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Chapter 1 Introduction

� 1.1.  Getting Started

Welcome to Mathematica!  To make your first experience in using this computer algebra system as easy as possible, we recom-
mend that you read this introductory chapter very carefully.  We will discuss basic syntax and frequently used commands.

NOTE:  You may need to obtain a computer account on your school's computer network in order to access  the Mathematica
software package on computers at your campus.  Check with your instructor or your school's IT office.

� 1.1.1.  First-Time Users of Mathematica 6

Launch the program Mathematica  6 on your computer.  Mathematica  will automatically create  a new notebook (see typical
startup screen below).

 

� 1.1.2.  Entering and Evaluating Input Commands

Just start typing to input commands (a cell formatted as an input box will be automatically created).  For example, type 3+7.  To
evaluate this command or any other command(s) contained inside an input box, simultaneously press the SHIFT+ENTER keys,
i.e., the keys SHIFT and ENTER, at the same time.  Be sure your mouse's cursor is positioned inside the input box or else select
the input box(es)  that  you want to evaluate.   The  kernel  application,  which does all the computations, will load at the first
evaluation.  This is a one-time procedure whenever Mathematica is launched and may take a few seconds depending on the speed
of your computer, so be patient.



As can be seen from the screen shot above, a cell formatted as an output box and containing the value 10 is generated as a result
of the evaluation.  To create another input box (cell), just start typing again and an input box will be inserted at the position of the
cursor (use the mouse to position the cursor where you would like to insert the new input box).  

� 1.1.3.  Help Menu

Mathematica provides an on-line help menu to answer many of your questions about the program.  One can search for a particu-
lar command expression in the Documentation Center under this menu or else just position the cursor next to the expression (for

example Plot) and right click to select Find Selected Function or else click on Help (see screen shot below). 

 

Mathematica will then display a description of Plot, including examples on how to use it. 
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For only a brief description of Plot (or any other expression expr), just evaluate ?Plot (or ?expr).

In[1]:= ? Plot

Plot@ f , 8x, xmin, xmax<D generates a plot of f as a function of x from xmin to xmax.

Plot@8 f1, f2, ¼<, 8x, xmin, xmax<D plots several functions fi. �

� 1.2.  Mathematica's Conventions for Inputting Commands

� 1.2.1.  Naming

Built-in Mathematica commands, functions, constants, and other expressions begin with capital letters, and are (for the most part)
one or more full-length English words (each word is capitalized).  Furthermore, Mathematica is case sensitive; a common cause

of error is the failure to capitalize command names.  For example, Plot, Integrate, and FindRoot are valid function names.  Sin,

Exp, Det, GCD, and Max  are some of the standard mathematical abbreviations that are exceptions to the full-length English
word(s) rule.

User-defined functions and variables can be any mixture of uppercase  and lowercase letters and numbers.  However, a name

cannot begin with a number.  User-defined functions may begin with a lowercase letter, but this is not required.  For example, f,
g1, myPlot, r12, sOLution, and Method1 are permissible function names.

� 1.2.2.  Parenthesis,  Brackets, and Braces

Mathematica interprets various types of delimiters (brackets) differently.  Using an incorrect type of delimiter is another common
source of error.  Mathematica's bracketing conventions are as follows:

1) Parentheses, ( ), are used only for grouping expressions.  For example, (x-y)^2, 1/(a+b), (x^3-y)/(x+3y^2)  demonstrate proper

use of parentheses.  Users should realize that Mathematica understands f(2) as f  multiplied with 2 and not as the function f HxL
evaluated at x = 2.
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2) Square brackets, [ ], are used to enclose function arguments.  For example, Sqrt[346], Sin[Pi], and Simplify[(x^3-y^3)/(x-y)]
are valid uses of square brackets.  Therefore, to evaluate a function f HxL at x = 2, we can type f[2].

3) Braces or curly brackets,  { },  are  used for defining lists, ranges and iterators.  In all cases,  list elements are separated  by
commas.  Here are some typical uses of braces:

{1, 4, 9, 16, 25, 36}: This lists the square of the first six positive integers;

Plot[f[x],{x,-5,5}]: The list {x,-5,5} here specifies the range of values for x in plotting f ;

Table[m^3,{m,1,100}]: The list {m,1,100} here specifies the values of the iterator m in generating a table of cube powers of the

first 100 whole numbers.

� 1.2.3.  Lists

A list (or string) of elements can be defined in Mathematica  as List[e1, e2,...,en] or {e1, e2,...,en}.  For example, the following

command defines S = 81, 3, 5, 7, 9< to be the list (set) of the first five odd positive integers.

In[2]:= S = List@1, 3, 5, 7, 9D
Out[2]= 81, 3, 5, 7, 9<

To refer to the kth element in a list named expr, just evaluate expr[[k]].  For example, to refer to the fourth element in S, we

evaluate

In[3]:= S@@4DD
Out[3]= 7

It is also possible to define nested lists whose elements are themselves lists, called sublists.  Each sublist contains subelements.
For example, the list T = 881, 3, 5, 7, 9<, 82, 4, 6, 8, 10<< contains two elements, each of which is a list (first five odd and even

positive integers).

In[4]:= T = 881, 3, 5, 7, 9<, 82, 4, 6, 8, 10<<
Out[4]= 881, 3, 5, 7, 9<, 82, 4, 6, 8, 10<<

To refer to the kth subelement in the jth sublist of expr, just evaluate expr[[j,k]].  For example, to refer to the third subelement

in the second sublist of T  (or 6), we evaluate

In[5]:= T@@2, 3DD
Out[5]= 6

A detailed description of how to manipulate lists (e.g., to append elements to a list or delete elements from a list) can be found in

Mathematica's Documentation Center (under the Help menu).  Search for the entry List.

� 1.2.4.  Equal Signs

Here are Mathematica's rules regarding the use of equal signs:

1) A single equal sign (=) assigns a value to a variable.  Thus, entering q = 3 means that q will be assigned the value 3.  If we

then evaluate 10+q^3, Mathematica will return 37.  As another example, suppose the expression y = x^3-x+1 is entered.  If we
then assign a value for x, say x = 2, then in any future input containing y, Mathematica  will use this value of x to calculate y,

which would be 7 in our case.

2) A colon-equal sign (:=) creates  a delayed statement for an expression and can be used to define a function.  For example,

typing f[x_]: = x^3-x+1 tells Mathematica to delay the assignnment of f HxL as a function until f  is evaluated at a particular value

of x.  We will say more about defining functions in section 1.3 below.
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2) A colon-equal sign (:=) creates  a delayed statement for an expression and can be used to define a function.  For example,

typing f[x_]: = x^3-x+1 tells Mathematica to delay the assignnment of f HxL as a function until f  is evaluated at a particular value

of x.  We will say more about defining functions in section 1.3 below.

3) A double-equal sign (= =) is a test of equality between two expressions.  If we had previously set x = - 5, then evaluating x = =
-5  returns True,  whereas evaluating x = = 5  returns False.   Another common usage of = =  is to solve equations, such as in

Solve[x^3-x+1= = 0, x] (see section 1.5 below).

� 1.2.5.  Referring to Previous Results

Mathematica saves all input and ouput in a session.  A previous output can be referred to by using the percent sign %.  A single

% refers to Mathematica's last output, %% refers to the next-to-last ouput, and so forth.  The command %k refers to the output

line numbered k.  For example, %45 refers to output line number 45.

NOTE: CTRL+L reproduces the last input and CTRL+SHIFT+L reproduces the last output.

� 1.2.6.  Commenting

One can insert comments on any input line.  The comments should be enclosed between the delimiters (* and *).  For example,

In[6]:= H* This command plots the graph of two functions in different colors. *L
Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 Pi<, PlotStyle -> 8Red, Blue<D

Out[6]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

NOTE: One can also insert comments by creating a textbox.  First create an input box.  Then select it and format it as Text using
the drop-down window menu.

� 1.3.  Basic Calculator Operations

Mathematica  uses  the  standard  symbols +,  -,  *,  /,  ^,  !  for  addition,  subtraction,  multiplication,  division,  raising  powers
(exponents), and factorials, respectively.  Multiplication can also be performed by leaving a blank space between factors.  Powers
can also be entered by using the palette menu to generate a superscript box (or else press CTRL+6) and fractions can be entered
by generating a fraction box (from palette menu or pressing CTRL+/ ).  

To generate numerical output in decimal form, use the command N[expr] or N[expr,d].  In most cases, N[expr] returns six digits

of expr by default and may be in the form n.abcde * 10m  (scientific notation), whereas N[expr,d] attempts to return d  digits of

expr.  

NOTE: Mathematica can perform calculations to arbitrary precision and handle numbers that are arbitrarily large or small.

Here are some examples:
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In[7]:= Pi

Out[7]= Π

In[8]:= N@PiD
Out[8]= 3.14159

In[9]:= N@Pi, 200D
Out[9]= 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348 �

25342117067982148086513282306647093844609550582231725359408128481117450284102701938521105 �

5596446229489549303820

In[10]:= 65
4

Out[10]= 2 210 708 544 304 025 665 789 890 545 869 282 983 189 550 730 342 026 817 054 484 706 923 451 925 215 263 �

872 221 875 601 412 877 526 055 033 568 150 952 983 731 997 599 172 762 855 409 042 386 638 455 130 114 567 �

918 179 610 415 056 135 043 685 865 981 465 821 197 678 998 054 981 600 364 232 459 680 450 883 986 513 397 �

952 866 100 532 961 319 277 446 513 221 836 325 497 685 382 494 082 501 890 188 075 860 096 650 899 943 982 �

604 939 901 346 570 765 022 869 199 395 889 789 728 382 946 141 484 842 179 531 904 056 612 897 175 359 078 �

633 987 736 867 003 878 781 857 613 656 893 578 474 392 372 463 398 376 238 316 805 554 810 164 724 551 909 �

376

In[11]:= 1 �300!

Out[11]= 1 �
306 057 512 216 440 636 035 370 461 297 268 629 388 588 804 173 576 999 416 776 741 259 476 533 176 716 867 �

465 515 291 422 477 573 349 939 147 888 701 726 368 864 263 907 759 003 154 226 842 927 906 974 559 841 �

225 476 930 271 954 604 008 012 215 776 252 176 854 255 965 356 903 506 788 725 264 321 896 264 299 365 �

204 576 448 830 388 909 753 943 489 625 436 053 225 980 776 521 270 822 437 639 449 120 128 678 675 368 �

305 712 293 681 943 649 956 460 498 166 450 227 716 500 185 176 546 469 340 112 226 034 729 724 066 333 �

258 583 506 870 150 169 794 168 850 353 752 137 554 910 289 126 407 157 154 830 282 284 937 952 636 580 �

145 235 233 156 936 482 233 436 799 254 594 095 276 820 608 062 232 812 387 383 880 817 049 600 000 000 �

000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

In[12]:= H* This command returns a decimal answer of the last output *L
N@%D

Out[12]= 3.267359761105326 ´10-615

Example 1.1.  How close is ã 163  Π to being an integer?

Solution: 

In[13]:= E^HPi *Sqrt@163DL
Out[13]= ã 163 Π

In[14]:= N@%, 40D
Out[14]= 2.625374126407687439999999999992500725972 ´1017

We can rewrite this output in non-scientific notation by moving the decimal point 17 places to the right.  This shows that e 163  Π

is very close to being an integer.  Another option is to use the command Mod[n,m], which returns the remainder of n when

divided by m, to obtain the fractional part of e 163  Π:
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In[15]:= Mod@%, 1D
Out[15]= 0.9999999999992500725972

In[16]:= 1 - %

Out[16]= 7.499274028 ´10-13

� 1.4.  Functions

There  are  two different  ways to represent  functions in Mathematica,  depending on how they are  to be used.   Consider the
following example:

Example 1.2.  Enter the function f HxL =
x2+x+2

x+1
 into Mathematica.

Solution: 

Method 1:  Simply assign f  the expression x2+x+2
x+1

, e.g.,

In[17]:= Clear@f, xD H* This clears the arguments f and x *L
In[18]:= f = Hx^2 + x + 2L � Hx + 1L

Out[18]=
2 + x + x2

1 + x

To evaluate f HxL at x = 10, we use the substitution command �. (slash-period) as follows:

In[19]:= f �. x -> 10

Out[19]=
112

11

Warning: Recall that Mathematica reads f(x) as f multiplied by x.  

In[20]:= f H10L
Out[20]=

10 I2 + x + x2M
1 + x

Method 2: An alternative way to explicitly represent f as a function of the argument x is to enter

In[21]:= Clear@fD
f@x_D := Hx^2 + x + 2L � Hx + 1L

Evaluating the command f[10] now tells Mathematica to compute f  at x = 10. 

In[23]:= f@10D
Out[23]=

112

11

More generally, the command f[{a,b,c,...}] evaluates f HxL for every value of x in the list {a,b,c,...}:
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In[24]:= f@8-3, -2, -1, 0, 1, 2, 3<D
Power::infy :  Infinite expression

1

0
encountered. �

Out[24]= :-4, -4, ComplexInfinity, 2, 2,
8

3
,
7

2
>

Here,  Mathematica  is  warning us  that  it  has  encountered  the  undefined  expression  1
0

 in  evaluating f H-1L  by returning the

message ComplexInfinity.

Remark:  If  there  is  no  need  to  attach  a  label  to  the  expression  x2+x+2
x+1

,  then  we  can  directly  enter  this  expression  into

Mathematica:

In[25]:=
x2 + x + 2

x + 1
�. x -> 10

Out[25]=
112

11

In[26]:=
x2 + x + 2

x + 1
�. x -> 8-3, -2, -1, 0, 1, 2, 3<

Power::infy :  Infinite expression
1

0
encountered. �

Out[26]= :-4, -4, ComplexInfinity, 2, 2,
8

3
,
7

2
>

Piece-wise  functions  can  be  defined  using the  command If@cond, p, qD,  which evaluates  p  if  cond  is  true;  otherwise,  q  is

evaluated.

Example 1.3.  Enter the following piece-wise function into Mathematica:

f HxL = : tan K Π x
4

O, if È x È < 1;

x, if È x È ³ 1,

Solution: 

In[27]:= f@x_D := If@Abs@xD < 1, Tan@Pi *x �4D, xD
� 1.5.  Palettes

Mathematica allows us to enter commonly used mathematical expressions and commands from six different palettes.  Palettes are
calculator  pads containing buttons that can be clicked on to insert  the desired expression or command into a command line.
These palettes can be found under the Palettes menu.  If the Basic Math Input Palette does not appear by default, then click on
Palettes from the menu and select BasicMathInput.
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Example 1.4.  Enter 3

Π4
into a notebook.

Solution: 

Here is one set of instructions for entering this expression using the Basic Math Input Palette:

a) Click on the palette button � .

b) Click on �

�
.

c) Enter the number 3 into the highlighted top placeholder.

3

�

d) Press the TAB key to move the cursor to the bottom placeholder.
e) Click on ��.

f) To insert Π  into the base position, click on the palette button for Π.

3

Π�

g) Press the TAB key to move the cursor to the superscript placeholder.
h) Enter the number 4.
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3

Π4

� 1.6.  Solving Equations

Mathematica  has a  host of built-in commands to help the user  solve equations and manipulate  expressions.   The  command

Solve@lhs == rhs, varD solves the equation lhs == rhs (recall Mathematica's use of the double-equal sign) for the variable var.

For example, the command below solves the quadratic equation x2 - 4 = 0 for x.  

In[28]:= Solve@x^2 - 4 � 0, xD
Out[28]= 88x ® -2<, 8x ® 2<<
A  system  of  m  equations  in  n  unknowns  can  be  solved  with  the  command

Solve@8lhs1 == rhs1, lhs2 == rhs2, ..., lhsm == rhsm<, 8x1, x2, ..., xn<D.  In situations where exact solutions cannot be obtained

(e.g.  certain polynomial equations of degree five or higher), numerical approximations  can  be obtained through the command

NSolve@lhs == rhs, varD.  Here are two examples:

In[29]:= Solve@82 x - y � 3, x + 4 y � -2<, 8x, y<D
Out[29]= ::x ®

10

9
, y ® -

7

9
>>

In[30]:= NSolve@x^5 - x + 1 � 0, xD
Out[30]= 88x ® -1.1673<, 8x ® -0.181232 - 1.08395 ä<, 8x ® -0.181232 + 1.08395 ä<,

8x ® 0.764884 - 0.352472 ä<, 8x ® 0.764884 + 0.352472 ä<<
There  are  many commands to algebraically  manipulate  expressions:  Expand,  Factor,  Together,  Apart,  Cancel,  Simplify,

FullSimplify, TrigExpand, TrigFactor, TrigReduce, ExpToTrig, PowerExpand, and ComplexExpand.  

In[31]:= Factor@x^2 + 4 x - 21D
Out[31]= H-3 + xL H7 + xL
NOTE: These commands can also be entered from the Algebraic Manipulation Palette; highlight the expression to be manipu-
lated and click on the button corresponding to the command to be inserted.  The screen shot below demonstrates how to enter the

Factor command.
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� Exercises 

1. Evaluate the following expressions:

a) 103.41+20*76 b) 52+Π

1+Π
 c) 1

1+
1

1+
1

4!

 d) 2.06*109

0.99*10-8
e) What is the remainder of 1998 divided by 13?

