4 e 0y g yd x by converting to polar coordinates.

2. Use polar coordinates to calculate the volume of the solid that lies below the paraboloid z = x? + y? and inside the cylinder
X2 +y2=2y.

3. Evaluate the triple integral [, 2 A 4 fm

A (x2+y?)dzd yd x by converting to cylindrical coordinates.

4. Use cylindrical coordinates to calculate the triple integral [ [ [ (x*+ y?)dV where W is the solid bounded between the two
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paraboloids z= X2 + y? and z= 8 — X% — y.

5. Evaluate the triple integral [ 22 [ - ) Xy (X% + y? + ) dzd y d x by converting to spherical coordinates.

V432 T R+y?

6. The solid defined by the spherical equation p = sing is called the torus.

a) Plot the torus.
b) Calculate the volume of the torus.

m 15.5. Change of Variables

Students should read Section 15.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

The following Change of Variables Formula converts a double integral from one coordinate system to another:

Change of Variables Formula (Coordinate Transformation): If ®(u, v) = (x(u, V), y(U, v)) isa C*-mapping from Dg to D, then

(% Y)
fff(x, y)clxdy:ff f(x(u, v), y(u, v)) dudyv,
D Do o, v
X ox
A(%.y) du v ax 9y ax 9y
Where | 5(U,V) = |Jac(<I>)|: 6_y 8_y = %E—E ﬁ
au o

Example 15.12. Make an appropriate changes of variables to calculate the double integral f fDx yd A where D is the region
bounded by thecurvesxy =1, xy=2,xy? =1, and x y? = 2.
Solution: Hereisaplot of the region D:

in1510:= ContourPl ot [{X*y ==1, X*Yy ==2, X*y"2==1, X*y"2==2},
{x, 0, 5}, {y, 0, 53}, InageSi ze » {250}]

5

out[1510]=

Since D is rather complicated, we consider the change of variables u = x y and v = x y?, which D transforms to a simple square
region Dy inthe uv-plane bounded by u=1,u=2,v=1,andv = 2. The corresponding Jacobian is
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nps11):= O ear [sol, X, y, u, V]
sol =Solve[{u==Xx#*y, V==X*y”"2}, {X, Y}]

Out[1512]= {{X - l;ll—z, y - E}}

ns13:= X =sol [[1, 1, 2]]
y =sol [[1, 2, 2]]

2
out[1513]=

Out[1514]=

cI< <|s

in[1515):= Jac = D[x, u] *D[y, v] - D[x, v] *D[y, u]

=

out[1515]= —
v

Thus, the given integral transformsto [ [ ydA:ffDU%dA=flz f%dvdu:

n[1516)= I ntegratefu/v, {u, 1, 2}, {v, 1, 2}]
3Log[2]

Out[1516]=

m Exercises

1. Evauate the integral f fDx yd A, where D is the region in the first quadrant bounded by the equations y = x, y=4x, Xy =1,
and xy = 4. Hint: Consider the change of variablesu= xyandv =y.

2. Evauate the integral ffD(x+ y)/(X—=y)d A, where D is the parallelogram bounded by the lines x—y=1, x—y=3,
2x+y=0,and 2x+ y==2. Hint: Consider the change of variablesu = x—-yandv =2x+y.

3. Evaluate the integral ffD¥ d A, where D is the region bounded by the circles x? + y? = 1, x> + y* = 4 and lines y = X, y == 3X.
Hint: Consider the change of variablesu = x? + y? and v = y/ x.



Chapter 16 325

Chapter 16 Line and Surface Integrals

Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives. First place your screen cursor over the plot. Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

m 16.1. Vector Fields

Students should read Section 16.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let Fy, F,, and F3 be functions of x, y, and z. The vector-valued function

F(X! y1 Z) = <F1(X5 y' Z); FZ(Xv yv Z)v FB(X1 yr Z))

is caled avector field. We have aready encountered a vector field in the form of the gradient of a function. Other useful exam-
ples of vector fields are the gravitational force, the velocity of fluid, magnetic fields, and electric fields.

We use the Mathematica commands Vector FieldPlot and Vector FieldPlot3D to plot the graphs of vector fields. However,
before using these commands we need to load the Vector FieldPlots package. Thisis done by evaluating

in[1517;:= Needs[" VectorFi el dPlots "]

Example 16.1. Draw the following vector fields.
8 F(x, y)=(siny,cosx)  b) F(x Yy, 2=(y, X+ 2x-y)

Solution:
a)

nps1g:= Cear [F, X, y, z]
FIx_, y_1={Sin[y], Cos[x]}

oufis19)= {Sin[y], Cos[x]}

npis20:= Vector Fi el dPl ot [F[x, y], {X, -5, 5}, {y, -4, 4}, | mageSi ze » {250} ]

“///‘\‘?\‘///,‘
AR B VI
T e
TN T L TN T
NN T L TN T
NN T L TN T
R R S N S
om[1520]:¢'*+,,* *.,++ya
‘,///,\:\\\‘///,‘
‘////*i\i‘////‘
A N O
I N N
vy gy ot RIS
T e
TaNNN T N T

Here is another display of the preceding vector field with some options specified.
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n[s21:= VectorFi el dPl ot [F[x, y1, {X, -5, 5}, {y, -4, 4}, Axes -» True,
AxesOrigin - {0, 0}, Franme -» Fal se, Col or Functi on - Hue, | nageSi ze » {250}]

f
N I
by ) iy
VoA i -
TN\ 2 Z«Z;/:« NN
I N NN
TSN T L TN T
Out[1521]= ‘\ A L L b \‘
TR
‘////*:\:::::“////‘
M N D O
A A v A
oy r oy
VoA . VA
N NN

To see other available options of Vector FieldPlot, evaluate the command Optiong Vector FieldPlot].

b) We shall use two of the options of Vector FieldPlot3D, which does not have as many options as Vector FieldPlot. (Again, you
can find these by evaluating Optiong[Vector FieldPlot3D].)

nps22)= O ear [F, X, Yy, 2]
Fix_, y_, z_1={yz? xz% 2xyz}
Vector Fi el dPl ot 3D[F[X, vy, z], {x, -3, 3}, {y, -3, 3},
{z, -3, 3}, Col orFunction - Hue, VectorHeads -» True, | mageSi ze » {250}]

2

oupsas= {y z% x 2%, 2xyz}

e L% \

SN |
| =

out[1524]=

Example 16.2. Draw the unit radial vector fields:

AFx =2 2] b Foyg (e e,
X2+y? X+y? \/x2+y2+z2 \/x2+y2+z2 \/><2+y2+z2

Solution: For convenience, we define both vector fields to be 0 at the origin. We shall use the If command to do so.

a)



in1s25)= O ear [F, X, Y]