2.  Enter the following functions into Mathematica and evaluate each at x = 1:

a) f HxL = 2 x3 - 6 x2 + x - 5 b) gHxL =
x2-1

x2+1
c) hHxL = É x - 3 É

3. Evaluate the following functions using Mathematica:

a) f HxL = 1001 + x4 at x = 25 b) 1 + x + x
3

+ x
4

 at x = Π

4. Enter the following six expressions into Mathematica:

a) 80
3

b) 1024
5

2-3
c) 125

3

d) 10 a7 b
3

e) 
x-3 y4

5

-3
f) 3 m

1
6  n

1
3

4 n
-

2
3

2

.

5.  Expand each of the following expressions:

a) Hx + 1L Hx - 1L b) Hx + y - 2L H2 x - 3L
6.  Factor each of the following expressions:

a) x3 - 2 x2 - 3 x b) 4 x2�3 + 8 x1�3 + 3.6 c) 6 + 2 x - 3 x3 - x4

7.  Simplify the following expressions using both of the commands Simplify and FullSimplify (the latter uses a wider variety of

methods to simplify expressions).

a) x2+4 x-12
3 x-6

b) 
J 2

x
-3N

1-
1

x-1

c) HxH1 - 2 xLL-3�2
+ H1 - 2 xL-1�2
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a) x2+4 x-12
3 x-6

b) 
J 2

x
-3N

1-
1

x-1

c) HxH1 - 2 xLL-3�2
+ H1 - 2 xL-1�2

8.  Perform the indicated operations:

a) - 1
x

+
2

x2+1
+

1

x3+x
b) 5

y
-

6
2 y+1

¸
5
y

+ 4

9.  Solve the following equations for x:

a) x2 - x + 1 = 0 b) xH1 - 2 xL-3�2
+ H1 - 2 xL-1�2

= 0
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Chapter 2 Graphs of Functions,  Limits, and Continuity

� 2.1.  Plotting Graphs

Students should read Chapter 1 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

� 2.1.1.  Basic Plot

In this section we will discuss how to plot graphs of functions using Mathematica and how to utilize its various plot options.  We
will discuss in detail several options that will be useful in our study of calculus.  The basic syntax for plotting the graph of a

function y = f HxL with x ranging in value from a to b is Plot@ f , 8x, a, b<D. On the other hand, Plot@8 f1, f2, ..., fN <, 8x, a, b<D
plots the graphs of f1, f2, ..., fN  on the same set of axes.

Example 2.1.  Plot the graph of f HxL = x2 - 3 x + 1 along the interval @-2, 5D.
Solution: 

In[32]:= PlotAx2 - 3 x + 1, 8x, -2, 5<E

Out[32]=

-2 -1 1 2 3 4 5

2

4

6

8

10

Example 2.2.  Plot the graph of y = cos H3 xL along the interval @-4, 4D.
Solution: 
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In[33]:= Plot@Cos@3 xD, 8x, -4, 4<D

Out[33]=
-4 -2 2 4

-1.0

-0.5

0.5

1.0

Example 2.3.  Plot the graphs of the two functions given in Examples 2.1 and 2.2 prior on the same set of axes to show their
points of intersection.

Solution: 

In[34]:= PlotA9 x2 - 3 x + 1, Cos@xD=, 8x, -3, 6<E

Out[34]=

-2 2 4 6

5

10

15

Example 2.4.  Plot the graphs of f HxL =
x2+x+1

x+1
and gHxL =

sin H4 xL
4

 on the same set of axes.

Solution: 

In[35]:= Plot@8Hx^2 + x + 2L � Hx + 1L, Sin@4 xD �4<, 8x, -4, 4<D

Out[35]=
-4 -2 2 4

-10

-5

5

10

Note that the graph of y = Hsin 4 xL � 4 is displayed poorly in output above since its range (from -1 to 1) is too small compared to

the  range  of  y = Ix2 + x + 2M � Hx + 1L.   We  can  zoom  in  using  the  PlotRange  option.  The  syntax  for  PlotRange  is

PlotRange ® 8c, d<  (the  arrow is  generated  by entering a minus sign (-)  followed by greater  than sign) where  @c, dD  is  the

interval on the y-axis to be displayed.  More generally, PlotRange -> 88a, b<, 8c, d<< specifies the interval @a, bD on the x-axis

while @c, dD specifies the interval on the y-axis. 
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Note that the graph of y = Hsin 4 xL � 4 is displayed poorly in output above since its range (from -1 to 1) is too small compared to

the  range  of  y = Ix2 + x + 2M � Hx + 1L.   We  can  zoom  in  using  the  PlotRange  option.  The  syntax  for  PlotRange  is

PlotRange ® 8c, d<  (the  arrow is  generated  by entering a minus sign (-)  followed by greater  than sign) where  @c, dD  is  the

interval on the y-axis to be displayed.  More generally, PlotRange -> 88a, b<, 8c, d<< specifies the interval @a, bD on the x-axis

while @c, dD specifies the interval on the y-axis. 

In[36]:= Plot@8Hx^2 + x + 1L � Hx + 1L, Sin@4 xD �4<, 8x, -4, 4<, PlotRange ® 8-4, 4<D

Out[36]=
-4 -2 2 4

-4

-2

2

4

Example 2.5.    Plot the graphs of the following functions.

a)   f HxL =
x2

x2-4
b) f HxL = sin x + cos x c) f HxL = x ex + ln x 

Solution: We recall that the natural base ã is entered as E or ã (from the Basic Math Input Palette) and that ln x is Log@xD. Note

also that sin x and cos x are to be entered as Sin@xD and Cos@xD (see Chapter 1 of this text for a discussion of Mathematica's

notation).  We leave it to the reader to experiment with different intervals for the domain of each graph so as to capture its salient
features. 

a)

In[37]:= PlotB x2

4 - x2
, 8x, -5, 5<F

Out[37]=
-4 -2 2 4

-4

-2

2

4

b)
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In[38]:= Plot@Sin@xD + Cos@xD, 8x, -2 Pi, 2 Pi<D

Out[38]=
-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

c)

In[39]:= Plot@x Ex - Log@xD, 8x, -3, 3<D

Out[39]=

-3 -2 -1 1 2 3

10

20

30

40

50

60

NOTE:  The above graph needs to be read carefully. First of all, it is clear from the graph above that f HxL = x ex - ln x tends to ¥

as x tends to 0.  It is also clear from the graph that f HxL tends to ¥ as x tends to ¥.   Note, however, that the graph suggests

(incorrectly) that the domain is @0, ¥L.  If we zoom in on the graph near x = 0, then we see that the domain does NOT include the

point x = 0. 

In[40]:= Plot@x E^x - Log@xD, 8x, 0, 0.1<D

Out[40]=

0.02 0.04 0.06 0.08 0.10

3.0

3.5

4.0

4.5

5.0

5.5

� 2.1.2.  Plot Options
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�

2.1.2.  Plot Options

Next we will introduce various options that can be specified within the Plot command.  To begin with, evaluating the command

Options[Plot] displays the following options:

In[41]:= Options@PlotD
Out[41]= :AlignmentPoint ® Center, AspectRatio ®

1

GoldenRatio
, Axes ® True, AxesLabel ® None,

AxesOrigin ® Automatic, AxesStyle ® 8<, Background ® None, BaselinePosition ® Automatic,

BaseStyle ® 8<, ClippingStyle ® None, ColorFunction ® Automatic,

ColorFunctionScaling ® True, ColorOutput ® Automatic, ContentSelectable ® Automatic,

DisplayFunction ¦ $DisplayFunction, Epilog ® 8<, Evaluated ® Automatic,

EvaluationMonitor ® None, Exclusions ® Automatic, ExclusionsStyle ® None,

Filling ® None, FillingStyle ® Automatic, FormatType ¦ TraditionalForm,

Frame ® False, FrameLabel ® None, FrameStyle ® 8<, FrameTicks ® Automatic,

FrameTicksStyle ® 8<, GridLines ® None, GridLinesStyle ® 8<, ImageMargins ® 0.,

ImagePadding ® All, ImageSize ® Automatic, LabelStyle ® 8<, MaxRecursion ® Automatic,

Mesh ® None, MeshFunctions ® 8ð1 &<, MeshShading ® None, MeshStyle ® Automatic,

Method ® Automatic, PerformanceGoal ¦ $PerformanceGoal, PlotLabel ® None,

PlotPoints ® Automatic, PlotRange ® 8Full, Automatic<, PlotRangeClipping ® True,

PlotRangePadding ® Automatic, PlotRegion ® Automatic, PlotStyle ® Automatic,

PreserveImageOptions ® Automatic, Prolog ® 8<, RegionFunction ® HTrue &L,
RotateLabel ® True, Ticks ® Automatic, TicksStyle ® 8<, WorkingPrecision ® MachinePrecision>

� PlotStyle

PlotStyle is an option for Plot that specifies the style of lines or points to be plotted. Among other things, one can use this option

to specify a color of the graph and the thickness of  the curve.  PlotStyle  should be followed by an arrow and then the option:

PlotStyle ® {option}. For example, if we want to plot a graph colored in red, we evaluate  

In[42]:= PlotAx2, 8x, -3, 3<, PlotStyle -> RedE

Out[42]=

-3 -2 -1 1 2 3

2

4

6

8

The next example shows how to use PlotStyle to specify two styles: a color and thickness.
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In[43]:= PlotAx2, 8x, -3, 3<, PlotStyle -> 8 Blue, Thickness@0.02D<E

Out[43]=

-3 -2 -1 1 2 3

2

4

6

8

PlotStyle can also be used to specify options for two or more graphs.  Here are two examples to demonstrate this:

In[44]:= PlotA9x2, x3 - x - 1=, 8x, -3, 3<, PlotStyle -> 8Green, Yellow <E

Out[44]=

-3 -2 -1 1 2 3

-10

-5

5

10

15

20

In[45]:= PlotA9x2, x3 - x - 1=, 8x, -3, 3<, PlotStyle ->88Magenta, Thickness@0.01D<, 8Cyan, Thickness@0.001D, Dashing@80.01, 0.01, 0.01<D<<E

Out[45]=

-3 -2 -1 1 2 3

-10

-5

5

10

15

20
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� PlotRange

We have already used the PlotRange option in Section 2.1 of this text (see Example 2.4 prior).  This option specifies the range of
y-values on the graph that should be plotted. As observed in the same example in Section 2.1, some points of a graph may not be

plotted unless  we specify the y-range of the plot. The  option PlotRange ®  All   includes  all  y-values corresponding to the

specified values of x.  Here is an example. 

In[46]:= PlotAx5 - 2 x - 1, 8x, -5, 5<E

Out[46]=
-4 -2 2 4

-1000

-500

500

1000

In[47]:= PlotAx5 - 2 x - 1 , 8x, -5, 5<, PlotRange -> AllE

Out[47]=
-4 -2 2 4

-3000

-2000

-1000

1000

2000

3000

� Axes 

There are several options regarding axes of plots. We consider four of them.

1. Axes:    The specification Axes ® True  draws both axes, whereas  Axes ® False  draws no axes and Axes®{True,False}
draws the x-axis only. An example of the last case  is given below.
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In[48]:= Plot@ x Sin@3 xD, 8x, -10, 10<, Axes -> 8True, False<D

Out[48]=
-10 -5 0 5 10

2. AxesLabel: The default specification AxesLabel ® None leaves the axes unlabeled.  On the other hand, AxesLabel ® expr 
will only label the y-axis as expr and AxesLabel ® { "expr1", "expr2" } labels both the x-axis and y-axis as expr1 and expr2,
respectively.  Examples of both cases are given below.

In[49]:= Plot@x Cos@xD, 8 x, -10, 10<, AxesLabel -> yD

Out[49]=

-10 -5 5 10

-5

5

y

In[50]:= Plot@x Cos@xD, 8 x, -10, 10<, AxesLabel -> 8"x", "y"<D

Out[50]=

-10 -5 5 10
x

-5

5

y

3.  AxisOrigin:  The option AxesOrigin  specifies the location where the two axes should intersect. The default value given by

AxesOrigin ® Automatic chooses the intersection point of the axes based on an internal (Mathematica) algorithm. It usually

chooses (0,0). The option AxesOrigin ® {a,b}  allows the user to specify the intersection point as (a,b).

4.  AxesStyle:  This option specifies the style of the axes. Here is an example where we specify the thickness of the x-axis and

color (blue) of the y-axis. We also use the AxesOrigin option.
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4.  AxesStyle:  This option specifies the style of the axes. Here is an example where we specify the thickness of the x-axis and

color (blue) of the y-axis. We also use the AxesOrigin option.

In[51]:= Plot@x Cos@xD, 8 x, -10, 10<, AxesOrigin -> 8-10, 10<,
AxesStyle -> 8 Blue, Thickness@0.01D<,
AxesLabel -> 8"x", "y"<D

Out[51]=

-5 0 5 10
x

-5

0

5

y

� Frame

There are several options regarding the frame (border) of a plot. We show these options in the following examples:

In[52]:= Plot@x Cos@xD, 8 x, -10, 10<, Frame -> True D

Out[52]=

-10 -5 0 5 10

-5

0

5
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In[53]:= Plot@x Cos@xD, 8 x, -10, 10<, Frame -> True,

FrameLabel -> 8"The graph of y = x cos x", "y-axis", None, None<D

Out[53]=

-10 -5 0 5 10

-5

0

5

The graph of y = x cos x

y-
ax

is

In[54]:= Plot@x Cos@xD , 8 x, -10, 10<, PlotStyle ® Red, Frame -> True,

FrameLabel -> 8"The graph of y = x cos x", "y-axis", None, None<,
FrameStyle -> 88Blue, Thickness@0.005D<,8Yellow, Thickness@0.005D<, 8Green, Thickness@0.013D<, 8Orange< <D

Out[54]=

-10 -5 0 5 10

-5

0

5

The graph of y = x cos x

y-
ax

is

We encourage the reader to experiment with this example by changing the color specifications to see which option controls which
edge color of the frame.

� Show

The command Show[graphics,  options]  displays graphics  (consisting of possibly many different  graphics objects) using the

options specified by options. Also Show[ plot1,plot2, ....] displays the graphics plot1, plot2, ... on one coordinate system. 

In[55]:= plot1 = Plot@Sin@xD, 8x, -Pi, Pi< D;
In[56]:= plot2 = ListPlot@ 880, 0<, 8Pi �2, 1<, 8Pi, 0<<, PlotStyle ® 8Red, PointSize@.02D<D;
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In[57]:= Show@plot1, plot2D

Out[57]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Here is an option we can use to identify the sine curve by inserting the expression y = sin x near its graph. 

In[58]:= Show@plot1, plot2,

Epilog -> Text@"y=sin x", 82.7, 1<, 80, 1<DD

Out[58]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0
y=sin x

� Animation

Animate@expr, 8t, a, b<D generates an animation of expr in which the parameter t varies from a to b. 

Animate@expr, 8t, a, b, dt<D generates an animation of expr in which t varies from a to b in steps of dt. 

Animate@expr, 8t, a1, a2, a3, ... , an<D  generates  an  animation  of  expr  in  which  t  takes  on  the  discrete  set  of  values

a1, a2, a3, ..., an. 

Animate@expr, 8t, a, b<, 8s, c, d<, .... D generates an animation of expr in which t varies from a to b,  s varies from c to d,  and

so on. 

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

Example 2.6.  Analyze the effect of the shift f Hx + aL, f HxL + a,  f Hb xL  and b f HxL for various values of a and b for the fucntion

f HxL = cos x.

Solution: 
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In[59]:= f@x_D := Cos@xD
In[60]:= Animate@Plot@8f@xD, f@x + aD<, 8x, -2 Pi, 2 Pi<,

PlotStyle ® 8Black , Red<, PlotRange ® 8-2, 2<D, 8a, 0, 8 <D
Out[60]=

Next we will animate the graphs of f Hx + aL Hin redL and f HxL + a Hin blueL :

In[61]:= Animate@Plot@8f@xD, f@x + aD, f@xD + a<, 8x, -2 Pi, 2 Pi<,
PlotStyle ® 8Black, Red, Blue<, PlotRange ® 8-1, 5<D, 8a, 0, 6 <D

Out[61]=

Here is the animation for the graphs of f Hb xL and b f HxL.
In[62]:= Animate@

Plot@8f@xD, f@b *xD, b *f@xD<, 8x, -2 Pi, 2 Pi<, PlotStyle ® 8Black , Red, Blue<D, 8b, 0, 8 <D
Out[62]=

Here is an animation that shows all four shifts at once. We can fix as many parameters as we want (just click on their pause
buttons) and analyze the behavior due to the remaining parameters. 

In[63]:= Animate@Plot@8f@ xD , f@x + aD, f@xD + b, f@c xD, d *f@xD <, 8x, 0, 10<,
PlotStyle ® 8Black, Red, Blue, Green, Brown, Yellow<, PlotRange ® 8-5, 5<D,8a, 0, 5<, 8b, 0, 5<, 8c, 0, 5<, 8d, 0, 5<D

Out[63]=

 Example 2.7.  Here is an animated example of a graph that shows the behavior of a general quadratic polynomial as we vary its
coefficients.  

Solution: 

In[64]:= AnimateAPlotAa x2 + b x + c, 8x, -3, 3<, PlotRange ® 8-10, 10<E, 8a, -3, 3<, 8b, -3, 3<, 8c, -3, 3<E
Out[64]=

We suggest that you pause two of the parameters and vary the third one manually to see the change in the location of the zeros,
the vertex,  the regions of concavity, and the regions on which the graph increases  and decreases.  Then  make the necessary
changes to redo this problem for polynomials of higher degree.    