FIX_, y_]=|f[x2+y2¢0,

Vect or Fi el dPl ot [F[Xx, Y1,

{X

Chapter 16

» Y} Y 0}]

X2+y2

{x, -3, 3}, {y, -3, 3}, I mageSi ze » {250}]

out1526]= | f [x2+y2 +0, 0o v ., {0, O}}
X2+y2
NN N N U T S S A A A A 4
NN N R S T B A A 4
NNV YA
oA N VS s
NN NN f S,
out[1527]= .
e N
. NN
PN NN
S]] VNN N Y
S]] NN NN
AN ] VOV NN

b)

327
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n[s28= O ear [F, X, y, z]

X, , Z
FIx_, y_, z_]=1If [X2+y2+22¢0, { y }

, {0, O, 0}]
x2 +y2 472
Vect or Fi el dPl ot 3D[F[Xx, vy, z], {x, -3, 3}, {y, -3, 3},
{z, -3, 3}, Col orFunction -» Hue, VectorHeads -» True, | nageSi ze » {250}]

{X, Y, Z}

outf1529)= | f [Xz +y2+22 40, , {0, 0, 0}}

X2 +y2 +z2

Out[1530]=

m EXxercises

1. Draw the following vector fields:
A Fx y)=(y*-2xy, xy+6x%) b) F(x Yy, 2 =(sinx cosy, x2)

9 Fix y = - ——,
X2+y? X2+y?

X

> d) F(X Y, 2 =(X+c0s(x2), ysin(xy), xzcos(yz) )

2. Calculate and plot the gradient vector field for each of the following functions.
a) f(x, y) =In(x+y?) b) f(x, v, 2 =sinx (cosz/y)

m 16.2. Line Integrals

Students should read Section 16.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Suppose C is a smooth curve in space whose parametric equations are given by
X=X, y=y), 2=z,

wherea<t<h. Let C, Cp, Cs, ..., Cy be a partition of the curve C with arc length As;, As,, Ass, ..., Asy and let
P1, Py, P3, ..., Py bepointson the subarcs.

If f(X,y, 2 isafunction that is continuous on the curve C, then the lineintegral of f isdefined by
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fcf(x, y, 2ds=limys o2, f(P)AS.
NOTE: If c(t) = (x(t), y(t), z(t)) isthe vector equation of the curve C, then it can be shown (refer to your calculus textbook) that
ffexy, 2ds= [fed e O] dt.
Inaddition, if F(x, y, 2) = (F1, F», F3) isavector field that is continuous on C, then the line integral of F over C isgiven by

JFx, y, 2-ds= [(F-Tyds= ['F(c(t)-c' (®)dt,

c'(t)

where T isthe unit vector T = —
lic ol

and F- T isthe dot product of F and T.
Example16.3. Find [.f(x, y, 2ds, where f(x, y, 2 = xy+Z andCisgivenby x=t,y=t>,andz=1t3 forO<t=<1.

Solution:

nps31= Clear [x, y, z, t, f, c]
fIX_,y_, z_ ]l=x2y+xz

X[t_1=t
yIt_1=t?
z[t _1=t3

CIt_1=1{x[t], yIt], z[t1}
ous32= X2y +X z
out[1533]= t
ous34= t 2
ous3s= t3

oufissel= {t, t?, t3}
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1
In[1537]:= jf[x[t], y[t], z[t]] Norm[c' [t]] dt
0

3:31i } 2i-+5

oupisan- |2 |-84987 (-1)¥*2i 5 +532]1x/HE||ipticE[Arc5in[ , ‘
2]'l+\/5_
2(-211+\/?)
266 /70 El1ipticE[Arcsin| 3:314 J. 21’%—]7
2(-2i+V5 2145
415 i 14 EllipticF|Arcsin| 3:314 ,217\/57]_
2 (-2i+V5) 2148
zeemEHipticF[Arcsm[ 3:31 , zjfﬁ] /229635J_7—jl
2(-21+v5) 2i+V5 2 (2145

Here isanumerical approximation of the preceding line integral.

ns3s= Nlntegrate[f [x[t], y[t], z[t]] Norm[c' [t]], {t, O, 1}]

ouf1s3s- 1. 16521

Example 16.4. Find [[F(X, Y, 2)-ds, where F(x, y, 2 = (x z, zy?, yx?) and the curve Cisgiven by x= 2t, y = sint, and
z=cost,0<t=<2nm.

Solution:

n1s39):= Clear [x, vy, z, t, f, c]
FIx_, y_, z_1={xz, zy? yx?}

x[t_1=2t
y[t_1= Sin[t]
z[t_]1 =Cos[t]

Clt_1={x[t], y[tl, z[t]}
ouisao)= {xz, y*z, x>y}
out[1541]= 2t
out[1542]= Si n[t ]
out1543)= Cos [t ]

ou1544]= {2t, Sin[t], Cos[t]}

2 Pi
In[1545]::.[) FIx[t], y[t], z[t]].c' [t]dt

9n 168
Out[1545]= —— —
4 3
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in[1546]:= N[%]

out[1546)= —-158. 298

m Exercises

1. Find fcf(x, Y, 2d's, where
a)f(x,y,2= xy?> —4zyand Cisgivenby x= 2t,y=t¥3, andz=1-3t3, forO<t=<1.
b) f(x,y,2= %andCisgivenby x=Int,y=t? andz=3t, for3<t=<5.

2. Find fCF(x, y)-ds, where
A F(x, y) = (e¥*2Y, @*3Y)and Cisgivenby x= 2t,y=sint, O<t=<nx
b) F(x, y) = (X%, yx+ y?) and C isthe unit circle center at the origin.

3. Find fCF(x, y, 2)-ds, where
A F(x, Yy, 2 =(xyz, -xz, Xy)and Cisgivenby x=t,y= 2t?,z=3t O<t< 1
b) F(x, v, 2 = (xy*, z+ %2, Z%) and C isthe line segment joining (-1, 2, ~1) and (1, 3, 4).

m 16.3. Conservative Vector Fields

Students should read Section 16.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let F(x, y, 20 = (F1, F», F3) be avector field. Let C, and C, be any two different curves with the same initial point P and end
point Q. We say that the vector field F is path independent if

fClF(x, Y, 2)-ds= fczF(X’ Y, 2)-ds.
A vector field that is path independent is called conservative.

NOTE 1: A vector field F is conservative if
fF(x, Y, 2)-ds=0.
C

for every closed curve C.
NOTE 2: If F = Vuisthe gradient of afunction u = u(x, y, 2), then we say that u is the potential of F. Moreover, if the end
points of C are P and Q, we have
fF(x, Y, 2-ds=u(P)—u(Q)
C

In particular, if the curveisclosed, that is, if P = Q, then

fF(x, y,2)-ds=0.
c

Therefore, gradient is conservative. The converse of this statement istrue if its domain is an open connected domain.

ou du

NOTE 3: Let F = (Fy, Fp). If F=Vu= <a 0—y> then F; = &2 and F, = 2. Taking the partial derivative of Fywith respect to y
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and that of F, with respect to x and using the fact that axay = ayax

aF, _ 0F,

ay ax "

This equation is used to check if avector field is conservative. In that case, we solve F; = g—‘; for u by integrating with respect to

x and then use the equation F, = g—; to find the constant of integration. Here is an example.

Example 16.5. Show that the vector function F = (3x? — 2xy + 2, 6 y> — x* + 3) is conservative and find its potential.

[)Fl

Solution: Here F, = x y? and F, = X2 y. We now compare =+ and ‘Zi)f to verify if F is conservative.

nps47):= G ear [x, y, F1, F2]
Fl[x_, y 1=3x2-2xy+2
F2[x_, y_1=6y%2-x%+3

ouf1sag= 2 +3x2-2xy
ouif1549= 3 - X2 + 6y?

inf15501:= DLFL[X, y1, Y1
DIF2[x, Y1, X]

out[1550]= —2 X

out[1551]= -2 X

Thus, the vector field is conservative. To find its potentia u, weintegrate F, = g—: with respect to x to get

inpss2p= O ear [h, ul
u=Integrate[FLl[x, y], x] +h[y]

ouiss3l= 2X +x3 -x2y +hy]
Note that the addition of h(y) is necessary because the constant of integration may depend on y. We now solve the equation

au '
= ﬂforh y).

in[1554]:= Cl ear [sol ]
sol =Solve[D[u, y] =F2[x, y], h' [y]]

oufisssl= { {h'[y] >3 (1+2y?)}}
Thismeansthat h'(y) = 3(1+2y?).
npssel= | ntegrate[sol [[1, 1, 211, V]
oufssel= 3y +2y°

Hence, h(y) =3y +2y? andsou(x, y) = 2x+ X3 — X2y + 3y + 2y isthe potential of F.

NOTE 4: Let F = (Fy, Fy, Fa). If F=Vu= (3: 2, jj) then Fy = 2%, F, = 2% and F3 = 22 Taking the partial derivative of
F1with respect to y and that of F, with respect to x and using the fact that 2 o~ ﬁy = {fy :X we see that F; and F, must satisfy
9F _ 3R

ay ax’
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Taking the partial derivative of Fiwith respect to z and that of F3z with respect to x and using the fact that ZL 72 02 = az ax we see that
F1 and F3 must Satley

aF, _ 0F,
dz ~ ox’

The preceding two equations can be used to check if a vector field is conservative. If this the case, we solve F; = 2—5 for u by

integrating with respect to x and then use F, = g—;‘, to find the constant of integration. We show this by the following example.

Example 16.6. Show that the vector function F = (yz+ yzcos(Xy), Xz+ XZC0S(Xy), Xy + Sin(xy)) is conservative and find its
potential.

Solution: Here F; = yz+ yzcos(Xy), F, = Xz + xzcos(xy), and F3 = Xy + sin(xy).

nss7):= O ear [x, y, F1, F2, F3]
F1[x_, y_, z_1=yz +yzCos[xy]
F2[x_, y_, z_1=Xxz + xzCos[xVy]
F3[X_, Y_, z_1=XYy + Sin[xy]

out[15581= Y Z +y Z COS [X Y]
out[1559]= X Z + X Z COS [X Y]
ou[1560]= Xy + Sin[xy]

F1 d{)Fz_

J
We now compare —— ot

nse1= DIFL[X, y, z1, Y]
DIF2[x, Yy, z], X]

ou[1561]= Z +Z COS [XY] - XYy Z Sin[Xy]
ou[1562]= Z +Z2 COS [XY] -XYy zZSin[xXy]

(’)Fl (’)Fz

Next we compare —-* and —2:

in[1563):= DIF1[X, Yy, z], z]
DIF3[x, Yy, z], X]
out1563)= Y +Y CoS [X Y]

out[1564)= Y +Yy Cos [X Y]
Thus, the vector field is conservative. To find its potentia u, weintegrate F; = Z—:‘( with repsetct to x to get

inpises)= Cl ear [u, h]
u=lntegrate[F1[x, y, z], X] +h[y, z]

ouf1s66]= Xy Z +h[y, z] +zSin[xy]

Note that the addition of h(y, 2) is necessary because the constant of intgeration can depend on y and z. We now solve the

equation F, = — fo W
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in[1567:= Cl ear [sol ]
sol =Solve[D[u, y] =F2[x, y, z], 8 hly, z]]

oupisegl= {{h™® [y, 2] - 0}}

dh

This means that % = 0and hence hisafunction of zonly. Next, we solve the equation F3 = ‘;—‘Z‘ for 57

in1s69):= Cl ear [sol 2]
sol 2 = Sol ve[D[u, z] = F3[x, Yy, z1, 8; hly, z]]

oupiszo= { {h @Y1y, 2] ->0}}

Hence ‘;—: = 0and wecan takeh = 0. Therefore, u= xyz + zsin(x y) isthe potential for the vector field F.

m Exercises
1. Show that the vector field F = ( y® - 3x2y, 3xy? - x%) is conservative and find its potential.

X2y

2. Show that the vector field F = <yz+ ZTXV XZ+ X—Zz Xy — ?> is conservative and find its potential.

3. Determine whether the vector field F = (X%, yx + €%, ye&?) isconservative. If itis, find its potential.

m 16.4. Parametrized Surfaces and Surface Integrals

Students should read Section 16.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A parametrized surface is a surface whose points are given in the form
G(u, v) = (x(u, v), YU, V), Z(U, V))
where u and v (called parameters) are independent variables used to describe a domain D (called the parameter domain).

The command for plotting parametrized surfaces is ParametricPlot3D. This command has been discussed in Section 14.1.2 of
this text.

Example 16.7. Plot the parametrized surface defined by G(u, v) = (cosusinv, 4sinucosv, cosv) over the domain
D={uVv|O0=<u=<2nr O<v=<27x}.

Solution:
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in[1571:= ParametricPl ot 3D[{ Cos[u] Sin[v], 4Sin[u] Cos[v], Cos[v]},
{u, 0, 2P}, {v, 0, 2Pi }, I mageSi ze » {250}]

out[1571]=

Example 16.8. Plot the parametrized surface defined by G(u, v) = (u cosv, usinv, 1 - u2) over the domain
D={(uw|0<su=<10=<v=<2n}.