� Contour Plot

To end our discussion on graphics, we now consider plotting graphs of equations in two variables.  Among such equations are the
famous family of elliptic curves that arise in number theory: y2 = x3 + a x + b, where a and b are parameters. The command for

graphing equations implicitly in two variables x and y is ContourPlot@eqn, 8x, a, b<, 8y, c, d<D, which displays the graph of eqn

for which x varies from a to b and y varies from c to d . 

Example 2.8. Plot the graphs of curves given by the equation y2 = x3 + a x + b for various values of a and b. 

Solution:  First we define a function f @x, a, bD to represent the right-hand side of the equation y2 = x3 + a x + b so that f  is a

function of x as well as a and b. We then plot the equation y2 = f @x, a, bD, where we consider three different sets of values:

a = 1, b = 1; a = -4, b = 0; and a = -3, b = 3.  
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Solution:  First we define a function f @x, a, bD to represent the right-hand side of the equation y2 = x3 + a x + b so that f  is a

function of x as well as a and b. We then plot the equation y2 = f @x, a, bD, where we consider three different sets of values:

a = 1, b = 1; a = -4, b = 0; and a = -3, b = 3.  

In[65]:= f@x_, a_, b_D := x3 + a x + b

In[66]:= ContourPlotA y2 � f@x, 1, 1D, 8x, -10, 10<, 8y, -10, 10<, Axes ® True, Frame -> FalseE

Out[66]=
-10 -5 5 10

-10

-5

5

10

In[67]:= ContourPlotA y2 � f@x, -4, 0D, 8x, -10, 10<, 8y, -10, 10<, Axes ® True, Frame -> FalseE

Out[67]=
-10 -5 5 10

-10

-5

5

10
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In[68]:= ContourPlotA y2 � f@x, -3, 3D, 8x, -10, 10<, 8y, -10, 10<, Axes ® True, Frame -> FalseE

Out[68]=
-10 -5 5 10

-10

-5

5

10

Discovery Exercise: Evaluate the following table and discuss which pararemeters produce curves that are familiar. 

In[69]:= TableAContourPlotA y2 � f@x, a, bD, 8x, -10, 10<,8y, -10, 10<, Axes ® True, Frame -> FalseE , 8a, -4, 4<, 8b, -3, 3<E;
� Exercises 

1. Plot the graphs of the following functions on the specified interval:

a) f HxL = x2 + 1 on @-5, 5D b) gHxL =
1

x-2
 on @0, 4D c) hHxL =

sin x
x

 on @-Π, ΠD d)  f HxL = x3 - 5 x2 + 10 on

@-5, 5D e) f HxL = 32 - 2 x2  on  @-4, 4D f) f HxL = x +
1
x
  for @-10, 10D

2.  Plot the graphs of f HxL = xHx - 3L Hx + 3L and gHxL = cos 2 x  together on the same set of axes and over the interval @-20, 20D.
Use the PlotRange option to adjust the range of the viewing window so that their points of intersection are visible.

3. Plot the graphs of the following functions using at least one plot option discussed in this section.

NOTE: ln x is one of the built-in Mathematica functions and is entered as Log[x].   The logarithmic function log a x is entered as

Log[a,x].  For the natural base e you either type E or you can obtain ã from the Basic Math Input Palette.
a) f HxL = x4 + 2 x3 + 1 for   -3 £ x £ 3 b) f HxL = x ln x  for   0 £ x £ 4 

c) f HxL = 1 -
1

x3
+

1
x
      for  -20 £ x £ 20

4. Plot the graphs of the following pairs of functions on the same axes. Use the PlotStyle option to distinguish the graphs.

a) f HxL = ãx and gHxL = ln x  b) f HxL =
2 x
x-5

 and gHxL =
x-5
2 x

   

c) f HxL = x2 - sin x   and   gHxL = x4 + 1 - x2 + 1
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5. Let f HxL = Ix2 - 1M2�3
. 

a) Define f  in Mathematica  as it appears above and plot its graph.

b) Rewrite f  as f HxL = Ix2 - 1M2
3 plots its graph as it appears here. 

c) Explain why the graphs are not identical. Generalize this remark to general functions with rational exponents.  

6. Let f HxL =
2 c x-x2

c2
, c > 0. 

a) Graph f  for various values of c.  (You may use the Animate command.)

b) Use the graph in part a) to sketch the curve traced out by the vertices of the highest point as c varies. Can you guess what this
curve is?  

7.  Use the Animate  command to plot the graph of f HxL  by varying the parameters a, b, c, d , and e for each of the following

functions.   Discuss how each parameter affects the shape of the graph.
a) f HxL = a x3 + b x2 + c x + d

b) f HxL = a x4 + b x3 + c x2 + d x + e

8. a) Use ContourPlot  to plot the graph of the curve defined by the equation y Iy2 - cM Hy - dL = x Hx - aL Hx - bL for various

values of a, b, c, d .  (Hint: You may want to define g[y,c,d] as the left hand side and f[x,a,b] as the right hand side and then use

the command ContourPlot[f[x, a, b] � g[y, c, d], {x, -5, 5}, {y, -5, 5}, Frame ® False, Axes ® True].)
b) For the parameters you selected in part a), at how many points is the slope of this curve equal to zero?  Estimate the x-coordi-
nates of these points.
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� 2.2.  Limits

Students should read Chapter 2 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

� 2.2.1.  Evaluating Limits 

Limit@ f , x -> a, Direction -> 1D computes the limit as x as approaches a from the left (i.e., x increases to a).

Limit@ f , x -> a, Direction -> -1D computes the limit as x approaches a from the right (i.e., x decreases to a).

Limit@ f , x -> aD finds the limiting value of f  as x approaches a.

NOTE: Mathematica  will use the right-hand limit when evaluating Limit.   If the limit does not exist, then Mathematica  will
attempt to explain why or else return the limit expression unevaluated if it has insufficient information about the function.

Example 2.9.  Evaluate lim
x®1

 
x2+x+2

x+1
.

Solution: Here is a table of values of the function f HxL =
x2+x+2

x+1
 when x is sufficiently close to 1. 

In[70]:= f@x_D :=
x2 + x + 2

x + 1

In[71]:= H*From the left*L
Table@8x, f@xD<, 8x, 0.8, 0.99, 0.01<D �� TableForm

Out[71]//TableForm=

0.8 1.91111

0.81 1.91497

0.82 1.9189

0.83 1.9229

0.84 1.92696

0.85 1.93108

0.86 1.93527

0.87 1.93952

0.88 1.94383

0.89 1.9482

0.9 1.95263

0.91 1.95712

0.92 1.96167

0.93 1.96627

0.94 1.97093

0.95 1.97564

0.96 1.98041

0.97 1.98523

0.98 1.9901

0.99 1.99503
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In[72]:= H*From the right*L
Table@8x, f@xD<, 8x, 1.2, 1.01, -0.01<D �� TableForm

Out[72]//TableForm=

1.2 2.10909

1.19 2.10324

1.18 2.09743

1.17 2.09166

1.16 2.08593

1.15 2.08023

1.14 2.07458

1.13 2.06897

1.12 2.0634

1.11 2.05787

1.1 2.05238

1.09 2.04694

1.08 2.04154

1.07 2.03618

1.06 2.03087

1.05 2.02561

1.04 2.02039

1.03 2.01522

1.02 2.0101

1.01 2.00502

From the tables it is reasonable to expect that the limit is 2. Here is the graph of the function together with the point H1, 2).   

In[73]:= plot1 = Plot@Hx^2 + x + 2L � Hx + 1L, 8x, -1, 2<, PlotRange ® 80, 3<D;
plot2 = Graphics@8Green, PointSize@LargeD, Point@81, 2<D < D;
plot3 = Graphics@8Red, Line@881, 0<, 81, 2<, 80, 2<<D<D;
Show@plot1, plot2, plot3D

Out[76]=

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

Evaluating the limit confirms this: 

In[77]:= Limit@Hx^2 + x + 2L � Hx + 1L, x -> 1D
Out[77]= 2

Example 2.10.  The height of a projectile, fired in the air with initial velocity 32 ft/s, is given by yHtL = -16 t2 + 64 t + 3. Find the

average velocity of the projectile over the interval @1, tD for various values of t.  Then find the instantaneous velocity at t = 1. 

Solution: We define
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Solution: We define

In[78]:= y@t_D = -16 t2 + 64 t + 3

v@t_D =
y@tD - y@1D

t - 1

Out[78]= 3 + 64 t - 16 t2

Out[79]=
-48 + 64 t - 16 t2

-1 + t

In[80]:= tt = 82, 1.5, 1.01, 1.001, 1.0001, 1.00001<;
Table@8tt@@kDD, v@tt@@kDDD<, 8k, 1, Length@ttD<D �� TableForm

Out[81]//TableForm=

2 16

1.5 24.

1.01 31.84

1.001 31.984

1.0001 31.9984

1.00001 31.9998

Here tt is the list of values for t and tt[[k]] refers to the kth element in the list tt (see Chapter 1 of this text for an explanation of

lists).  Also Length[t] gives the number of elements in the list tt, which is 6 for our example. 

The above table clearly suggests that the instantaneous velocity at t = 1 is 32 ft/s. The graph below also verifies this.

In[82]:=

plot1 = Plot@v@tD, 8t, 0, 2<, PlotRange ® 80, 50<D;
y = Simplify@v@tDD �. t ® 1;

plot2 = Graphics@8 PointSize@LargeD, Point@81, y<D < D;
plot3 = Graphics@8Red, Line@881, 0<, 81, y<, 80, y<<D<D;
Show@plot1, plot2, plot3D

Out[86]=

0.0 0.5 1.0 1.5 2.0

10

20

30

40

50

Example 2.11.  Show that f HxL = cosH1 � xL does not have a limiting value as x approaches 0. 

Solution: We define

In[87]:= f@x_D := Cos@1 �xD
f@80.1, .05, 0.001, .0001, .000001<D

Out[88]= 8-0.839072, 0.408082, 0.562379, -0.952155, 0.936752<
These values suggest that the limit does NOT exist. To make this clear, we consider the following two tables.  The first table uses
values of the form x = 2 � H2 n + 1L Π, where n is a positive integer, while the second table uses x = 1 � H2 n + 1L Π.  Each of these

sets of values for x approach 0 as n ® ¥.
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These values suggest that the limit does NOT exist. To make this clear, we consider the following two tables.  The first table uses
values of the form x = 2 � H2 n + 1L Π, where n is a positive integer, while the second table uses x = 1 � H2 n + 1L Π.  Each of these

sets of values for x approach 0 as n ® ¥.

In[89]:= t1 = TableB 2.

Pi H2 n + 1L, 8n, 1, 100, 10<F;
f@t1D

Out[90]= 9-1.83697 ´10-16, -3.1847 ´10-15, -4.40935 ´10-15, 1.47143 ´10-15, -2.10695 ´10-14,

1.3233 ´10-14, -9.30793 ´10-15, -3.42715 ´10-15, -2.59681 ´10-14, -2.00873 ´10-14=

In[91]:= t2 = TableB 1.

Pi H2 n + 1L, 8n, 1, 100, 10<F;
f@t2D

Out[92]= 8-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.<
The first table indicates that the values of f HxL approach 0 while the second table indicates the values approach -1.  Recall that if

the limit exists, then it must be unique.  Thus our limit does not exist because the values of f  do not converge to a single value.

Next we analyze the graph of the function.

In[93]:= Plot@f@xD, 8x, -1, 1<D

Out[93]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

This indicates that there is too much oscillation around x = 0.  Let us try zooming in around this point.

In[94]:= Plot@Cos@1 �xD, 8x, -0.1, 0.1<D

Out[94]=
-0.10 -0.05 0.05 0.10

-1.0

-0.5

0.5

1.0

 Note how zooming in on this graph does not help. This indicates that the limit does not exist.  

Example 2.12. Consider the function f HxL =
21�x-2-1�x

21�x+2-1�x
.  Find limx®0 f HxL.
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Example 2.12. Consider the function f HxL =
21�x-2-1�x

21�x+2-1�x
.  Find limx®0 f HxL.

Solution:

In[95]:= LimitB21�x - 2-1�x
21�x + 21�x , x ® 0F

Out[95]=
1

2

It may appear that the limit is 1
2

 but the simplified form of f HxL (using the Simplify command) shows this not to be the case.

Instead we shall consider one-sided limits.

In[96]:= SimplifyB21�x - 2-1�x
21�x + 21�x F

Out[96]=
1

2
I1 - 4-1�xM

In[97]:= LimitB21�x - 2-1�x
21�x + 21�x , x ® 0, Direction ® 1F

LimitB21�x - 2-1�x
21�x + 21�x , x ® 0, Direction ® -1F

Out[97]= -¥

Out[98]=
1

2

Since the left- and right-hand limits are not the same we conclude that the limit does not exist. 

In[99]:= PlotB21�x - 2-1�x
21�x + 21�x , 8x, -1, 1<, PlotRange -> 8-30, 1<F

Out[99]=

-1.0 -0.5 0.5 1.0

-30

-25

-20

-15

-10

-5

NOTE: One needs to be careful when using Mathematica to find limits. If you are not certain that the limit exists, use one-sided
limits:

Example 2.13.  Evaluate lim
x®5+

 
Èx-5È
x-5

.

Solution: 
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In[100]:= Limit@Abs@x - 5D � Hx - 5L, x -> 5, Direction -> -1D
Out[100]= 1

Note that Mathematica's convention for right-hand limits is "going in the negative direction." Thus the standard notation lim
x®5+

should be evaluated as Limit@ f @xD, x ® 5, Direction ® -1D.  A similar remark applies to the left-hand limit. 

Again, we can check the answer by plotting the graph of the function:

In[101]:= Plot@Abs@x - 5D � Hx - 5L, 8x, 3, 7<D

Out[101]=
4 5 6 7

-1.0

-0.5

0.5

1.0

Warning: This plot does not show the true graph of f HxL near x = 5.  It may appear that f  is continuous at x = 5 because of the

vertical line there but this is not the case since f  is undefined at x = 5 and its one-sided limits do not agree:

In[102]:= Abs@x - 5D � Hx - 5L �. x ® 5

Limit@Abs@x - 5D � Hx - 5L, x ® 5, Direction ® 1D
Limit@Abs@x - 5D � Hx - 5L, x ® 5, Direction ® -1D
Power::infy :  Infinite expression

1

0
encountered. �

¥::indet :  Indeterminate expression 0 ComplexInfinity encountered. �

Out[102]= Indeterminate

Out[103]= -1

Out[104]= 1

Below is the true graph of f , which shows the (non-removable) discontinuity at x = 5.
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� 2.2.2.  Limits Involving Trigonometric Functions  

For trigonometric functions, Mathematica uses the same traditional notation in calculus except that the first letter of the trigono-

metric function must be capitalized. Thus, Sin[x] is Mathematica's notation for sin x (see Appendix A of this text for a descrip-

tion of notational differences).

 Example 2.14.  Evaluate lim
x®0

 
sin H4 xL

x
.

Solution: 

In[105]:= Limit@Sin@4 xD �x, x -> 0D
Out[105]= 4

Let us check the answer by graphing the function up close in the neighborhood of x = 0:

In[106]:= Plot@Sin@4 xD �x, 8x, -1, 1<D

Out[106]=

-1.0 -0.5 0.5 1.0

1

2

3

4

Example 2.15.  Evaluate lim
t®0

 
sin t

ÈtÈ .

Solution: We will consider both the left- and right-hand limits.
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In[107]:= LimitB Sin@tD
Abs@tD , t ® 0, Direction ® -1F

Out[107]= 1

In[108]:= LimitB Sin@tD
Abs@tD , t ® 0, Direction ® 1F

Out[108]= -1

Thus the limit does not exist. This can be clearly seen from the graph of the function below. 

In[109]:= PlotB Sin@xD
Abs@xD, 8x, -2 Pi, 2 Pi<F

Out[109]=
-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Example 2.16. Find

a)  limx®0
cos x-1

sin x
 b) limx®0 tan x cosHsin 1 � xL

Solution: 

In[110]:= a = Limit@HCos@xD - 1L �Sin@xD, x ® 0D
Out[110]= 0

In[111]:= b = Limit@Tan@xD Cos@Sin@1 �xDD, x ® 0D
Out[111]= 0

NOTE: In your textbook it is proven that limx®0
cos x-1

x
= 0 and limx®0

sin x
x

= 1. Writing cos x-1
sin x

= I cos x-1
x

M � I sin x
x

M, we see that the

answer  for  part  a)  is  valid  by  applying  the  quotient  rule  for  limits.  For  the  second  limit  in  part  b),  we  note  that
-1 £ cos HsinH1 � xLL £ 1and  hence  - È tan x È £ tan x cos Hsin H1 � xLL £ È tan x È.   Since  limx®0 tan x = limx®0 H-tan xL = 0  we  call

upon the Squeeze Theorem to conclude that limx®0 tan x cos Hsin H1 � xLL = 0.