Solution:

in1572)= ParametricPl ot 3D[{uCos[v] , uSin[v] , 1-u?}, {u, 0, 1},
{v, 0, 2Pi }, Col orFunction - "Bl ueG eenYel |l ow', | nageSi ze » {250},
I mgePaddi ng -» {{15, 15}, {15, 15}}]

out[1572]=

NOTE: On a parametrized surface G(u, v) = (X(u, V), y(u, v), Z(u, v)), if we fix one of the variables, we get a curve on the
surface. The plot following shows the curves corresponding tou = 3/4 (inred) and v = 57 /3 (in blue).
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n[1s73;:= Cl ear [pl ot 1, plot2, plot3]

plotl= ParametricPl ot3D[{u Cos[v] , uSin[v] , 1—u2},
{u, 0, 13}, {v, 0, 2Pi }, Col or Functi on -» "Bl ueGeenYeIIow"];

plot2 = ParanetricPlot3D[{ 3/4Cos[v] , 3/4 Sin[v] , 7/16},
{v, 0, 2Pi }, PlotStyle - {Thi ckness[0.01], Red}];

plot3 = ParanetricPl ot 3D[{ u Cos[5Pi /3] , u Sin[5Pi /3], 1—u2},
{u, 0, 1}, PlotStyle - {Thickness[0.01], Blue}];

Show[pl ot1, plot2, plot3, PlotRange - Al l, | mageSi ze » {250},

| mgePaddi ng » {{15, 15}, {15, 15}}]

out[1577]=

Let P = G(ug, Vo) be a point on the parametrized surface S. For fixed v = v, the tangent vector to the curve G(u, vg) at (Ug, Vo) iS
given by

Ty= % (Ug, Vo)
while the tangent vector for G(up, V) corresponding to afixed u = ug is given by
Ty= % (Uo, Vo)
These two vectors are tangent to the surface S Thus, the normal vector n to the tangent plane at G(ug, Vo) is given by
n(P)=n(up, Vo) = TuxTy

Example 16.9. Consider the parametrized surface G(u, v) = ( ucosv, usinv, 1- v2).
a) Find Ty, Ty, and n.

b) Find the equation of the tangent planeat (1/2, 5x/3).

¢) Plot the tangent plane and surface.

Solution: Let usdefine G as afunction of u and v in Mathematica.

ns7g:= G ear [G u, V]
Glu_, v_1={uCos[v], uSin[v], 1-u?}

oufis7el= {uCos[v], uSiniv], 1-u?}

a) Weuse Tu for Ty and Tv for T,. We evaluate these as functions of u and v.
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in[1s80:= Cl ear [Tu, Tv, n]
Tufu_, v_] =D[G[u, V], u]
Tv[iu_, v_] =D[G[u, V], V]
nfu_, v_]1=Cross[Tul[u, v], Tv[u, v]]

oufiss1)= {Cos[v], Sin[v], -2u}

ouf1s582)= {-uSin[v], uCos[v], 0}

oufises)= {2u®Cos[v], 2u?Sin[v], uOos[v]2+uSin[v}2}
b) The normal vector to the tangent plane at (1/2, 5x/3) is

in[1584):= Cl ear [nornal ]
normal =n[l1/2, 5Pi /3]

1 /3 1

Out[1585]= {4— e E}

The tangent plane passes through the point

inf1ss6):= Cl ear [poi nt ]
point =G[1/2, 5Pi /3]
1 V3 3

Out[1587]= {4—, 2 ’ 4}

Thus, the equation of the tangent plane is given by

nissg)= C ear [t pl ane]
tplane =normal . ({X, y, z} -point) ==0

1
Out[1589]= —
4

1
-—+X
4

1
-~ /3
4

which simplifiesto
in1s90):= Si npl i fy[tplane]

ou1590]- 2X +4z =5+23 y

337

c) Here isthe plot of the surface and the tangent plane. Observe that we have used Color Function and Color FunctionScaling

options.
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ns91:= Cl ear [plotl, plot2]
plotl = ParanetricPl ot3D[G[u, v], {u, O, 1}, {v, 0, 2Pi }, Col orFuncti on - "Bl ueG eenVYel | ow"];

pl ot 2 = Cont our PI ot3D[2x+4z==5+2\/3 y, {x, -3, 3}, {y, -3, 3}, {z, -4, 43,
Col or Function » Function[{x, y, z}, Hue[Mbd[z, 1]1]], Col or Functi onScal i ng - Fal se];
Show[pl ot1, plot2, I mageSi ze » {250}, | magePaddi ng » {{15, 15}, {15, 15}}]

out[1594]=

NOTE: The area A(S) of a parametrized surface S: G(u, v) = (x(u, V), Y(u, V), z(u, v)), where (u, v) € D, isgiven by
A = [ [, linw, v |l dudv
If f(X, Y, 2 iscontinuousat al pointsof S, then the surface area of f over Sisgiven by
ffsf(x, Y, z)dS:ffo(G(u, v)) || n(u, v) || dudv

Example 16.10. Show the following:
a) The area of the cylinder of height h and radiusr is2x rh.
b) The area of the sphere of radiusr is4xr?.

Solution:
a) A parametric equation of the cylinder of height h and radiusr can be given by

x=rcosv,y=rsinv,andz=u,where 0<v=27,0<u<h.
Thus, the cylinder isgiven by G(u, v) = (r cosu, rsinu, V).

npses= Clear [G u, v, r]
G[u_, v_] ={r Cos[v], r Sin[v], u}

ou1596)= {r Cos[v], r Sin[v], u}

Hereisaplot of the cylinder withr =3and h=5:
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ns971= r =3; h=5;
ParanetricPl ot 3D[G[u, v], {u, 0, h}, {v, 0, 2Pi}]

Out[1598]=

To compute the surface area of the cylinder, we need to compute its normal vector.

in[1599):= C ear [Tu, Tv, n, r, h]
Tufu_, v_] =D[G[u, V], ul;
Tv[u_, v_] =D[G[u, V], VI;
nfu_, v_] =Cross[Tu[u, v], Tv[u, v]]

ouf1602)= {-r Cos[v], -r Sin[v], 0}

Hereisaplot of the cylinder with its normal vector for r =3andh=15:
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in603:= r =3; h=5;
Clear [plotl, plot2]
plotl = ParanetricPl ot 3D[G[u, v], {u, O, h}, {v, 0, 2Pi}];
pl ot 2 = Vect or Fi el dPl ot 3D[n[u, v], {u, 0, h},
{v, -2Pi, 2Pi}, {z, -3, 3}, VectorHeads -» True, PlotPoints - 157];
Show[pl ot1, plot2, I mageSi ze » {250}]
Clear [r, h]

Out[1607]=

The surface areais

h ~2Pi
In[1609]:= SAr ea =j Nor m[n[u, v]] dv du
0 Jo

outf1609]= 2 h st Abs [r ]
Sincer > 0, |r| = r and hence the preceding outputis2xr h.
b) A parametric equation of the sphere of radiusr is
X=Trcosusiny, y=rsinusinv, Z=r cosv,
where0<u=<2nrand0=<v<nx. Thus, the sphereisgiven by G(u, v) = (r cosusinvy, r sinusinv, r cosv).

inpie10)= Clear [ G u, v, r]
G[u_, v_] ={r Cos[u]l Sin[v], r Sinfu] Sin[v], r Cos[v]}

oui611= {r Cos[u] Sin[v], r Sin[fu] Sin[v], r Cos[v]}

Here isaplot of the sphere withr = 3.
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In[612]:= I = 3;
ParanetricPl ot 3D[G[u, v], {u, 0, 2Pi}, {v, 0, Pi}, InmageSize » {250}]

out[1613]=

2

To compute the surface area of the sphere, we need to compute its normal vector.

in614):= C ear [Tu, Tv, n, r]
Tufu_, v_] =D[G[u, V], ul;
Tv[u_, v_] =D[G[u, V], VI
nfu_, v_1=0Cross[Tulu, v], Tv[u, v]]

ouriei7= {~r?Cosu] Sin[v]® -r2sSinfu]Sin[v]? -r2Cos[uj®Cos[v]Sin[v]-r?Cos[v]Sin[ul*Sin[v]}

Here isaplot of the sphere with its normal vector for r = 3.
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ne18i= r =3; h=5;
Clear [plotl, plot2]
plotl = ParanetricPl ot 3D[G[u, v], {u, 0, 2Pi}, {v, 0, h}I;
pl ot 2 = Vector Fi el dPl ot 3D[n[u, v], {u, -2Pi, 2Pi},
{v, 0, h}, {z, -3, 3}, VectorHeads -» True, Pl otPoints - 10];
Show[pl ot1, plot2, I mageSi ze » {250}]
Clear [r, h]

out[1622]=

The surface areais

Pi 2 Pi
In[1624]:= SAr ea =f Norm[n[u, v]] dudv
o Jo

out[1624]= 4 srr Conj ugate [r ]
For areal number r, the conjugate of r isr and hence the preceding output is 4 r2.

Example 16.11. Consider the parametrized surface S defined by G(u, v) = (ucosv, usinv, v), where0<u=<1,0<v=<2n.
a) Find the surface area of S.
b) Evaluate [ [.xyzd'S.

Solution:
a)

ne2s;= Clear [ G u, V]
G[u_, v_] ={uCos[v], uSin[v], v}

oufi626)= {uCos [v], uSIin[v], v}
in6271:= C ear [Tu, Tv, n]
Tufu_, v_] = D[G[u, V], u]

Tv[iu_, v_] =D[G[u, V], V]
nfu_, v_1=0Cross[Tufu, v], Tv[u, v]]

oufi628)= {Cos[v], Sin[v], O}
ouf1629]= {-uSin[v], uCos[v], 1}

ouries0)= {Sin[v], -Cos[v], uCos[v]®+uSinvi®}
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The surface area A(S) isgiven by
1 ~2Pi

In[1631]:= SArea = J J Nor m[n[u, v]] dv du
0 Jo

ouf1631)= 7T (\/2_ + ArcSinh [1])

which is approximately equal to

in[1632]:= N[%]

ouf[1632= 7. 2118

b) We define f

in1633):= C ear [f]
fIX_, y_, z_1=Xyz

Out[1634]= XY Z

The surface integral of f is
1 ~2Pi
In[1635]:= jj f[G[u, v1[[11], G[u, VI[[2]1], G[u, VI[[3]1] Norm[n[u, v]]dv du
0 Jo
1
Out[1635]= _E Vs (3 2 - ArcSinh (1]

Or numerically,
in[1636]:= N[%]

out[1636)= —-0. 659983

m  Exercises

1. Plot the parametrized surface G(u, v) = (€“ sinv, € cosv, v) over thedomainD = {(u,v)| —1<u=<1, O<v<2nx}.

2. Plot the parametrized surface G(u, v) = (3sinucosy, sinusinv, cosv + 3 cosu) over the domain
D={uVv|0=<u=<2nr O<v=<27x}.

3. Consider the parametrized surface G(u, v) = (™" cosv, €' sinv, €' cosv).
a) Find Ty, Ty, andn.

b) Find the equation of the tangent plane at (0, 7/ 2).

¢) Plot the tangent plane and surface.

4, Consider the parametrized surface S: G(u, v) = (u—v, 3u+v,U2-2uv + 6v2), whereO<u=<1,0=<v=<1
a) Find the surface area of S. (Use NIntegrate for faster integration.)
b) Evaluate [ [[(3x+ 2y* - Z)dS.

m 16.5. Surface Integrals of Vector Fields

343

Students should read Section 16.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this

section.
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An orientation of a surface Sis a continuously varying choice of the unit normal vector e,(P) at each point of the surface. Thus,
e, isgiven by either

n(P)

nP)
In(P)II

or en(P) = -y

en(P) =
If F(X, y, 2) iscontinuous at al points of a parametrized surface S, then the surface integral of F over Sisgiven by

[JF-ds=[[(F-endsS,
where e, isthe unit normal determined by an orientation. The surface integral of F isalso called the flux of F across S.
The surface integral of F over a parametrized surface S given by G(u, v) = (x(u, v), Y(u, V), z(u, v)), where (u, v) € D, isgiven by
[JF-dS=[[(F-endS = [[JF(G, v)-n(u, v)dudv

Example 16.12. Find ffSF-clS, where F(x, y, 2 =(x z, z, yx)and Sisgivenby G(u, v) = (u-v? uv, > -v),0 < u =<2, and

l<v=<3.
Solution:

npe37= Cear [F, G X, VY, z, u, v]
FIx_, y_, z_1={xz, z, yx}
Glu_, v_1={u-v? uv, u?-v}

out[1638= {X Z, Z, XYy}

2

ouiezgl= {U-vZ, uv, u?-v}

in[1640):= C ear [Tu, Tv, n]
Tufu_, v_] =D[G[u, V], u]
Tv[iu_, v_] =D[G[u, V], V]
nfu_, v_]1 =Cross[Tu[u, v], Tv[u, Vv]]

ou1641)= {1, v, 2u}
out[1642= {-2v, u, -1}

oufiesz= {-2u*-v, 1-4uv, u+2v?}

2 ~3
in[1644):= Fl ux =j J F[G[u, v1[[11], G[u, v1[[2]1], G[u, V]I[[3]1]].n[u, v]dvdu
0 J1

6928

Out[1644]= — ——
15

Example 16.13. Find [[.F-dS, where F(x, y, 2) = (x2, 22, y+ x?) and S is the upper hemisphere x? + y? + 72 = 4 with

outward normal orientation.