The following graphs verify both answers.
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In[112]:= PlotBCos@xD - 1

Sin@xD , 8x, -2 Pi, 2 Pi<F

Out[112]=
-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

In[113]:= Plot@Tan@xD *Cos@Sin@1 �xDD, 8x, -2 Pi, 2 Pi<D

Out[113]=
-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Example 2.17.  Find  limx®c
cos x-cos c

x-c
 for  values of c = 0, Π � 6, Π � 4, Π � 3, Π � 2.

Solution: We  will use the substitution command /. to evaluate the limit for different values of c. 

In[114]:= LimitBCos@xD - Cos@cD
x - c

, x ® cF �. c -> 80, Pi �6, Pi �4, Pi �3, Pi �2<
Out[114]= :0, -

1

2
, -

1

2
, -

3

2
, -1>

Can you guess a general formula for the answer in terms of c?  (Hint: What trigonometric function takes on these values?)

Example 2.18. Find  limx®0
cos Hm xL-1

x2
for various values of m.  Then make a general statement about this limit and prove your

assertion.  

Solution: Here is a table of limits for integer values of m ranging from 1 to 10.

In[115]:= TableBLimitBCos@m xD - 1

x2
, x ® 0F, 8m, 1, 10<F

Out[115]= :-
1

2
, -2, -

9

2
, -8, -

25

2
, -18, -

49

2
, -32, -

81

2
, -50>

A reasonable guess at a general formula for the answer would be limx®0 Hcos m x - 1L � x2 = -m2 � 2.  We can check this with

values of m ranging from 10 to 20.  
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A reasonable guess at a general formula for the answer would be limx®0 Hcos m x - 1L � x2 = -m2 � 2.  We can check this with

values of m ranging from 10 to 20.  

In[116]:= TableB:LimitBCos@m xD - 1

x2
, x ® 0F, -m^2 �2>, 8m, 10, 20<F

Out[116]= :8-50, -50<, :-
121

2
, -

121

2
>, 8-72, -72<, :-

169

2
, -

169

2
>, 8-98, -98<, :-

225

2
, -

225

2
>,

8-128, -128<, :-
289

2
, -

289

2
>, 8-162, -162<, :-

361

2
, -

361

2
>, 8-200, -200<>

For a mathematical proof first take m = 1 and plot the graph

In[117]:= PlotBCos@xD - 1

x2
, 8x, -Pi, Pi<, AxesOrigin -> 80, 0<F

Out[117]=

-3 -2 -1 1 2 3

-0.5

-0.4

-0.3

-0.2

-0.1

The graph above confirms that the limit is -1 � 2.

For the general case, let t = m x so that x2 =
t2

m2
.  Then note that x ® 0  if and only if t ® 0.  Thus the limit can be evaluated in

terms of t as 

limx®0
cos m x-1

x2
= limt®0

cos t-1

t2�m2
= m2 limt®0

cos t-1

t2
= -

m2

2
.  

� 2.2.3. Limits Involving Infinity

Example 2.19.  Evaluate lim
x®¥

 H3 x - 2L � 2 x2 + 1  and  lim
x®-¥

 H3 x - 2L � 2 x2 + 1 .

Solution: 

In[118]:= Limit@H3 x - 2L �Sqrt@2 x^2 + 1D, x -> InfinityD
Out[118]=

3

2

In[119]:= N@%D
Out[119]= 2.12132
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In[120]:= Limit@H3 x - 2L �Sqrt@2 x^2 + 1D, x ® -InfinityD
Out[120]= -

3

2

Observe how the two limits differ. The following graph confirms this. 

In[121]:= Plot@H3 x - 2L �Sqrt@2 x^2 + 1D, 8x, -30, 30<D

Out[121]=
-30 -20 -10 10 20 30

-3

-2

-1

1

2

NOTE: Can you explain the cusp on the graph near x = 0?

Example 2.20.  Evaluate lim
x®2-

 
4-x2

x-2
.

Solution: 

In[122]:= Limit@Sqrt@4 - x^2D � Hx - 2L, x -> 2, Direction -> 1D
Out[122]= -¥

We plot the function over two different ranges to visually understand why the answer is -¥.  Notice how the first range fails to

show this.

In[123]:= PlotBSqrt@4 - x^2D
x - 2

, 8x, 1, 3<F

Out[123]=

1.5 2.0 2.5 3.0

-8

-7

-6

-5

-4

-3

-2
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In[124]:= PlotBSqrt@4 - x^2D
x - 2

, 8x, 1, 3<, PlotRange ® 8-100, 10<F

Out[124]=

1.5 2.0 2.5 3.0

-100

-80

-60

-40

-20

NOTE: The plot domain is specified to be @1, 3D, but observe that this function is undefined for values of x greater than 2 because

this results in taking the square root of a negative number.

Example 2.21.  Evaluate lim
x®¥

 sin x.

Solution: 

In[125]:= Limit@Sin@xD, x -> InfinityD
Out[125]= Interval@8-1, 1<D
Here, Mathematica is telling us that the limit does not exist by returning the range of values for sin x as x approaches infinity.

Example 2.22. Find  limx®¥
sin x

x
 .

Solution: 

In[126]:= LimitBSin@xD
x

, x ® InfinityF
Out[126]= 0

We can verify this limit by using the Squeeze Theorem.  In our case we take f HxL = -1 � È x È, gHxL =
sin x

x
and hHxL = 1 � È x È.  Then

f HxL £ gHxL £ hHxL (recall that -1 £ sin x £ 1 for all x).

In[127]:= Plot@8-1 � Abs@xD, Sin@xD �x, 1 � Abs@xD<, 8x, 0, 30<, PlotStyle ® 8Red, Green, Blue<D

Out[127]=
5 10 15 20 25 30

-0.3

-0.2

-0.1

0.1

0.2

0.3

Since 1 � È x È and -1 � È x È both approach 0 as x ® ¥, we conclude that Hsin xL � x approaches zero as well. 

Chapter 2 39



Since 1 � È x È and -1 � È x È both approach 0 as x ® ¥, we conclude that Hsin xL � x approaches zero as well. 

Example 2.23. Evaluate limx®¥ J ex

xn N, where n is any integer.

Solution: 

In[128]:= Table@Limit@ã^x �xn, x ® InfinityD, 8n, 1, 200, 10<D
Out[128]= 8¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥<
This table suggests that the limit is infinity. We confirm this with Mathematica:

In[129]:= Limit@ã^HxL�xn,x->¥]

Out[129]= ComplexInfinity

NOTE: This example reveals that exponential functions grow more quickly than polynomial functions. 

Example 2.24.  Evaluate limx®1+ I 1
ln x

-
1

x-1
M.

Solution: 

In[130]:= Limit[(1/Log[x])-(1/(x-1)),x->1,Direction->1]

Out[130]=
1

2

Again, we can graph the function near  x = 1 to visually understand why the answer is 1 � 2 (we leave this to the student).  Note,

however, that this example shows that 1 � ln x and 1 � Hx - 1L both grow to ¥ at the same rate as x ® 1+.

Example 2.25. Let  f HxL =
xn-1
xm-1

.  Evaluate limitx®1 f HxL by substituting in various values of m and n.

Solution: 

In[131]:= Table@Limit@Hxn - 1L � Hxm - 1L, x ® 1D, 8m, 1, 10<, 8n, 1, 10<D �� TableForm

Out[131]//TableForm=

1 2 3 4 5 6 7 8 9 10
1

2
1 3

2
2 5

2
3 7

2
4 9

2
5

1

3

2

3
1 4

3

5

3
2 7

3

8

3
3 10

3

1

4

1

2

3

4
1 5

4

3

2

7

4
2 9

4

5

2

1

5

2

5

3

5

4

5
1 6

5

7

5

8

5

9

5
2

1

6

1

3

1

2

2

3

5

6
1 7

6

4

3

3

2

5

3

1

7

2

7

3

7

4

7

5

7

6

7
1 8

7

9

7

10

7

1

8

1

4

3

8

1

2

5

8

3

4

7

8
1 9

8

5

4

1

9

2

9

1

3

4

9

5

9

2

3

7

9

8

9
1 10

9

1

10

1

5

3

10

2

5

1

2

3

5

7

10

4

5

9

10
1

Can you guess a formula for limitx®1 f HxL in terms of m and n?  Enter the command Limit@Hxn - 1L � Hxm - 1L, x ® 1D into an

input box and evaluate it to verify your conjecture.  

Let us end this section with an example where the Limit command is used to evaluate the derivative of a function (in anticipation
of commands introduced in the next chapter for computing derivatives).

By definition, the derivative of a function f  at x (i.e., the slope of its tangent line at x) is 
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By definition, the derivative of a function f  at x (i.e., the slope of its tangent line at x) is 

f ' HxL = lim
D x®0

 
f Hx+D xL- f HxL

D x
.

Example 2.26.  Find the derivative of f HxL =
1
x

 according to the limit definition.

Solution: We first  examine  the  derivative by tabulating values of the difference  quotient,  
f Hx+D xL- f HxL

D x
,  for  some arbitrarily

chosen values of D x:

In[132]:= f@x_D := 1 �x
delta = 80.1, 0.01, .0001, .00001, .000001, .00000001<;
Table@8delta@@kDD, Simplify@Hf@x + delta@@kDDD - f@xDL �delta@@kDDD<,8k, 1, Length@deltaD<D �� TableForm

Out[134]//TableForm=

0.1 -
1.

0.1 x+x2

0.01 -
1.

0.01 x+x2

0.0001 -
1.

0.0001 x+x2

0.00001 -
1.

0.00001 x+x2

1. ´10-6
-

1.

1.´10-6 x+x2

1. ´10-8
-

1.

1.´10-8 x+x2

This table suggests that f ' HxL = -1 � x2 in the limit as D x ® 0.  We confirm this with Mathematica:

In[135]:= Limit@Hf@x + DeltaxD - f@xDL �Deltax, Deltax -> 0D
Out[135]= -

1

x2

� Exercises 

1. Compute the following limits:

a) lim
x®1

 x2 -
1

x-1
b) lim

x®-5
 
100
x+5

c) lim
x®¥

 
1+x+x2

x10-x
3

d) lim
x®0

sin x
x

2. Evaluate each of the following limits. Verify your answers by plotting the graph of each function in the neighborhood of the
limit point. 

a)  limx® 2 I 2 x-1
4-3 x

M b)  limx®0+ J 1-ln x

e1�x
N c)  limx®0+ I 1

x
- ln x M d)  limx®I Π

2
M- H sec 3 x cos 5 xL  e)

limx® 0 H sin xL cos I 1
x

M
3. Use various values of a to find the following limits.  Confirm your answers by plotting the graph of each function correspond-

ing to your chosen values for a.  Make a conjecture for a general formula.  

a) lim
x®a

x3-a3

x-a
b) lim

x®1

x3-a x2+a x-1
x-1

4. Consider the quadratic function f HxL = a x2 - x + 3.  Plot the graph of f  using small values of a.  What do you observe about

the  roots  of  f ?  What  is  the  limit  of  the  roots  of  f  as  a ® 0?   Hint:  Use  the  command

PlotAEvaluateATableAa x2 - x + 3, 8a, 0, .006, 0.001<EE 8x, 0, 500<E  to help you analyze the root and then change the values

of a as well as the plot domain. Then use the quadratic formula to prove your assertion. 
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4. Consider the quadratic function f HxL = a x2 - x + 3.  Plot the graph of f  using small values of a.  What do you observe about

the  roots  of  f ?  What  is  the  limit  of  the  roots  of  f  as  a ® 0?   Hint:  Use  the  command

PlotAEvaluateATableAa x2 - x + 3, 8a, 0, .006, 0.001<EE 8x, 0, 500<E  to help you analyze the root and then change the values

of a as well as the plot domain. Then use the quadratic formula to prove your assertion. 

� 2.3.  Continuity

Students should read Section 2.4 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Recall that a function is continuous at x = a if and only if limx®a f HxL = f HaL.  Graphically this means that there is no break (or

jump) in the graph of f  at the point Ha, f HaLL. It is not possible to indicate this discontinuity using computer graphics for the

situation where the limit exists and the function is defined at a but the limit is not equal to f HaL.  For other cases of discontinuity,

computer graphics are very helpful.    

To verify if a given function is continuous at a point, we evaluate its limit there and check if this limit is equal to the value of the
function.  

Example 2.27. Show that the function f HxL = x3 - 1 is continuous everywhere.

Solution: We could draw the graph and observe this fact. On the other hand, we can get Mathematica to check continuity:

In[136]:= f@x_D := x3 - 1

Limit@f@xD, x ® cD � f@cD
Out[137]= True

This means that limx® c f HxL = f HcL and hence f  is continuous everywhere.

Example 2.28.  Find points of discontinuity for each of the following functions:

a) Let  f HxL = : x2-1
x-1

, if x ¹ 1

2, if x = 1.
.

b) Let  gHxL = : x2-1
x-1

, if x ¹ 1

6, if x = 1.
.

Solution: The command If[cond, true, false] evaluates true if cond is satisfied and gives false if cond  is not satisfied. This
command can be used to define piece-wise functions such as those in this example.

a) We first check continuity of f  at x = 1.

In[138]:= f@x_D := IfBx ¹ 1,
x2 - 1

x - 1
, 2F

In[139]:= Limit@f@xD, x ® 1D � f@1D
Out[139]= True

Hence the function is continuous at x = 1.  For continuity at other points, we observe that the rational function x2- 1
x-1

 simplifies to

x + 1 in this case (factor the numerator!)  and thus is continuous at any point except x = 1.  Thus f  is continuous everywhere. We

can also confirm this by examining the graph of f  below.
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In[140]:= Plot@f@xD, 8x, -6, 6<D

Out[140]=

-6 -4 -2 2 4 6

-4

-2

2

4

6

b) As in part a) we first consider continuity of g at x = 1.  

In[141]:= g@x_D := IfBx ¹ 1,
x2 - 1

x - 1
, 6F

In[142]:= Limit@g@xD, x ® 1D � g@1D
Out[142]= False

Thus g is NOT continuous at x = 1. For continuity at other points, we again observe that the rational function x2- 1
x-1

= x + 1 and

thus is continuous for x ¹ 1. 

Caution:  The plot of the graph of g  given below indicates (incorrectly) that g  is continuous everywhere! Care must be taken

when examining Mathematica plots to draw conclusions about continuity. 

In[143]:= Plot@g@xD, 8x, -6, 6<D

Out[143]=

-6 -4 -2 2 4 6

-4

-2

2

4

6

Example 2.29.  Let  f HxL = : 2 x + c, if x ³ 2

x2 + c x - 1, if x < 2.
  

For what values of c is f  continuous over its entire domain?

Solution: For x > 2, we have f HxL = 2 x + c. Hence f  is continuous on the interval H2, ¥L since the interval is open.  For x < 2,

f HxL = x2 + c x - 1 . Thus f  is continuous on H-¥, 2L  for the same reason.   For f  to be continuous at x = 2, we must have

limx®2 f HxL = f H2L.  But the limit exists if and only if 
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limx®2- f HxL = limx®2+ f HxL
Note that limx®2+ f HxL = 4 + c = f H2L. Thus it suffices to find all values of c for which the left-hand limit and the right-hand limit

are equal. This can be done using Mathematica's Solve command.

In[144]:= Clear@c, fD
f@x_D := IfAx < 2, x2 + c x - 1, 2 x + cE

In[146]:= lhs = Limit@f@xD, x ® 2, Direction ® 1D
rhs = Limit@f@xD, x ® 2, Direction ® -1D

Out[146]= 3 + 2 c

Out[147]= 4 + c

In[148]:= Solve@lhs � rhs , cD
Out[148]= 88c ® 1<<
Thus f  is continuous if c = 1. We confirm this by plotting the graph of f  corresponding to this c value.

In[149]:= Plot@f@xD �. c ® 1, 8x, -5, 7<D

Out[149]=

-4 -2 2 4 6

5

10

15

Example 2.30. Let  f HxL = : sinI 1
x

M, if x ¹ 0

0, if x = 0
.  Prove that for any number k between -1 and 1 there exists a value for c such that

f HcL = k.

NOTE: Observe that f  is not continuous at x = 0 so the converse of the Intermediate Value Theorem does not hold.   

Solution: For k = 0, we choose c = 0 so that f H0L = 0.  For any nonzero k  between -1 and 1,  define  y = sin-1 k  (using the

principal domain of the sine function) and let c = 1 � y. Then f HcL = sin H1 � cL = sin y = k. The  graph of f  following shows that

there are in fact infinitely many choices for c.  
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In[150]:= f@x_D := Sin@1 �xD
Plot@f@xD, 8x, -Pi, Pi<D

Out[151]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

� Exercises 

1.   Let   f HxL = : ex, if x £ 0

ln x, if x > 0
.

a) Graph the above function and discuss the type of discontiniuty at x = 0.

b) Repeat part a) for the function 

f HxL = : cosI Π x
2

M, if È x È £ 1

È x - 1 È, if È x È > 1
.

2. Find values for c in which f  (defined below) is continuous over its entire domain:

f HxL = : x2 + c, x < 1,

c ex, x ³ 1

Plot the graph of f  corresponding to these c values.

3. Let

f HxL = : x + 1, if È x È £ 2

x2 - c, if È x È > 2
.

a) For what value(s) of c is the function  continuous at x = 2? With this choice of c does f  have a discontinuity at any other

point? Plot the graph of the function.

b) For what value(s) of c is the function  continuous at x = -2? With this choice of c does f  have a discontinuity at any other

point? Plot the graph of the function. 
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Chapter 3 Differentiation

� 3.1.  The Derivative

Students should read Sections 3.1-3.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

� 3.1.1.  Slope of Tangent

The derivative is one of the most fundamental concepts in calculus.  Its pointwise definition is given by

f ¢ HaL = lim
h®0

f Hh + aL - f HaL
h

,

where geometrically f ' HaL is the slope of the line tangent to the graph of f HxL at x = a (provided the limit exists).  We can view

this graphically in the illustration below where the tangent line (shown in blue) is viewed as a limit of secant lines (one shown in
red) as h ® 0.

a a+h

Example 3.1. Calculate the derivative of f HxL =
x2

3
 at x = 1 using the pointwise definition of a derivative.

Solution: We first use the Table command to tabulate slopes of secant lines passing through the points at  a = 1 and a + h = 1 + h

by choosing arbitrarily small values for h (taken as reciprocal powers of 10):

In[152]:= f@x_D = x^2 �3;
a = 1;

h = 10^H-nL;
TableFormBNBTableB:h, f@a + hD - f@aD

h
>, 8n, 1, 5<FFF

Out[155]//TableForm=

0.1 0.7

0.01 0.67

0.001 0.667

0.0001 0.6667

0.00001 0.66667

Note our use of the TableForm command, which displays a list as an array of rectangular cells.  From the table output we  infer

that f ' H1L = 2 � 3.  A more rigorous approach is to algebraically simplify the difference quotient,
f Ha+hL- f HaL

h
:
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Note our use of the TableForm command, which displays a list as an array of rectangular cells.  From the table output we  infer

that f ' H1L = 2 � 3.  A more rigorous approach is to algebraically simplify the difference quotient,
f Ha+hL- f HaL

h
:

In[156]:= Clear@hD
SimplifyBf@a + hD - f@aD

h
F

Out[157]=
2 + h

3

It is now clear  that 
f Ha+hL- f HaL

h
®

2
3

as h ® 0.  This can be checked using Mathematica's Limit command:

In[158]:= LimitBf@a + hD - f@aD
h

, h ® 0F
Out[158]=

2

3

Below is a plot of the graph of f HxL (in black) and its corresponding tangent line (in blue), which also confirms our answer:

In[159]:= Plot@8f@xD, f'@aD Hx - aL + f@aD<, 8x, -2, 2<, PlotStyle ® 8Black, Blue<D

Out[159]= -2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

NOTE: Recall that the tangent line of f HxL at x = a is given by the equation y = f ' HaL Hx - aL + f HaL.
ANIMATION: Evaluate the following inputs to see animations of the secant lines approach the tangent line (from the right and
left).

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

In[160]:= H* From the right *L
Animate@Plot@8f@xD, f'@aD Hx - aL + f@aD, Hf@a + hD - f@aDL �h * Hx - aL + f@aD<, 8x, 0, 2<,
PlotRange ® 8-0.5, 1<, PlotStyle ® 8Black, Blue, Red<D, 8h, 0.5, 0.1, -0.05<D

Out[160]=
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In[161]:= H* From the left *L
Animate@Plot@8f@xD, f'@aD Hx - aL + f@aD, Hf@a + hD - f@aDL �h * Hx - aL + f@aD<, 8x, 0, 2<,
PlotRange ® 8-0.5, 1<, PlotStyle ® 8Black, Blue, Red<D, 8h, -0.5, -0.1, 0.05<D

Out[161]=

� 3.1.2.  Derivative as a Function

The derivative is best thought of as a slope function, one that gives the slope of the tangent line at any point on the graph of f HxL
where this slope exists:

f ¢ HxL = lim
h®0

f Hx + hL - f HxL
h

,

Example 3.2. Compute the derivative of f HxL = sin x using the limit definition.

Solution: We first simplify the corresponding difference quotient to obtain

In[162]:= Clear@hD
f@x_D = Sin@xD;
Simplify@Hf@x + hD - f@xDL �hD

Out[164]=
-Sin@xD + Sin@h + xD

h

Here it is not clear what the limit of the difference  quotient is as h ® 0.  To anticipate the answer for the derivative without

algebraic manipulation, we first note that since sin x is periodic so should its derivative be.  A plot of the difference quotient (as a

function of x) for several arbitrarily small values of h reveals the derivative to be cos x.  Students should recognize from trigonom-

etry that the graph of cos x is merely a left horizontal translation of sin x by Π

2
.

In[165]:= plot1 = Plot@8f@xD, Cos@xD<, 8x, -Pi, Pi<, PlotStyle ® 8Black, Blue<D

Out[165]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0
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In[166]:= Clear@hD
plot2 =

Plot@Evaluate@Table@Hf@x + hD - f@xDL �h, 8h, 0.1, 0.7, 0.3<DD, 8x, -Pi, Pi<, PlotStyle ® RedD

Out[167]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

In[168]:= Show@plot1, plot2D

Out[168]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Of course there are a number of methods to compute the derivative directly in Mathematica.   One method is to evaluate the

command D@ f , xD  for a function f  defined with respect to the variable x.  A second method is to merely evaluate the expression

f'[x] using the traditional prime (apostrophe symbol) notation.  A third method is to use the command  ¶� �.  We shall only

discuss the first two methods since the third method is usually reserved for derivatives of functions depending on more than one
variable, a topic that is treated in the third volume of this publication.

Example 3.3. Compute the derivative of sin Ix2M and evaluate it at x =
Π

4
.

Solution:

Method 1:

In[169]:= D@Sin@x^2D, xD
D@Sin@x^2D, xD �. x ® Sqrt@Pi �4D

Out[169]= 2 x CosAx2E

Out[170]=
Π

2

NOTE: Recall the substitution command �. x -> a was discussed in an earlier section.

Method 2:

Chapter 3 49



Method 2:

In[171]:= f@x_D = Sin@x^2D
f'@xD
f'@Sqrt@Pi �4DD

Out[171]= SinAx2E
Out[172]= 2 x CosAx2E

Out[173]=
Π

2

Warning: Observe that the derivative of sin Ix2M is NOT cos Ix2M but 2 x cos Ix2M.  This is because sin Ix2M is a composite funct-

sion.  A rule  for differentiating  composite functions,  known as  as  the Chain Rule,  is  discussed in ection 3.7 of Rogawski's
Calculus.

Example 3.4. Compute the derivative of f HxL = : sin x
x

if x ¹ 0

0 if x = 0
.

Solution: To define functions described by two different formulas over separate domains, we employ Mathematica's If[expr, p,
q] command:

In[174]:= f@x_D = If@x ¹ 0, Sin@xD �x, 0D
Out[174]= IfBx ¹ 0,

Sin@xD
x

, 0F
In[175]:= f'@xD
Out[175]= IfBx ¹ 0, -

Sin@xD
x2

+
Cos@xD

x
, 0F

NOTE: It is clear for x ¹ 0 that the derivative is - sin x

x2
+

cos x
x

 as a result of the Quotient Rule.  For x = 0, Mathematica's answer

that f ' H0L = 0 is actually incorrect!  Don't be fooled by the fact that f H0L = 0.  One cannot differentiate a formula that is valid at

only a single point; it is also necessary to understand how the function behaves in a neighborhood of this point.

A plot of the graph of f HxL reveals that it is discontinuous at x = 0, i.e. limx®0 f HxL ¹ f H0L, and thus not differentiable there.  

In[176]:= Plot@f@xD, 8x, -3 Pi, 3 Pi<D

Out[176]=

-5 5

-0.2

0.2

0.4

0.6

0.8

1.0

Observe  that  the point f H0L = 0 is  not distinguished in the Mathematica  plot above so that  the (removable)  discontinuity is

detected only by examining the behavior of f  around x = 0 (the true graph of f  is shown following).
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Observe  that  the point f H0L = 0 is  not distinguished in the Mathematica  plot above so that  the (removable)  discontinuity is

detected only by examining the behavior of f  around x = 0 (the true graph of f  is shown following).

In particular, f HxL ® 1 as x ® 0.  We confirm this with Mathematica.

In[177]:= Limit@f@xD, x ® 0D
Out[177]= 1

Of course it is also possible to compute f ' H0L directly from the limit definition.  Here the difference quotient behaves as sin h

h2
 as

the output below shows.  Since its limit does not exist as h ® 0 we conclude that f ' H0L is undefined.

In[178]:= Simplify@Hf@0 + hD - f@0DL �hD
Limit@Hf@0 + hD - f@0DL �h, h ® 0D

Out[178]= µ Sin@hD
h2

h ¹ 0

Out[179]= ¥

NOTE: The discontinuity of f  at x = 0 can be removed by redefining it there to be f H0L = 1.  What is f ' H0L in this case?

Example 3.5. Find an equation of the line passing through the point PH2, -3L and tangent to the graph of f HxL = x2 + 1.

Solution: Let us refer to QHa, f HaLL as the point of tangency for our desired tangent line.  To determine Q, we compute the slope

of our desired tangent line from two different perspectives: 

1. Slope of line segment  PQ:

In[180]:= Clear@aD
f@x_D = x^2 + 1

m = Hf@aD - H-3LL � Ha - 2L
Out[181]= 1 + x2

Out[182]=
4 + a2

-2 + a

2. Derivative of f HxL at x = a:
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In[183]:= f@x_D = x^2 + 1

f'@aD
Out[183]= 1 + x2

Out[184]= 2 a

Equating the two formulas for slope above and solving for a yields

In[185]:= Solve@m � f'@aD, aD
N@%D

Out[185]= ::a ® 2 J1 - 2 N>, :a ® 2 J1 + 2 N>>
Out[186]= 88a ® -0.828427<, 8a ® 4.82843<<
Since there are two valid solutions for a we  have in fact found two such tangent lines.  Their equations are given by

In[187]:= Clear@y1, y2D
y1@x_D = SimplifyBf'@aD Hx - aL + f@aD �. a ® 2 J1 - 2 NF
y2@x_D = SimplifyBf'@aD Hx - aL + f@aD �. a ® 2 J1 + 2 NF

Out[188]= -11 + 8 2 - 4 J-1 + 2 N x

Out[189]= -11 - 8 2 + 4 J1 + 2 N x

Plotting these tangent lines together with the graph of f HxL confirms that our solution is correct:

In[190]:= Plot@8f@xD, y1@xD, y2@xD<, 8x, -6, 6<, PlotRange ® 8-10, 40<, PlotStyle ® 8Black, Blue, Blue<D

Out[190]=

-6 -4 -2 2 4 6

-10

10

20

30

40

NOTE: How would the solution change if we move the given point in the problem to PH2, 5L?  Or PH2, 10L?
� Exercises 

1. Compute the derivatives of the following functions:

a) f HxL = 3 x2 + 1 b) gHxL =
1

x3
c) hHxL =

sin x
cos x

2.  Evaluate the derivatives of the following functions at the specified values of x:

a) f HxL = Hx - 1L Hx + 1L at x = 1 b) gHxL =
x +1

x -1
 at x = 9

3.  Compute the derivatives of the following functions:
a) f HxL = È x + 3 È b) gHxL = É x2 - 4 É 
Hint: Recall the absolute value function: È x È = : x if x ³ 0

-x if x < 0
.  Use the If command to define these absolute functions (see

Example 3.4).  Note that Mathematica does have a built-in Abs@xD command for defining the absolute value of x, but Mathemat-

ica treats Abs@xD as a complex function; thus its derivative Abs '@xD is NOT defined.  The real derivative of Abs@xD for real values

of x can still be found using the numerical derivative ND command but we shall not discuss it here. 
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3.  Compute the derivatives of the following functions:
a) f HxL = È x + 3 È b) gHxL = É x2 - 4 É 
Hint: Recall the absolute value function: È x È = : x if x ³ 0

-x if x < 0
.  Use the If command to define these absolute functions (see

Example 3.4).  Note that Mathematica does have a built-in Abs@xD command for defining the absolute value of x, but Mathemat-

ica treats Abs@xD as a complex function; thus its derivative Abs '@xD is NOT defined.  The real derivative of Abs@xD for real values

of x can still be found using the numerical derivative ND command but we shall not discuss it here. 

4.  Find an equation of the line tangent to the graph of x - y2 = 0 at the point PH9, -3L.
5.  Find an equation of the line passing through the point PH2, -3L and tangent to the graph of y = x2.

� 3.2.  Higher-Order Derivatives

Students should read Section 3.5 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Suppose one is interested in securing higher order derivatives of a function.  Reasons for doing so include applications to maxi-
mum and minimum values, points of inflection, and physical applications such as  velocity and acceleration and jerk, which all fit
into such a context.

Example 3.6. Compute the first eight derivatives of f HxL = sin x .  What is the 255th derivative of f ?

Solution: Here are the first eight derivative of f :

In[191]:= f@x_D = Sin@xD;
TableForm@Table@8n, D@f@xD, 8x, n<D<, 8n, 1, 8<DD

Out[192]//TableForm=

1 Cos@xD
2 -Sin@xD
3 -Cos@xD
4 Sin@xD
5 Cos@xD
6 -Sin@xD
7 -Cos@xD
8 Sin@xD

We observe from the output that the higher-order derivatives of f  are periodic modulo 4, which means they repeat every four

derivatives. Since 255 has remainder 3 when divided by 4, it follows that f H255LHxL = f H3LHxL = -cos x.  Of course Mathematica

can compute this derivative directly (see  output below) but the pattern above gives us a more in-depth understanding of the
higher-order derivatives of sin x.

In[193]:= D@f@xD, 8x, 255<D
Out[193]= -Cos@xD
Example 3.7. Compute the first three derivatives of f HxL = x cos x .

Solution: We use the command D@ f , 8x, n<D to compute the nth derivative of f.  Here we set n = 1, 2, 3.

In[194]:= f@x_D = x *Cos@xD
Out[194]= x Cos@xD
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In[195]:= D@f@xD, xD
Out[195]= Cos@xD - x Sin@xD
In[196]:= D@f@xD, 8x, 2<D
Out[196]= -x Cos@xD - 2 Sin@xD
In[197]:= D@f@xD, 8x, 3<D
Out[197]= -3 Cos@xD + x Sin@xD
A quicker way to generate a list of higher-order derivatives is to use the Table command.  For example, here is a list of the first
five derivatives of f :

In[198]:= Table@D@f@xD, 8x, n<D, 8n, 1, 5<D
Out[198]= 8Cos@xD - x Sin@xD, -x Cos@xD - 2 Sin@xD,

-3 Cos@xD + x Sin@xD, x Cos@xD + 4 Sin@xD, 5 Cos@xD - x Sin@xD<
Discovery Exercise: Find a formula for the nth derivative of f  based on the pattern above.   What is the 100th derivative of f in

this case?  Can you substantiate your claim?

� Exercises 

1. Let f HxL = 1 � x.

(a) Compute the first five higher-order derivatives of f .

(b) What is the 10th derivative of f ?

(c) Obtain a general formula for the nth derivative based on the pattern.  Then use the principle of mathematical induction to

justify your claim. 

2.  Consider f HxL = x sin x.  Determine the first eight derivatives of f  and obtain a pattern. Justify your contention.

� 3.3.  Chain Rule and Implicit Differentiation

Students should read Sections 3.7-3.8 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

In this section we demonstrate not only how Mathematica  uses the Chain Rule to differentiate composite functions but also to
compute derivatives of functions defined implicitly by equations where solving for the dependent variable is not feasible.

Example 3.8. Find all horizontal tangents of f HxL =
x4-x+1

x4+x+1
 .

Solution: We first compute the derivative of f , which requires the Chain Rule.
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In[199]:= f@x_D :=
x4 - x + 1

x4 + x + 1
;

Simplify@f'@xDD
Out[200]=

-1 + 3 x4

1-x+x4

1+x+x4
I1 + x + x4M2

Horizontal tangents have zero slope and so it suffices to solve f ' HxL = 0 for x.

In[201]:= Solve@f'@xD � 0, xD
Out[201]= ::x ® -

1

31�4 >, :x ® -
ä

31�4 >, :x ®
ä

31�4 >, :x ®
1

31�4 >>

Observe that the solutions above are nothing more than the zeros of the numerator of f ' HxL.  We ignore the second and third

solutions listed above, which are imaginary.  Hence,  x = 1 � 3
4

 »  0.76  and x = - 1 � 3
4

.   A plot of the graph of f  below

confirms our solution.

In[202]:= Plot@f@xD, 8x, -2, 2<D

Out[202]=

-2 -1 1 2

0.8

1.0

1.2

1.4

1.6

1.8

Example 3.9.  Find all horizontal tangents of the lemniscate described by 2 Ix2 + y2M2
= 25 Ix2 - y2M.

Solution: Implicit differentiation is required here to compute 
d y

d x
, which involves first differentiating the lemniscate equation and

then solving for our derivative.  Observe that we make the substitution y ® yHxL, which makes explicit our assumption that y

depends on x.

In[203]:= Clear@x, yD
eq = 2 Hx^2 + y^2L^2 � 25 Hx^2 - y^2L

Out[204]= 2 Ix2 + y2M2
� 25 Ix2 - y2M

In[205]:= deq = D@eq �. y ® y@xD, xD
Out[205]= 4 Ix2 + y@xD2M H2 x + 2 y@xD y¢@xDL � 25 H2 x - 2 y@xD y¢@xDL
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In[206]:= Solve@deq, y'@xDD
Out[206]= ::y¢@xD ®

25 x - 4 x3 - 4 x y@xD2

y@xD I25 + 4 x2 + 4 y@xD2M >>

To find horizontal tangents it suffices  to find where the numerator of y ' HxL  vanishes (since  the denominator never  vanishes

except  when y = 0).  Thus, we solve the system of equations 25 x - 4 x3 - 4 x y2 = 0 and 2 Ix2 + y2M2
= 25 Ix2 - y2M  since the

solutions must also lie on the lemniscate.