Solution: First we find the parametric equation of the cylinder. This can be given by x = 2cosusinv, y=2sinusinv, and
z=2cosv,where0O<u=<2randO0O=<sv=nm/2

For the hemisphere to have the outward orientation, we note that n = T, x T,,. With thisin mind we compute the flux of F across
S through the following steps.
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npessi= G ear [F, G X, Yy, z, u, v]

Fix_, y_, z_1={ x% 2% x?+y+2%}

Glu_, v_1= {2Cos[u]lSin[v], 2Sin[u]l Sin[v] , Cos[v]}
2

Out[1646]= {XZ, z-, x2+y+z3}

ouf1647)= {2 Cos[u] Sin[v], 2Sin[u] Sin[v], Cos[Vv]}
in[164g):= C ear [Tu, Tv, n]
Tufu_, v_] =D[G[u, V], u]

Tv[iu_, v_] =D[G[u, V], V]
nfu_, v_]1=Cross[Tv[u, v], Tufu, Vv]]
ouff1649= {-2Sin[u] Sin[v], 2Cos[u] Sin[v], 0}
ouf1650)= {2 Cos [u] Cos[v], 2Cos[v] Sin[u], -Sin[v]}
2 2

out[1651]= {2 Cos[u] Sin[v]%, 2Sin[u] Sin[v]%, 4C0$[u}2005[v} Sin[v] +4Cos[v] Si n[u}ZSi n[v}}

Pi /2 ~2Pi
in[1652):= FI ux =j j F[G[u, VvI[[11], G[u, v1[[2]1], G[u, VvI[[31]1] . .n[u, v]dudv
0 0

28 it
out[1652]= ——
5

m Exercises

1. FindffSF-alS, where F(X, y, 2 = (€, z, yxX) and Sisgiven by G(u, v) = (uv,u—-v,u), 0su=<2,and-1<v=<1, and
oriented by n = T, xT,.

2.Find [[(F-dS whereF(x, y, 2 = (z x, y) and Sisthe portion of the ellipsoid g + % + é =1forwhichx<0, y=<0,

and z < 0 with outward normal orientation.

3. Let Shegiven by G(u, v) = ((1+vcos§)cosu, (1+vcos§)sinu, vsin % ), 0<u=2xand _71 <v=< %

a) Plot the surface S. (Sis an example of a Mobius strip.)

b) Find the surface area of <.

c) Evaluate [ (X2 + 2y?+3 Z)dS.

d) Find the intersection points of S and the xy-plane.

€) For each of the points on the intersection of S and the xy-plane, find the normal vector n.

) Show that n varies continuously but that n(2 7, 0) = —n(u, 0). (This showsthat Sis not orientable and hence it isimpossible to
integrate a vector field over S.)

m 16.6. Fundamental Theorems of Vector Analysis

Students should read Sections 17.1-17.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

In order to perform the operations of curl and divergence on vector fields discussed in this section using Mathematica, it is
necessary to first load the Vector Analysis package:

in653:= Needs [" Vect or Anal ysis™ "]
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The Fundamental Theorem of Calculus for functions of a single variable states that the integral of a function over an interval
(domain) can be calculated as the difference of its anti-derivative at the endpoints (boundary) of the interval. This integral
relationship between domain and boundary can be generalized to vector fields involving the operations of curl and divergence
and is described by the following three theorems:

m 16.6.1. Green's Theorem
Let F(x, y) = (P(X, ¥), Q(X, ¥)) avector field continuous on an oriented curve C. Then the line itegral of F along C is denoted by
JoF(x, ¥, 2-ds= [[Pdx+Qdy.

If c(t) = (x(t), y(t), z(t)) isthe vector equation of the curve C, then

fPdx+Qdy= [(Pex, y) £ +Q, y) T¥)dt.

Green's Theorem states that if C isasimple closed curve oriented counterclockwise and D is the region enclosed and if P and Q
are differentiable and have continuous first partial derivatives, then

9Q
fPax+Qdy=[f(5- %)JA.
Example 16.14. Compute the line integral 560 Y dx + e dy, where C isthe boundary of the square with vertices (0, 0), (1, 0),
(1, 1), (1, 0) oriented counterclockwise.

Solution: We will use Green's Theorem. Thus, we need to verify that the hypotheses of Green's Theorem hold. To this end we
define the function P and Q and compute their partial derivatives.

nes4:= Cear [X, y, P, Q]
P[X_, y_] = E2><+y
QIx_, y_1=EY

out[iess= €2 XY

outj16s6)= €Y

inj1657):= DIPIX, y1, X]
DIP[x, y1, Y¥1
DIQIX, Y], X]
DIQIX, Y1, VI

ouif1657)= 2 €2

oui1658)= @2 XY

out[1659]= O

out[16601= €™

The partial derivatives are continuous inside the square and the curve is oriented counterclockwise. Thus, the hypotheses of
Green's Theorem are satisfied. Note that the region D enclosed by CisgivenbyO<x=<land0O<y=<1.

1 ~1
In[1661]:= jj (D[Q[X! yl, X1 _D[P[X! yl, y1) dy dx
0 Jo

Out[1661]= _E (-1 +e)2 (1+e)
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in[1662):= N[%]

out[1662)= —-5. 4891

NOTE: If we were to solve this using the definition of line integral as discussed in Chapter 16 of this text, we would then need to
consider four pieces of parametrization of C and then sum the four integrals. Towards this end, let us use C; for the lower edge,

C, for the right edge, C; for the top edge, and C, for the |eft edge of the square. Here are the parametrizations followed by their
lineintegrals.

iniee3)= O ear [x1, x2, x3, x4, y1, y2, y3, y4, t, F, c1, c2, c3, c4]
FIx_, y_1={P[x, y1, QIx, y1}

x1[t_] =t

yl[t_]: 0
CL[t_1={x1[t], y1[t]}
x2[t_1=1

y2rt 1=t

c2[t _]1={x2[t], y2[t]}
X3[t_]=1—t
y3[t_1=1
C3[t_] = {x3[t], y3[t1}

x4[t_1=0
ya4[t _1=1-1t
CA[t _] ={x4[t], y4[t1}

ouieses)= {€**7, eV}
out[1665]= t

out[1666]= O

out1667= {t, 0}
out[1668]= 1

out[1669]= t

outi16701= {1, t}
outfi671]= 1 -t
out[1672)= 1

oufie73= {1-t, 1}
out[1674= O

out16751= 1 -t

ou1676)= {0, 1 -1}
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1 1
I[1677]:= j F[x1[t], yl[t]].cl' [t] dt +J F[x2[t], y2[t]].c2' [t]dt +
0 0

1 1
jF[xS[t], y3[t]1].c3' [t]dt +j FIx4[t], y4[t]].c4' [t]dt
0 0

1 -1l+e
out1677)= -1+ — +
e e

1 1
+E(—1+e2>—ge<—1+ez)

in[1678):= N[%]

out[1678= —-5. 4891

m 16.6.2. Stokes' Theorem

Let F(X, Y, 2 = (F1, F», F3) beavector field. The curl of F, denoted by curl(F) or V x F, is defined by

i j k
_ _ i i i _ [0Fs oF, 0F; oF3 OF, 0F,;
arlP =VxF=|5% 7 % <W_¥'E_K’§_W>
Fi Fo F3
Here we are using the "del" or (nabla) symbol V to denote the vector operator V = <;—X ;—y, j—z>.