In[207]:= Solve@8eq, 25 x - 4 x^3 - 4 x *y^2 � 0<, 8x, y<D
Out[207]= ::x ® -

5 3

4
, y ® -

5

4
>, :x ® -

5 3

4
, y ®

5

4
>, :x ®

5 3

4
, y ® -

5

4
>,

:x ®
5 3

4
, y ®

5

4
>, 8y ® 0, x ® 0<, 8y ® 0, x ® 0<, :y ® -

5 ä

2
, x ® 0>, :y ®

5 ä

2
, x ® 0>>

From  the  output  we  see  that  there  are  four  valid  solutions  at  J5 3 � 4, 5 � 4N » H2.17, 1.25L,  J-5 3 � 4, 5 � 4N,
J5 3 � 4, -5 � 4N, and J-5 3 � 4, -5 � 4N, which can be confirmed by inspecting the graph of the lemniscate below.  Observe

the symmetry in the solutions.

In[208]:= N@5 *Sqrt@3D �4D
Out[208]= 2.16506

In[209]:= ContourPlot@2 Hx^2 + y^2L^2 � 25 Hx^2 - y^2L, 8x, -4, 4<, 8y, -2, 2<D

Out[209]=

-4 -2 0 2 4

-2

-1

0

1

2

� Exercises 

1. Find all horizontal tangents of  gHxL = J x2

x+1
N7

.

2. Find all tangents along the curve  hHxL = x + x  whose slope equals 1/2.
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2. Find all tangents along the curve  hHxL = x + x  whose slope equals 1/2.

3. Find all vertical tangents of the cardioid described by x2 + y2 = I2 x2 + 2 y2 - xM2
.

4. Compute the first and second derivatives of

f HxL = : x cos 
1
x

if x ¹ 0

0 if x = 0
.

5. Compute the first and second derivatives of

gHxL = : x2 cos 
1
x

if x ¹ 0

0 if x = 0
.

How do these derivatives at the origin compare with those in the previous exercise?

6. Based on your investigations of the previous two exercises explain the behavior of higher-order derivatives of

hHxL = : xn cos 
1
x

if x ¹ 0

0 if x = 0
 

at the origin for positive integer values of n.

� 3.4.  Derivatives of Inverse, Exponential, and Logarithmic Functions

Students should read Sections 3.9-3.10 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in
this section.

Exponential functions arise naturally. For example, mathematical models for the growth of a population or the decay of a radioac-
tive substance  involve exponential  functions.  In this section we will explore exponential  functions and their  inverses,  called
logarithmic functions, using Mathematica.  We begin with a review of inverse functions in general.

� 3.4.1.  Inverse of a Function

Recall that a function gHxL is the inverse of a given function f HxL if f HgHxLL = gH f HxLL = x.  The inverse of f HxL is denoted by 

f -1HxL. We note that a necessary and sufficient condition for a function to have an inverse is that it must be one-to-one. On the 

other hand a function is one-to-one if it is strictly increasing or strictly decreasing throughout its domain. 

Example 3.13.  Determine if the function f HxL = x2 - x + 1 has an inverse on the domain H-¥, ¥L. If it exists, then find the

inverse.

Solution:  We note that f H0L = f H1L = 1. Thus f  is not one-to-one. We can also plot the graph of f  and note that it fails the

Horizontal Line Test since  it is not increasing on its domain.   
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In[210]:= f@x_D = x^2 - x + 1;

Plot@f@xD, 8x, -1, 2<D

Out[211]=

-1.0 -0.5 0.5 1.0 1.5 2.0

1.5

2.0

2.5

3.0

However, observe that if we restrict the domain of f  to an interval where f  is either increasing or decreasing, say @0.5, ¥L, then

its inverse exists (see plot below).  

In[212]:= plotf = Plot@f@xD, 8x, 0.5, 5<D

Out[212]=

2 3 4 5

5

10

15

20

To find the inverse on this restricted domain, we set y = f -1HxL.   Then f HyL = x. Thus we solve for y from the equation f HyL = x.

In[213]:= sol = Solve@f@yD � x, yD
Out[213]= ::y ®

1

2
J1 - -3 + 4 x N>, :y ®

1

2
J1 + -3 + 4 x N>>

Note that Mathematica gives two solutions. Only the first one is valid, having range @0.5, ¥L, which agrees with the domain of f .

Thus

f -1HxL =
1
2

 J1 + -3 + 4 x N.
To extract this solution from the above output we use the syntax below and denote the inverse function in Mathematica by gHxL
(Mathematica interprets the notation f -1HxL as 1

f HxL , the reciprocal of f ).

In[214]:= g@x_D = sol@@2, 1, 2DD
Out[214]=

1

2
J1 + -3 + 4 x N

To verify that  f HgHxLL = x, we use the Simplify command. 
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To verify that  f HgHxLL = x, we use the Simplify command. 

In[215]:= Simplify@f@g@xDD � xD
Out[215]= True

NOTE: One can attempt to verify gH f HxLL = x.  However, Mathematica cannot confirm this identity (see output below) because it

is unable to simplify the radical, which it treats as a complex square root.  Students are encouraged to algebraically check this
identity on their own.

In[216]:= Simplify@g@f@xDD � xD
Out[216]= 1 + H-1 + 2 xL2

� 2 x

Lastly, a plot of the graphs of f HxL and gHxL (in black and blue, respectively) shows their expected symmetry about the diagonal

line y = x (in red).  Observe that the domain of g is @3 � 4, ¥L, which is the range of f .

In[217]:= plotg = Plot@g@xD, 8x, 3 �4, 5<, PlotStyle ® Red, AspectRatio ® AutomaticD

Out[217]=

2 3 4 5

1.0

1.5

2.0

2.5

In[218]:= Show@plotf, plotg, Graphics@8Dashing@80.05, 0.05<D, Line@880, 0<, 85, 5<<D<D,
PlotRange ® 80, 5<, AspectRatio ® AutomaticD

Out[218]=

0 2 3 4 5

1

2

3

4

5
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Example 3.14.  Determine if the function f HxL = x3 + x has an inverse. If it exists, then compute I f -1M ' H2L.
Solution: Since f ' HxL = 3 x2 + 1 > 0 for all x, we see that f  is increasing on its domain. Thus it has an inverse. Again, we can

solve for this inverse as in the previous example:    

In[219]:= Clear@f, g, x, solD
f@x_D := x^3 + x

sol = Solve@f@yD � x, yD
Out[221]= ::y ® -

I 2

3
M1�3

9 x + 3 4 + 27 x2
1�3 +

9 x + 3 4 + 27 x2
1�3

21�3 32�3 >,

:y ®
1 + ä 3

22�3 31�3 9 x + 3 4 + 27 x2
1�3 -

J1 - ä 3 N 9 x + 3 4 + 27 x2
1�3

2 21�3 32�3 >,

:y ®
1 - ä 3

22�3 31�3 9 x + 3 4 + 27 x2
1�3 -

J1 + ä 3 N 9 x + 3 4 + 27 x2
1�3

2 21�3 32�3 >>

Only the first solution listed above is valid, being real valued.  Thus

f -1HxL = -
J 2

3
N1�3

9 x+ 3 4+27 x2
1�3

+
9 x+ 3 4+27 x2

1�3

21�3 32�3
.

Again we denote our inverse by gHxL:
In[222]:= g@x_D = sol@@1, 1, 2DD
Out[222]= -

I 2

3
M1�3

9 x + 3 4 + 27 x2
1�3 +

9 x + 3 4 + 27 x2
1�3

21�3 32�3

 Lastly we compute g ' H2L.  
In[223]:= Simplify@g'@2DD

N@%D
Out[223]=

31�3 J14 + 3 21 N K31�3 + J9 + 2 21 N2�3O
28 J9 + 2 21 N4�3

Out[224]= 0.25

NOTE:  The  easier  approach  in computing g ' H2L  without having to explicitly differentiate  gHxL  is  to instead  use the relation

I f -1M ' HxL = 1 � f ' I f -1HxLM, which shows that the derivative of f  at a point Ha, bL on its graph and the derivative of f -1 (or g in our

case) at the corresponding inverse point Hb, aL on its graph are reciprocal.  In particular, since f H1L = 2 and f -1H2L = 1, we have

I f -1M ' H2L = 1 � f ' I f -1H2LM = 1 � f ' H1L = 1 � 4.
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In[225]:= 1 �f'@g@2DD
N@%D

Out[225]=
1

1 + 3 -
2

3 J18+4 21 N
1�3

+
J 1

2
J18+4 21 NN1�3

32�3

2

Out[226]= 0.25

NOTE: The plot below illustrates how the slopes of the two tangent lines, that of f  at H1, 2L and that of g at H2, 1L (both in blue),

are reciprocal. 

In[227]:= Plot@8f@xD, g@xD, f'@1D Hx - 1L + f@1D, g'@2D Hx - 2L + g@2D<, 8x, -1, 5<,
PlotRange ® 8-1, 5<, PlotStyle ® 8Black, Red, Blue, Blue<, AspectRatio ® AutomaticD

Out[227]=

-1 1 2 3 4 5

-1

1

2

3

4

5

� 3.4.2.  Exponential and Logarithmic Functions

One of the most important functions in mathematics and its applications is the exponential  function. In particular,  the natural
exponential function f HxL = ex, where 

e = limx®0 H1 + xL1�x
» 2.718

In Mathematica we use the capital letter E or blackboard bold letter ã from the Basic Math Input submenu of the Palettes menu
to denote the Euler number.   

In[228]:= Limit@H1 + xL^H1 �xL, x ® 0D
Out[228]= ã

Every exponential function f HxL = ax, a ¹ 1, a > 0, where a ¹ 1 and a > 0, has domain H-¥, ¥L and range H0, ¥L. It is also one-

to-one on its domain. Hence it has an inverse.  The inverse of an exponential function f HxL = ax is called the logarithm function

and is denoted by gHxL = loga x. The inverse of the natural exponential function is denoted by gHxL = ln x and is called the natural

logarithm. In Mathematica, we use Log[a,x] for loga x and Log[x] for ln x.  Below is a plot of the graphs of ex and ln x in black

and red, respectively.  Observe their symmetry about the dashed line y = x.
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Every exponential function f HxL = ax, a ¹ 1, a > 0, where a ¹ 1 and a > 0, has domain H-¥, ¥L and range H0, ¥L. It is also one-

to-one on its domain. Hence it has an inverse.  The inverse of an exponential function f HxL = ax is called the logarithm function

and is denoted by gHxL = loga x. The inverse of the natural exponential function is denoted by gHxL = ln x and is called the natural

logarithm. In Mathematica, we use Log[a,x] for loga x and Log[x] for ln x.  Below is a plot of the graphs of ex and ln x in black

and red, respectively.  Observe their symmetry about the dashed line y = x.

-2 -1 1 2 3 4 5

-2

-1

1

2

3

4

5

Please  refer  to Section 3.10 of Rogawski's Calculus  textbook for derivative formulas of general  exponential  and logarithmic
functions.

Example 3.15.  Compute derivatives of the following functions.
a) f HxL = 2x b) f HxL = 6 x2 + 4 ex c) f HxL = log10 x2 d) f HxL = lnIcosIe3 xMM
Solution: We will input the functions directly and use the command D  to find each derivative. Thus for a) we will evaluate
D@2x, xD.  Again note that Log[2] should be read as ln 2.  

a)

In[229]:= D@2^x, xD
Out[229]= 2x Log@2D
b)

In[230]:= DA6 x2 + 4 Ex, xE
Out[230]= 4 ãx + 12 x

c)

In[231]:= D@Log@10, x^2D, xD
Out[231]=

2

x Log@10D
d)

In[232]:= f = DALogACosAE3 xEE, xE
Out[232]= -3 ã3 x TanAã3 xE
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Example 3.16.  Find points on the graph of f HxL = x2 e3 x+5 + 3 x where  the tangent lines are parallel to the line y = 3 x - 1. 

Solution: Since the slope of the given line equals 3 it suffices to solve f ' HxL = 3 for x to locate these point(s).

In[233]:= Clear@f, solD
f@x_D = x2 E3 x+5 + 3 x

sol = Solve@f'@xD == 3, xD
Out[234]= 3 x + ã5+3 x x2

Out[235]= ::x ® -
2

3
>, 8x ® 0<>

Thus there are two solutions: I-2 � 3, -2 + 4 e3 � 9M and H0, 0L.
In[236]:= x0 = sol@@1, 1, 2DD

x1 = sol@@2, 1, 2DD
f@x0D
f@x1D

Out[236]= -
2

3

Out[237]= 0

Out[238]= -2 +
4 ã3

9

Out[239]= 0

The plot below confirms that the two corresponding tangent lines (in blue) are indeed parallel to the given line (in red).

In[240]:= y1 = f@x0D + f'@x0D Hx - x0L
y2 = f@x1D + f'@x1D Hx - x1L
Plot@8f@xD, y1, y2, 3 x - 2<, 8x, -1, 1<,
PlotRange ® 8-5, 15<, PlotStyle ® 8Black, Blue, Blue, Red<D

Out[240]= -2 +
4 ã3

9
+ 3

2

3
+ x

Out[241]= 3 x

Out[242]=

-1.0 -0.5 0.5 1.0

-5

5

10

15

Chapter 3 63



NOTE: One would expect the tangent line at the origin to be horizontal based on a visual inspection of the graph of f , but this

demonstrates the pitfall of using a graphing approach.

� Exercises 

1.  Compute derivatives of the following functions.

a) f HxL = x2  ex3-4 x b) f HxL = xa + ax

c) f HxL = ln Hx - 1L + lnHx + 1L d) f HxL = log10 xJ x3-3 x+1

x2-2 x-3
N3�2

2.  Find the second and third derivatives of f HxL = ex ln x.

3.  Let f HxL = cos x + ln x.  Plot the graphs of f  and f ' on the same set of axes.

4.  Find an equation of the line tangent to the graph of f HxL =
ln x

x2
 that is parallel to the x-axis. 

5.  Discovery Exercise: Define sinh x = Hex - e-xL � 2 and cosh x = Hex + e-xL � 2. These functions are called the hyperbolic sine

and hyperbolic cosine of x, respectively.

a) Determine the initial eight derivatives of each of these two hyperbolic functions.

b) Determine general formulas for the nth derivatives of these functions based on the pattern and verify your contentions via

mathematical induction.

c) How do the higher-order derivatives of sinh x and cosh x compare with those of the trigonometric functions sin x and cos x?
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Chapter 4. Applications of the Derivative
We have seen how the derivative of a function is itself a function. This idea leads to many possible applications, some of which
we will now explore with Mathematica to demonstrate its ability to manipulate and calculate complicated or tedious expressions.

� 4.1.  Related Rates

Students should read Section 3.9 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Example 4.1.  Let us assume a rubber ball is sitting out in the sun and that the heat causes its surface area to increase at the rate
of 1.5 square centimeters per hour.  How fast is the radius increasing when the radius is 2 centimeters? 

Solution: To solve this problem we will need the formula for the surface area of a sphere: S = 4Πr2.  Here, the surface area S and

the radius r are expressed as functions of t (time). 

In[243]:= Clear@SD
sa = S@tD � 4 Π r@tD^2

Out[244]= S@tD � 4 Π r@tD2

In[245]:= dsa = D@sa, tD
Out[245]= S¢@tD � 8 Π r@tD r¢@tD
Now differentiate this formula and solve for r ' HtL:
In[246]:= sol = Solve@dsa, r'@tDD
Out[246]= ::r¢@tD ®

S¢@tD
8 Π r@tD >>

Since the output above is a nested list (each set of curly braces denotes a list; see Chapter 1 of this manual for a description of

nested lists) and our solution, S ' HtL
8 Π rHtL , represents the second element of the first (inner) list, we can extract it in order to define r ' HtL

as follows:

In[247]:= r'@tD = sol@@1, 1, 2DD
Out[247]=

S¢@tD
8 Π r@tD

Since we are given that S ' HtL = 1.5 and rHtL = 2, we substitute these into the formula for r ' HtL:
In[248]:= r'@tD �. 8S'@tD ® 1.5, r@tD ® 2<
Out[248]= 0.0298416

Therefore, when the radius is 2 cm it is increasing at the rate of about .0298 cm per hour.

� Exercises 

1.  If the volume of a cube is increasing at the rate of 2 cubic inches per minute, how fast is the length of one of its sides increas-
ing when that side is 8 inches?

2.  A particle is moving along a parabola y = 2 x2 + 3 x - 1 in such a way that the rate of change of its x-coordinate is constant,

namely x ' HtL = 3.  Find the rate of change of its y-coordinate when the position of the particle is (1,4).
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2.  A particle is moving along a parabola y = 2 x2 + 3 x - 1 in such a way that the rate of change of its x-coordinate is constant,

namely x ' HtL = 3.  Find the rate of change of its y-coordinate when the position of the particle is (1,4).