The Mathematica command for computing the curl of a vector field F is Curl[F,coordsys], where coor dsys is the coordinate
system of the vector field. Thisis demonstrated in the next example.

Sokes's Theorem states that if F(X, y, 2) avector field with continuous partial derivatives and if Sis an oriented surface S with
boundary 9S, then

§F-dS= [[curl(F)-ds.
If Sisclosed, then it has no boundary and hence both integrals are equal to 0.

Recall that if the surface Sisgiven by G(u, v) = (x(u, v), y(u, v), z(u, v)), where (u, v) € D, then fscurI(F)-dSis given by
[ Jeeurl(F)-d'S = [ [Leurl(F) (G(u, v)) -n(u, v)dudv.
Example 16.15. Find the curl of the vector field F(x, vy, 2) = (xsin(yz), exVz, yx2>.

Solution: We use the Curl command:

npe7ei= Cear [F, F1, F2, F3, X, vy, 2]
F1 =x Sin[y z]
F2 =Bz
F3 =x2y
F=(F1, F2, F3}

ou[1680]= X Sinfy z]
out[1681]= Nz
Out[1682]= x? Yy

ouiessl= {x Sinfyz], &Nz, x? y}
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in[1684= Curl [F, Cartesian[x, Yy, z]]

ez

out[1684]= {f@X/V+X2, -2xy+xyCoslyz], -xz Cos [y ZJ}

NOTE: We obtain the same answer for the curl of F using the explicit formula:
Iness= curl = {6y F3-0,F2, 9,F1 -0,F3, axF2 -9, Fl}

ez

out[1685]= {—ex/y +x2, -2xy+xyCos[yz], -xzCos [y z}}

y

Or equivaently,

nese:= Curl F = {D[F3, y] -D[F2, z], D[F3, x] -D[F1, z], D[F2, x] -D[F1, y]1}

ez

Out[1686]= {—ex/y +x2, 2xy-xyCos[yz], -xz Cos [y z]}

y

Example 16.16. Let f(X, y, 2 be a function of three variables with continuous first and second partial derivatives and let

F =V f bethe gradient of f. Find the curl of the vector field F.

Solution:

npes7= Cear [f, F1, F2, F3, x, y, z]
F1 =D[f [x, vy, 2], X]
F2 =DIf [x, vy, 2], Y]
F3 =D[f [x, vy, z], 2]
F={F1, F2, F3}

ouriesgl= 100 [x, y, 7]

0,1,0) [

out[1689)= f ¢ X, Y, z]

f (0,0,1) [

Out[1690]= X, Y, Z]

oupeer= {f 200 x, y, z], £ OV x, y, z], £OODx, y, 7]}
Thenthecurl of Fis
npe92):= Curl [F, Cartesian[x, y, z]]

ouf1692)= {0, 0, 0}

To see why the curl is zero, let us examine each partial derivative used in computing of the curl of F.

inf693:= D[F3, y1
DIF2, 7]

(0,1,1) [

out{1693]= f X, Y, Z]

oufteaa= f O [x, y, 7]

349

NOTE: Here f®'V[x, y, z] stands for f,,. Thus, the two partial derivatives that appear in the x-component of the curl of F are

equal and hence their difference is zero. Similarly, we have
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inf169s):= D[F3, X1
DIFL, z]

oueesi= £ 0D [x, y, z)
ouieos= F 0D [x, y, z]
and

inf16971= D[F2, X]
D[F1, y]

oueer= £ 10 [x, y, z]
oufieog= 110 [x, y, 7]

Example 16.17. Find §, F-dS, where F(x, y, 2 = (xyz z+3x -3y, y?x)and Sisthe upper hemisphere of radius 4.

Solution: Notethat dSisacircle of radius 4 lying on the xy-plane. Hence, d S can be parametrized by
Xx=4cost,y=4sint,z=0,where O<t=<2n.

Using the line integral definition, we have

npeog)= Cear [F, X, vy, z, t, ¢, curl F]
FIx_, y_, z_1={xyz, z+3x-3y, y?x}
x[t_]1=4Cos[t]
yIt_1=4Sin[t]
z[t_1=0
Clt_T={x[t]l, y[tl, z[t1}

Out[1700]= {x yz, 3x-3y+2z, X yz}
ou1701)= 4 Cos [t ]

out[1702)= 4 Si n [t ]

out[1703]= 0

out1704)= {4 Cos[t], 4Sin[t], 0}

2 Pi

In[1705]:= j FIx[t], y[t], z[t]].c' [t]dt
0

out[1705)= 48 1t

Next, we use Stokes Theorem to obtain the same answer via the corresponding surface integral. The parametrization of the
upper hemisphere of radius 4 isgiven by G(u, v) = {x(u, v), y(u, v), z(u, v)}, where

x=4cosusinv, y=4sinusinv,andz=4cosv, where O=<u=<2r,0=<v=<nx/2

We now compute the normal of the upper hemisphere.
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n[1706)= G ear [G u, v, Tu, Tv, n]
G[u_, v_]1:= {4Cos[u] Sin[v], 4Sin[u] Sin[v], 4Cos[V] }
Tufu_, v_]:=D[G[u, V], u]
Tv[lu_, v_]:=D[G[u, Vv], V]
nfu_, v_] =Cross[Tv[u, v], Tufu, v]]

ouri7i0)- {16 Cos [u] Sin[v]? 16Sin[u] Sin[v]? 16 Cos[u]?Cos[v]Sin[v] +16Cos[v] Sin[u]?Sin[v]}
Thecurl of Fis

mp711= curl F[x_, y_, z_1 =Curl [F[x, y, z], Cartesian[x, Yy, z]]

ou7i= {-1+2xy, xy-y% 3-xz}

The surface integral is given by

Pi /2 ~2Pi
In[1712]:= J J curl F[G[u, vI[[11], G[u, v1[[2]]1, G[u, v][[31]1].n[u, v]dudv
0 0
out[1712)= 48 7t

Example 16.18. Find the flux of the curl of the vector field F(x, y, 2) = (X2, 22, y+ x?) across S, where S is the part of the
cone 72 = X2 + y? for which 1 < z < 4 with outward normal orientation.

Solution: First we find the parametric equation of the cone. This can be given by x = ucosv, y=usinv, and z= u, where
O<sv=2randl=u=<4

For the cone to have the outward orientation, we note that n = T, x T,. With thisin mind we compute n through the following
steps.

np713:= Cear [F, G u, v, Tu, Tv, n]
FIx_, y_, z_1={x*+y? x+2z? 0}
Glu_, v_1:= {uCos[v], uSin[v], u}
Tufu_, v_]:=D[G[u, V], u]
Tv[u_, v_]:=D[G[u, v], V]
nfu_, v_]1=Cross[Tv[u, v], Tufu, v]]

out[1714]= {XZ +y2, x +22, 0}
oui71g= {uCos[v], uSin[v], -uCos (vi2-uSin [v]z}
We now compute the flux of curl (F) across S through the following steps.

np719= curl F[x_, y_, z_] =Curl [F[x, y, z], Cartesian[Xx, ¥y, z]]

ouf1719= {-2z, 0, 1 -2y}

4 ~2Pi
in[1720):= Fl ux =jj curl F[G[u, v]I[I11]1, G[u, v1[I[21], G[u, V1[[3]11].n[u, v]dvdu
1 Jo

out1720)= -15 7

m 16.6.3. Divergence Theorem
Let F(x, Y, 2) = (F1, F2, F3) beavector field. The divergence of F, denoted by div(F) or V - F, isdefined by

' = L W R
div(F) =V -F=— t oy T
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whereV = <ax' 3y’ az>.

The Mathematica command for computing the divergence of a vector field F is Div[F,coordsys], where coordsys is the coordi-
nate system of the vector field. Thisisdemonstrated in the next example.

The Divergence Theorem states the following: let W be a region in R® whose boundary W is a piecewise smooth surface,
oriented so that the normal vectorsto W point outside of W, and F(X, Y, 2) be a vector field with continuous partial derivatives
whose domain contains W. Then

[F-ds = [[f,div(F)dV
Example 16.19. Find the divergence of the vector field F(x, vy, 2) = ( xsin(yz), e/Vz, yx2>.

Solution:

np721= C ear [F1, F2, F3, x, y, z]
F1 =x Sin[y z]
F2 =Bz
F3 =x2y
F={F1, F2, F3}

ou1722]= X Sinly z]

out[1723]= Nz

ouri724)= X2y

ounzzs (xSinfyz], &Mz, x?y}
Then the divergence of F is

n1726):= Div[F, Cartesian[x, y, z]]

/Y x z

out[1726]= - +Sin[yz]

y
NOTE: Again we obtain the same answer for the divergence of F using the explicit formula:
np727:= D[F1, x1 +D[F2, y] + D[F3, z]

/Y x z

ou[1727)= - +Sinlyz]

y

Example 16.20. Find [ [ F-dS, where F(x, y, 2) = (X, y?, y+2) and S= W is the boundary of the region W contained in the

cylinder X% + y? = 4 between the plane z= x and z = 8.

Solution: If Sisthe boundary of the solid W, then W is given by

W:{(x, Y,2): -2<x<2, —\V4-x2 sy=\4-x2, xssz}
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inpi72g:= O ear [F, divF, x, vy, z]
FIx_, y_, z_1={x, y% y+z}
divF =D Vv[F[Xx, y, z], Cartesian[x, Yy, z]]

outrzgl= {X, y?, y+z}

oul[1730)= 2+ 2y

By the Divergence Theorem, we see that [ [.F-d'Sisgiven by

2 ~\4-x2 -8
In[1731]:= J J J di vFdz dy dx
—2J -4 4-x2 Jx

ou[1731]= 64 7

m Exercises

1. Compute the line integral SEc y2 sinxdx+ x ydy, where C is the boundary of the triangle with vertices (0, 0), (1, 0), (1, 1),
oriented counterclockwise.

2. Find the curl of the vector field F(x, y, 2) = (In(x? + y? + ), X/ z, € sin(y 2)).
3.Find ¢ F-dS, where F(x, y, 2) = (tan(x y 2), €~ Y%, sec(y? x)) and Sisthe upper hemisphere of radius 4.
4. Find the flux of the curl of the vector field
F(x ¥, 2 =(xe-3xy+2,22-xZ+y", 6y+22%%)
across S, where Sis the part of the paraboloid z = X2 + y2 for which z < 9with outward normal orientation.

5.Find [ [ F-d'S, where F(x, y, 2) = ( x€?, y?, y + zX) and S = AW is the boundary of the region W bounded by the plane

3x+4y+5z=15and the coordinate planesin the first octant.



Appendices

m A. Traditional Notation versus Mathematica Notation

Traditional Mathematica

f(x) = X2 f=x72or f[x_]:=x"2
f(1) f/l.x=>121or f[1]

NI sqr[ £ [x1]

| ()| Abd f[x]]

leir; f(X) Limit[ f[x], x => a]

f'(x) f '"[x]or D[f[x], x]

[fodx Integrate[ f [x], X]

fabf(x)dx Integrate[ f[X], {x, &, b}] or Nintegrate[ f [x], {X, a, b}]
Plot f(x) on[a, b] Plot[ f [X], {x, &, b}]

Solve f(x) = g(x) for x Solvel f [x] == g[x], x]

n Pi or 7 (from palette menu)

e (Euler number) E or e (from pal ette menu)

00 I nfinity or co (from palette menu)
sinx Sin[x]

arcsinx or sin"* x ArcSin[x]

eX E~x or Exp[X] or &*

Inx Log[x]

log , x Log[x, a]

m B. Useful Programming and Editing Commands

Command Description
SHIFT+ENTER Evaluates input
% Refers to previous output

% % Refers to second previous output



%k Refersto output line k

CTRL+L Reproduces the previous input
CTRL+SHIFT+L Reproduces the previous output
?Plot Listsall Mathematica commands containing the expression Plot

(or any other specified command)

m C. Formatting Cells in a Notebook

Mathematica organizes a notebook in terms of data boxes called cells. The size of acell isindicated by the corresponding size of
the right bracket symbol attached to the right-hand margin of each cell. A new cell can always be created by moving the cursor
to any position between cells and begin typing. To edit acell, just move the cursor to the desired position within that cell.

Each cell can be formatted to perform a specified function. By default, a new cell is aways formatted as an input cell, which are
used to evaluate Mathematica expressions. Mathematica outputs are contained within output cells, naturally. Other cell formats
include title, section, subsection, text, formula, etc. The format of a cell isindicated by the left-most box on the toolbar. To
change its format, first highlight the cell by clicking on the right bracket symbol attached to it. Then click on the indicator box
and choose the desired format.

m D. Saving and Printing a Notebook

Saving or printing a notebook can be accomplished by going to the File menu and selecting the desired option. To print a portion
of a notebook that has been highlighted, choose the Print Selection option instead.
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