� 4.2.  Extrema

Students should read Section 4.2 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Next,  let  us  consider  finding critical  points and inflection points to determine extrema.   Remember that  critical  points of a
function  are  those  for  which  f ' HxL = 0  or  for  which  f ' HxL  does  not  exist.  Similarly, inflection  points  occur  where  either

f '' HxL = 0 or where f '' HxL does not exist.  Extrema occur at critical points, but not all critical points are extrema (consult your

calculus  text).   An  inflection  point  is  a  point  Hc, f  HcLL  where  concavity changes;  this  occurs  where  f '' HcL = 0  or  where

f '' HxL does not exist, and like critical points, not all points where f '' HxL = 0 (or where f '' HxL does not exist) are inflection points.

Example 4.2.  Find all local extrema and inflection points of f HxL = 1 � Ix2 + 3M.
Solution: We first define f  in Mathematica:

In[249]:= Clear @f, xD
In[250]:= f@x_D := 1 � Hx^2 + 3L
In[251]:= Plot @f@xD, 8x, -4, 4<D

Out[251]=

-4 -2 2 4

0.10

0.15

0.20

0.25

0.30

To find extrema of f  we locate its critical points, i..e those points where f ' HxL = 0 or f ' HxL is undefined.  We can solve the first

case using Mathematica:

In[252]:= f'@xD
Solve@f'@xD � 0, xD

Out[252]= -
2 x

I3 + x2M2

Out[253]= 88x ® 0<<
Since f ' HxL is defined everywhere, it follows that there is exactly one critical point at x = 0 and at that point there is a maximum,

as can be seen from the graph above.  We could also have used the second derivative test to confirm this:
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In[254]:= f''@0D
Out[254]= -

2

9

Since the second derivative is negative at x = 0, the curve is concave down there. This, of course, means that we have a local

maximum at x = 0.

To find the points of inflection, we locate zeros of the second derivative:

In[255]:= Solve@f''@xD � 0, xD
Out[255]= 88x ® -1<, 8x ® 1<<
To determine if these solutions are indeed inflection points we need to check if there is a sign change in f '' HxL  on either side of

each (at x = -1 and x = 1):

In[256]:= Plot@f''@xD, 8x, -2, 2<D

Out[256]=

-2 -1 1 2

-0.20

-0.15

-0.10

-0.05

0.05

Notice from the graph above that f '' HxL changes from positive to negative at x = -1 and from negative to positive at x = 1. Thus

both points H-1, f  H-1LL and H1, f  H1LL are inflection points.

� Exercises 

1. Find all critical points and inflection points for:
a) f HxL = x3 - 3 x2 + 1 b) f HxL = Ix2 - 3M ãx c) f HxL = sin x on [0, 2Π]

� 4.3.  Optimization

Students should read Section 4.6 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Extreme values of a function occur where f ' HxL = 0 or where f ' HxL does not exist.  This idea allows us to find maxima and

minima – concepts which are crucial in many applications.  For instance, in business, one wants to minimize costs or maximize
profits.  In government, one wants to track the flow of money in an economy, and when that flow is a minimum or a maximum. In
engineering design, we may want to know what shape of a conduit will generate  maximum flow.  Similar problems exist in many
other fields.  We will now look at some of these applications.
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� 4.3.1.  Traffic Flow

Example 4.3.   Traffic  flow along a major highway in Boston between  6 AM and 10 AM can be modeled by the function

f HtL = 20 t - 40 t + 50 (in miles per  hour),  where t = 0 corresponds to 6 AM.  Determine when the minimum traffic  flow

occurs.

Solution: Let us first plot the graph of f HtL.
In[257]:= Clear@f, tD
In[258]:= f@t_D := 20 t - 40 t + 50

In[259]:= Plot@f@tD, 8t, 0, 4<D

Out[259]=

1 2 3 4

35

40

45

50

Note from the plot above that the average speed is decreasing between 6 AM and 7 AM and increasing after 7 AM.

At 6 AM the average speed is

In[260]:= f@0D
Out[260]= 50

or 50 mph. At 6:30 AM the average speed is 

In[261]:= f@.5D
Out[261]= 31.7157

or 31.7 mph. To see how the average speed varies throughout the day we make a table of these values at each half hour from 6
AM to 10 AM:

In[262]:= TableForm@ Table@8t, f@tD<, 8t, 0, 4, .5<DD
Out[262]//TableForm=

0. 50.

0.5 31.7157

1. 30.

1.5 31.0102

2. 33.4315

2.5 36.7544

3. 40.718

3.5 45.1669

4. 50.

You can see from the table that the average speed quickly drops from 50 mph to 30 mph in the first hour and then gradually
increases back up to 50 mph during the next 3 hours.  If we want to verify that the minimum occurs at 7 AM (or t = 1), we can

use calculus. Since extrema occur where the derivative is 0, we set the derivative equal to zero and solve for t:   
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You can see from the table that the average speed quickly drops from 50 mph to 30 mph in the first hour and then gradually
increases back up to 50 mph during the next 3 hours.  If we want to verify that the minimum occurs at 7 AM (or t = 1), we can

use calculus. Since extrema occur where the derivative is 0, we set the derivative equal to zero and solve for t:   

In[263]:= Solve@f'@tD � 0, tD
Out[263]= 88t ® 1<<
Therefore the minimum does occur when t = 1 (7 AM) and from the table we see that the minimum average speed at this time is

30 mph.

� 4.3.2.  Minimum Cost

Example 4.4.  A friend of one of the authors owns some land on Long Island off the coast of Portland, Maine.  He wants to build
a house there, but there is no electricity.  He is considering laying an underwater cable to connect up with the mainland.  After a
while I convince him of the ridiculousness of that idea.  The cost is far more than he can afford, but it does get me thinking about
mathematics.  What would be the cheapest way of hooking up a cable to the municipal electrical system?   Let us consider the
following scenario:

Imagine the island connection point at H0, 3000L and the mainline connection point at H10 000, 0L where the units are in meters.

Assume it costs $36 per meter to lay cable underwater and $24 per meter to lay cable on land.  You can lay cable underwater
from H0, 3000L to Hx, 0L  and then lay cable on land from Hx, 0L to
H10 000, 0L.  The variable x can vary between 0 and 10000.  What value of x would minimize the cost for laying this cable and

what would that minimum cost be?

Solution: First we need to determine the cost.  There are two parts: the underwater part and the overland part.  The cost of the
underwater part is just $36 times the distance D1 from H0, 3000L to Hx, 0L.  We will call that cost c1:

In[264]:= c1@x_D := 36 * 30002 + x2

The overland cost is $24 times the distance D2 from Hx, 0L to H10 000, 0L.  We will call that cost c2:

In[265]:= c2@x_D := 24 * H10 000 - xL
The total cost is then:
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In[266]:= cost@x_D = c1@xD + c2@xD
Out[266]= 24 H10 000 - xL + 36 9 000 000 + x2

We need to minimize this cost function.  First we graph it to see if it has a minimum.

In[267]:= Plot@cost@xD, 8x, 0, 10 000<D

Out[267]=

2000 4000 6000 8000 10 000

330 000

340 000

350 000

360 000

370 000

Notice that this cost function has its minimum somewhere between 2000 and 4000.  Also, you will note that as x gets close to that

minimum the tangent lines of cost x are getting close to horizontal. In other words, the minimum will occur at a point x for which

the derivative is zero or horizontal (i.e., the derivative at a point gives the slope of the tangent line at that point). This is a calculus
problem that we can solve.

In[268]:= Solve@cost'@xD � 0, xD
Out[268]= ::x ® 1200 5 >>
In[269]:= NBcostB1200 5 FF
Out[269]= 320 498.

Therefore, the minimum occurs  at x = 1200 5 » 2683.28 meters and the minimum cost is approximately $320,498.

NOTE: Another method in finding the minimum is to use the command FindMinimum. We will start our search near x = 2000:

In[270]:= FindMinimum@cost@xD, 8x, 2000<, WorkingPrecision ® 8D
Out[270]= 8320 498.45, 8x ® 2683.2816<<
Again, we get an answer that corroborates the previous answer.

� 4.3.3.  Packaging (Minimum Surface Area)

Example 4.5.  A major concern in business is to minimize the cost of packaging.  This cost is related to the surface area of the
package.  If we can minimize that surface area,  then we can minimize the cost.  Let us assume that a company has a certain
product that needs to be packaged in a rectangular box having a square base.  If the volume of the box is required to be 1 cubic
meter, then find the dimensions of the box that will minimize its surface area.

Solution: If the length of the sides of the square base is x and the height of the box is y, then the volume of the box is given by

x2 y and must equal 1 cubic meter (this is our constraint):

In[271]:= Clear@x, y, SD
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In[272]:= constraint = x^2 *y � 1

Out[272]= x2 y � 1

The surface area of our package (box) is S = 4 x y + 2 Ix2M and is the quantity that must be minimized (recall that the top and

bottom sides each have area x2 and the 4 sides each have area x y).  Using our volume constraint, x2y = 1, we can solve for y in

terms of x:

y =
1

x2

In[273]:= sol = Solve@constraint, yD
Out[273]= ::y ®

1

x2
>>

The surface area function can then be expressed as a function of x only:

S HxL = 4 x y + 2 x2 = 4 x I1 � x2M + 2 x2 = 4 � x + 2 x2

In[274]:= S@x_D = 4 x *y + 2 x^2 �. y ® sol@@1, 1, 2DD
Out[274]=

4

x
+ 2 x2

Using the idea again that extrema occur at points where the derivative is zero, we calculate:

In[275]:= Solve@S'@xD � 0, xD
Out[275]= 98x ® 1<, 9x ® -H-1L1�3=, 9x ® H-1L2�3==
This equation has 1 real and 2 imaginary solutions. We need only the real solution of x = 1. To see that this corresponds to an

actual minimum, we plot the curve:

In[276]:= Plot@S@xD, 8x, 0 , 5<D

Out[276]=

1 2 3 4 5

20

30

40

50

60

70

80

Alternatively, we could have used the second derivative test to show that a minimum occurs at x = 1:

In[277]:= S''@1D
Out[277]= 12

Since f '' H1L > 0, we know that the graph is concave up at x = 1 and hence must have a minimum there.  Since y = 1 when x = 1,

we conclude that the box with minimum surface area is a cube with sides of 1 meter.

� 4.3.4.  Maximize Revenue
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�

4.3.4.  Maximize Revenue

The following application concerns optimizing group fares for charter flights. 

Example 4.6.  Suppose a travel agency charges $600 per person for a charter flight if exactly 100 people sign up.  However, if
more than 100 people sign up, then the fare is reduced by $2 per person for each additional person over the initial 100.  The
travel agency wants to know how many people they should book to maximize revenue.   Also determine what that maximum
revenue is and what the corresponding fare is for each person.

We let x denote the number of passengers above 100.  Keep in mind that revenue is the product of the number of people multi-

plied by the cost (fare) per person.  If R HxL is defined as the revenue function, then R HxL = H100 + xL H600 - 2 xL.  To determine

the maximum value of R HxL for x ³ 0, let us first examine its graph:

In[278]:= R@x_D := H100 + xL H600 - 2 xL
In[279]:= Plot@R@xD, 8x, 0, 200<D

Out[279]=

50 100 150 200

65 000

70 000

75 000

80 000

From the plot above we see that a maximum occurs at about x = 100.  To confirm this, we first solve for the critical points:

In[280]:= Solve@R'@xD � 0, xD
Out[280]= 88x ® 100<<
Therefore the maximum does indeed occur at x = 100, and the maximum revenue is

In[281]:= R@100D
Out[281]= 80 000

or  $80,000.  Since 100 + x represents the number of customers, this occurs when 200 customers sign up for the flight.  In this

case, the cost per person is

In[282]:= 600 - 2 x �. x -> 100

Out[282]= 400

or $400 per person.

� Exercises 

1. Assume traffic flow is given by a speed function f  HtL = 25 t - 45 t + 55.  Analyze speed changes between 6 AM and 10

AM and calculate when traffic flow is minimized.  What is that minimum speed?

2. Find the minimum value of f HxL = 3 x4 + 4 x3.
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2. Find the minimum value of f HxL = 3 x4 + 4 x3.

3. Assume that the average cost of producing compact discs is given by  c HxL = -.0002 x + 3 + 2000 � x.  Show that the average

cost is always decreasing for x between 0 and 4000.

4. Suppose the population of a city is modeled by

p HtL = 4456 t3 + 8939 t2 + 23 463 t + 25 528

where t is measured in years from 1990 to 2000.

a)  Show that the population was always increasing in this decade.

b)  Show that the population was increasing at its slowest rate in August of 1990.  Hint:  The population is increasing at its
slowest rate when p '' HtL = 0.

5.  Given  that  the  total  cost  for  manufacturing  x  units  of  a  particular  product  is  described  by  the  function

CHxL = 0.0025 x2 + 80 x + 10 000, find the level of production that minimizes the total cost of manufacturing.

6. The total population of the planet is forecast by the function PHtL = 0.00074 t3 - 0.07 t2 + 0.89 t + 6.04 where t is measured in

decades,  t = 0 corresponds to the year 2000, and PHtL is measured in billions of people.  In what year will the population peak

over the next 200 years?

7. A book designer has decided that the pages of a book are to have 1.5 inch margins top and bottom and 1 inch margins on each
side.  If each page is to have an area of 100 square inches, what are the dimensions of this page if its printed area is to be a
maximum?

8. The owner of a farm wants to enclose a rectangular region with 3000 m of fencing while dividing the region into two parts,
each of which is rectangular,  by using part of the fencing to subdivide it and running a fence parallel to the sides (see figure
below).   What should be the dimensions of the region in order to maximize its area?

9. The owner of a cruise ship charges groups as follows:  For a group of 40 people, the charge is $1,000 per person per day.  If
more than 40 people sign up, the fare is reduced by $8 for each addtional person.  

a) Assuming at least 40 people sign up, determine the number necessary to maximize revenue.

b) What is the maximum revenue?

c) What would be the cost per person in this case?
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� 4.4.  Newton's Method

Students should read Section 4.7 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

� 4.4.1.  Programming Newton's Method

Newton's Method is a technique for calculating zeros of a function based on the direction of its tangent lines.  It is a recursive
routine that is rather tedious to do by hand or even with a calculator, but simple with Mathematica. To start the procedure one
should have an idea about the general location of each zero.  This is because an initial approximation x0  for that zero, say at

x = r, is needed to start the recursion.  For example, one can specify x0  by examining the graph of the function to see where the

zeros are approximately.   Then the next approximation x1 can be found by the recursive formula x1 = x0 - f Hx0L � f ' Hx0L.   This

process can be iterated using the general formula

 xn+1 = xn - f HxnL � f ' HxnL
Under suitable conditions, the sequence of approximations 8x0, x1, x2, ...< (called the Newton sequence) will converge to r. 

Example 4.7. Approximate the zeros of the function f HxL = lnI9 - x2M - x.

In[283]:= f@x_D := LogA9 - x2E - x

In[284]:= Plot@f@xD, 8x, 0, 3<D

Out[284]=

0.5 1.0 1.5 2.0 2.5 3.0

-4

-2

2

Clearly, there is one zero between 1.5 and 2 based on the plot above.  To approximate this zero, we define a function newtn to
perform the recursion:

In[285]:= newtn@x_D := x - f@xD �f'@xD
To generate the corresponding Newton sequence, we compute 8 iterates of this function starting with an initial guess of x = 1.6.

This iteration can be performed efficiently using the NestList[f,x,n] function, which is a recursive routine that outputs a list with

x as its first value, followed by f[x], f[f[x]], f[f[f[x]]], etc., up to n iterates as shown in the example below:

In[286]:= approx = NestList@newtn, 1.6, 8D
Out[286]= 81.6, 1.77538, 1.76961, 1.7696, 1.7696, 1.7696, 1.7696, 1.7696, 1.7696<
From this we see that the root, accurate to 4 decimal places, is 1.7696.  If greater accuracy is desired, say 12 decimal places, we

can redisplay the values of approx if it is already accurate to 12 decimal places or else recalculate it using a higher number of
iterations if necessary.

74 Mathematica for Rogawski's Calculus



In[287]:= NumberForm@approx �� TableForm, 13D
Out[287]//NumberForm=

1.6

1.775382136758

1.769608467699

1.769601100211

1.769601100199

1.769601100199

1.769601100199

1.769601100199

1.769601100199

Discovery Exercise: The function f HxL = lnI9 - x2M - x discussed above has a second zero.  Locate it on the graph of f HxL and

use Newton's method to approximate it to 12 decimal places.  Hint: First plot the graph over a wide interval to locate the zero and
then zoom in to obtain an initial approximation.  

Warning: Be sure that your initial approximation is sufficiently close to your zero; otherwise the Newton sequence may diverge
or converge to another zero.

� 4.4.2.  Divergence

One interesting point about Newton's Method is that it does not always work. For instance, the function y = x1�3  clearly has a

root at x = 0:

In[288]:= PlotB x
3

, 8x, 0, 1<F

Out[288]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Yet Newton's Method fails for any guess x ¹ 0:

In[289]:= Clear@fD
f@x_D := x

3

In[291]:= NestList@newtn, 0.6, 6D
Out[291]= 90.6, -1.2, 2.4 - 8.24861 ´10-16

ä, -4.8 + 1.64972 ´10-15
ä,

9.6 - 3.16674 ´10-15
ä, -19.2 + 6.33348 ´10-15

ä, 38.4 - 4.98733 ´10-15
ä=
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NOTE: The extremely small imaginary values that appear in the answers earlier should be ignored (or treated as zero) since we
expect our answers to be entirely real.  This is due to Mathematica's default algorithm for computing radicals in the domain of
complex numbers,  which may introduce  extremely small numerical  errors.   To eliminate  these  imaginary parts,  we use  the

Re[expr] command to extract the real part of expr.

In[292]:= Re@NestList@newtn, 0.6, 6DD
Out[292]= 80.6, -1.2, 2.4, -4.8, 9.6, -19.2, 38.4<
Question: Can you explain why Newton's Method fails in the above example?

�  4.4.3.  Slow Convergence

Even when  Newton's  Method works,  sometimes the  Newton sequence  converges  very slowly to the  answer.   Consider  the
following function: 

In[293]:= Clear@ fD
f@x_D := x3 - x - 1

In[295]:= Plot@f@xD, 8x, -3, 2<D

Out[295]=

-3 -2 -1 1 2

-25

-20

-15

-10

-5

5

Clearly, there is a root between 1.2 and 1.4.  If  we use the newtn function with our guess as x = 1, we get quick convergence to

the root:

In[296]:= NestList@newtn, 1.0, 6D
Out[296]= 81., 1.5, 1.34783, 1.3252, 1.32472, 1.32472, 1.32472<
But if we choose our initial guess near 0.6, the convergence is much slower as discussed in the following exercises.

� Exercises 

1.  Compare the convergence in the above example (Section 4.4.3) for initial guesses of 0.5 and 0.6.  Why does Newton's Method
converge so slowly for these values?  (Hint: Consider the tangent lines to the curve f HxL.) 
2.  Synthesizing the discussion in Sections 4.4.1 and 4.4.2 on the flaws in Newton's Method, can you come up with any general
criteria that will tell us when Newton's Method will converge or diverge?

3. Use Newton's Method to find the postive zero of f HxL = x2 - 2 accurate to 5 decimal places.   Note: This demonstrates how

Newton's Method can be used to approximate 2 .  

4. Use Newton's Method to find a solution (accurate to 5 decimal places) to the following equations:

a)  sin x = cos H2 xL in the interval [0, Π/2] (Hint: Define f HxL = sin x - cosH2 xL) b) ãx = 5 x c)  cos x = x
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a)  sin x = cos H2 xL in the interval [0, Π/2] (Hint: Define f HxL = sin x - cosH2 xL) b) ãx = 5 x c)  cos x = x
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Chapter 5. Integration

� 5.1.  Antiderivatives (Indefinite Integral)

Students should read Section 4.8 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Integrate@ f , xD gives the indefinite integral (or antiderivative) of f  with respect to x.  The command Integrate can evaluate all

rational functions and a host of transcendental functions, including exponential, logarithmic, trigonometric, and inverse trigono-
metric functions.  One can also use the palette button Ù � â � (BasicMathInput Palette) to evaluate integrals. 

Example 5.1.  Evaluate  Ù xIx2 + 1M2
 â x.

Solution:  

Method 1: (Palette buttons)

In[297]:= à x Ix2 + 1M2
 âx

Out[297]=
x2

2
+
x4

2
+
x6

6

NOTE: Mathematica  does not explicitly include the constant of integration C  in its answers for indefinite integrals; the user

should always assume that this is implicitly part of the answer.

Method 2: (Integrate command)

In[298]:= Integrate@x Hx^2 + 1L^2, xD
Out[298]=

x2

2
+
x4

2
+
x6

6

NOTE:  Observe  that  if  the  substitution  u = x2 + 1  is  used  to  transform  this  integral,  then  the  answer  becomes

Ù xIx2 + 1M2
 â x =

1
2

 Ù u2 â u =
1
6

 I1 + x2M3
.  How does one reconcile this answer with the one obtained in the output above?

The following are examples of integrals that can be evaluated in a routine manner using the substitution method.  The reader
should perform the integration by hand to check answers.

Example 5.2.   Evaluate à x

x+1
 â x.

Solution:  

In[299]:= à x

x + 1

 âx

Out[299]=
2

3
H-2 + xL 1 + x

Example 5.3.  Evaluate Ù x2 sinIx3M â x.

Solution:  
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In[300]:= à x2 SinAx3E âx

Out[300]= -
1

3
CosAx3E

Note: Mathematica  can certainly integrate much more complicated functions, including those that may require using any of the
integration techniques discussed in your calculus textbook. We will consider these in Section 5.4 following.   

� Exercises 

1. Evaluate the following integrals:

a) Ù Ix2 + 2M â x b) Ù cos 3 x â x c) à 1 - x2  â x d) Ù sin 2
 x â x

2.  Integrate each of the following. Simplify your answers.

a) Ù x5+3 x4-2 x+1

x3
 d x b) Ù 1

1+ sin2 x
 d x

3. Evaluate the following integrals by first using Mathematica to decompose the integrand as a sum of partial fractions (using the

Apart[expr] command to perform this decomposition).

(a) Ù x2+2 x-1

2 x3+3 x2-2 x
 â x (b) Ù 1

xHx+1L H2 x+3L  â x

� 5.2.  Riemann Sums and the Definite Integral

Students should read Sections 5.1 and 5.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

There are two basic integration commands in Mathematica to evaluate definite integrals:

Integrate@ f , 8x, a, b<D calculates the definite integral (area under the curve) of f  on the interval @a, bD using analytic methods.

NIntegrate@ f , 8x, a, b<D calculates a numerical approximation of the definite integral of f  on @a, bD using numerical methods.

Review of Riemann Sums: A partition of a closed interval @a, bD is a set P = 8x0, x1, x2, .... , xn< of points of @a, bD such that 

a = x0 < x1 < x2 < ... .. < xn = b.

Given a function f  on a closed interval @a, bD and a partition P = 8x0, x1, .... , xn< of the interval @a, bD,  recall that a Riemann

sum of f  over @a, bD relative to P is a sum of the form 

Úi=1
n f Hxi

*L D xi, 

where  D xi = xi - xi-1  and  xi
*is  an  arbitrary  point  in  the  ith  subinterval  @xi-1, xiD.   For  simplicity  we  shall  assume  that

D xi = D x =
b-a

n
for all i.  A Riemann sum is therefore an approximation to the (signed) area of the region between f  and the x-

axis along the interval @a, bD.  The exact area is given by the definite integral of f  over @a, bD, which is defined to be the limit of

its Riemann sums as n ® ¥ and is denoted by Ùa

b
f HxL â x. In other words, 

Ùa

b
f HxL â x = limn®¥ Úi=1

n f Hxi
*L D x

This definite integral exists provided the limit exists.  For a continuous function f  it can be shown that Ùa

b
f HxL â x exists.
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� 5.2.1.  Riemann Sums Using Left Endpoints

We can define a Riemann sum of f  relative to a partition P by considering rectangles whose heights are based on the left end-

point of each subinterval of P.   This is achieved by setting xi
* = xi = a + iHb - aL � n for i = 0, 1, .... n - 1,  so that the correspond-

ing height of each rectangle is given by f HxiL.  This leads to the following formula for the Riemann sum using left endpoints,

which we denote by LRSUM:  

In[301]:= Clear@fD
LRSUM@a_, b_, n_D := Sum@f@a + i * Hb - aL �nD * Hb - aL �n, 8i, 0, n - 1<D

Example 5.4. Let f HxL = x2 on [0,1] and let P = 80, 1 � n, 2 � n, 3 � n, ...., H n - 1L � n, 1< be a partition of @0, 1D. 
a) Approximate Ù0

1
f HxL â x by computing the Riemann sum relative to P using the left endpoint method.

b) Plot the graph of f  and the rectangles corresponding to the Riemann sum in part a). 

c) Find the limit of the Riemann sum obtained in part a) by letting n ® ¥.

Solution: a) We define f HxL = x2 in Mathematica and evaluate LRSUM using a = 0, b = 1, and various values for n. In the table

below, the first column gives the value of n and the second column gives the corresponding Riemann sum.   

In[303]:= f@x_D := x2

Table@8n, N@LRSUM@0, 1, nDD<, 8n, 10, 100, 10<D �� TableForm

Out[304]//TableForm=

10 0.285

20 0.30875

30 0.316852

40 0.320938

50 0.3234

60 0.325046

70 0.326224

80 0.327109

90 0.327798

100 0.32835

Thus Ù0

1
x2 â x » 0.30875 for n = 20 (rectangles). We leave it to the reader to use large values of n to investigate more accurate

approximations using left endpoints.

b) The following program gives a plot of the rectangles corresponding to the Riemann sum in part a) using left endpoints.

In[305]:= LEPT@f_, 8a_, b_, n_<D := Module@8dx, k, xstar, lrect, plot<,
dx = N@Hb - aL �nD;
xstar = Table@a + i * dx, 8i, 0, n<D;
lrect = Table@Line@88xstar@@iDD, 0<, 8xstar@@iDD, f@xstar@@iDDD <,8xstar@@i + 1DD, f@xstar@@iDDD <, 8xstar@@i + 1DD, 0<<D, 8i, 1, n<D;
plot = Plot@f@xD, 8x, a, b<, Filling ® AxisD;
Show@plot, Graphics@8Green, lrect<DDD

To demonstrate this for our example, we evaluate LEPT by specifying f HxL = x2,  a = 0, b = 1 and n = 20.

80 Mathematica for Rogawski's Calculus



In[306]:= f@x_D := x^2

LEPT@f, 80, 1, 20<D

Out[307]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Here is a graphics animation of the plot above as n (number of rectangles) increases from 1 to 50.

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

In[308]:= Animate@LEPT@f, 80, 1, a<D , 8a, 1, 50, 5 <D
Out[308]=

NOTE: The underestimation given by LRSUM in this example can be explained from the above graph: The sum of the area of
the rectangles is less than the area of the region under the graph of f  since the rectangles are contained inside the same region.

This is due to the fact that f  is increasing on @0, 1D. 
c)  We evaluate LRSUM in the limit as n ® ¥.

In[309]:= Limit@LRSUM@0, 1, nD, n ® InfinityD
Out[309]=

1

3

Thus Ù0

1
x2 â x=1/3=0.33....

� 5.2.2.  Riemann Sums Using Right Endpoints

We can similarly define a Riemann sum of f  relative to a partition P by considering rectangles whose heights are based on the

right endpoint of each  subinterval of P.    This  is achieved by setting xi
* = xi = a + iHb - aL � n  for i = 1, 2, .... n,   so that the

corresponding height of each rectangle is given by f HxiL.  Note that i ranges from 1 to n in this case (as opposed to 0 to n - 1 for

the left endpoint method).  This leads to the following formula for the Riemann sum using right endpoints, which we denote by

RRSUM:  

In[310]:= Clear@fD
RRSUM@a_, b_, n_D := Sum@f@a + i * Hb - aL �nD * Hb - aL �n, 8i, 1, n<D

Example 5.5. Let f HxL = x2 on [0,1] and let P = 80, 1 � n, 2 � n, 3 � n, ...., H n - 1L � n, 1< be a partition of @0, 1D. 
a) Approximate Ù0

1
f HxL â x by computing the Riemann sum relative to P using the right endpoint method.

b) Plot the graph of f  and the rectangles corresponding to the Riemann sum in part a). 

c) Find the limit of the Riemann sum obtainded in part a) by letting n ® ¥.
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Example 5.5. Let f HxL = x2 on [0,1] and let P = 80, 1 � n, 2 � n, 3 � n, ...., H n - 1L � n, 1< be a partition of @0, 1D. 
a) Approximate Ù0

1
f HxL â x by computing the Riemann sum relative to P using the right endpoint method.

b) Plot the graph of f  and the rectangles corresponding to the Riemann sum in part a). 

c) Find the limit of the Riemann sum obtainded in part a) by letting n ® ¥.

Solution:  a) We evaluate

In[312]:= f@x_D := x2

Table@8n, N@RRSUM@0, 1, nDD<, 8n, 10, 100, 10<D �� TableForm

Out[313]//TableForm=

10 0.385

20 0.35875

30 0.350185

40 0.345938

50 0.3434

60 0.341713

70 0.34051

80 0.339609

90 0.338909

100 0.33835

b) Similarly we can write a program that gives a plot of the rectangles corresponding to the Riemann sum in part a) using right
endpoints.

In[314]:= REPT@f_, 8a_, b_, n_<D := Module@8dx, i, xstar, rrect, plot<,
dx = N@Hb - aL �nD;
xstar = Table@a + i * dx, 8i, 0, n<D;
rrect = Table@Line@88xstar@@iDD, 0<, 8xstar@@iDD, f@xstar@@i + 1DDD<,8xstar@@i + 1DD, f@xstar@@i + 1DDD<, 8xstar@@i + 1DD, 0<<D, 8i, 1, n<D;
plot = Plot@f@xD, 8x, a, b<, Filling ® AxisD;
Show@plot, Graphics@8Blue, rrect<DDD

For our example, we have: 

In[315]:= f@x_D := x^2

REPT@f, 80, 1, 20<D

Out[316]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.
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Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

In[317]:= Animate@REPT@f, 80, 1, a<D , 8a, 1, 50, 5 <D
Out[317]=

NOTE: The overestimation of the RRSUM can be explained analogously as with the underestimation obtained from LRSUM. 

c) We evaluate RRSUM in the limit as n ® ¥: 

In[318]:= Limit@RRSUM@0, 1, nD, n ® InfinityD
Out[318]=

1

3

NOTE: Here is a comparison between the two plots of the left-endpoint and right-endpoint rectangles:

In[319]:= LREPT@f_, 8a_, b_, n_<D := Module@8dx, i, xstar, lrect, rrect, plot<,
dx = N@Hb - aL �nD;
xstar = Table@a + i * dx, 8i, 0, n<D;
lrect = Table@Line@88xstar@@iDD, 0<, 8xstar@@iDD, f@xstar@@iDDD <,8xstar@@i + 1DD, f@xstar@@iDDD <, 8xstar@@i + 1DD, 0<<D, 8i, 1, n<D;
rrect = Table@Line@88xstar@@iDD, 0<, 8xstar@@iDD, f@xstar@@i + 1DDD<,8xstar@@i + 1DD, f@xstar@@i + 1DDD<, 8xstar@@i + 1DD, 0<<D, 8i, 1, n<D;
plot = Plot@f@xD, 8x, a, b<, Filling ® AxisD;
Show@plot, Graphics@8Blue, rrect<D, Graphics@8Green, lrect<D DD

In[320]:= f@x_D := x2

LREPT@f, 80, 1, 20<D

Out[321]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

In[322]:= Animate@LREPT@f, 80, 1, a<D , 8a, 1, 100, 5 <D
Out[322]=
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� 5.2.3.  Riemann Sums Using Midpoints

The Riemann sum using the midpoints of each subinterval is given by the following formula. (We leave it to the student to verify

that the midpoint of ith subinterval is given by  a + Ii -
1
2

M I b - a
n

M for i = 1, ..., n.)

In[323]:= Clear@fD
MRSUM@a_, b_, n_D := Sum@f@a + Hi - 1 �2L * Hb - aL �nD * Hb - aL �n, 8i, 1, n<D

Example 5.6. Let f HxL = x2 on [0,1] and let P = 80, 1 � n, 2 � n, 3 � n, ...., H n - 1L � n, 1< be a partition of @0, 1D. 
a) Approximate Ù0

1
f HxL â x by computing the Riemann sum relative to P using the midpoint method.

b) Plot the graph of f  and the rectangles corresponding to the Riemann sum in part a). 

c) Find the limit of the Riemann sum obtainded in part a) by letting n ® ¥.

Solution:  a) We evaluate 

In[325]:= f@x_D := x2

Table@8n, N@MRSUM@0, 1, nDD<, 8n, 10, 100, 10<D �� TableForm

Out[326]//TableForm=

10 0.3325

20 0.333125

30 0.333241

40 0.333281

50 0.3333

60 0.33331

70 0.333316

80 0.33332

90 0.333323

100 0.333325

b) Again we can write a program that gives a plot of the rectangles corresponding to the Riemann sum in part a) using midpoints.

In[327]:= MIDPT@f_, 8a_, b_, n_<D := Module@8dx, i, xstar, mrect, plot<,
dx = N@Hb - aL �nD;
xstar = Table@a + i * dx, 8i, 0, n<D;
mrect = Table@Line@88xstar@@iDD, 0<, 8xstar@@iDD, f@Hxstar@@iDD + xstar@@i + 1DDL �2D<,8xstar@@i + 1DD, f@Hxstar@@iDD + xstar@@i + 1DDL �2D<, 8xstar@@i + 1DD, 0<<D, 8i, 1, n<D;
plot = Plot@f@xD, 8x, a, b<, Filling ® AxisD;
Show@plot, Graphics@8Red, mrect<DDD
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In[328]:= f@x_D := x2

MIDPT@f, 80, 1, 10<D

Out[329]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

In[330]:= Animate@MIDPT@f, 80, 1, a<D , 8a, 1, 100, 5 <D
Out[330]=

c) The limit of the Riemann sum using the midpoints is given by 

In[331]:= Limit@MRSUM@0, 1, nD, n ® InfinityD
Out[331]=

1

3

NOTE: Here is a visual comparison of all three Riemann sums in terms of rectangles:

In[332]:= ALL@f_, 8a_, b_, n_<D := Module@8dx, i, xstar, lrect, rrect, mrect, plot<,
dx = N@Hb - aL �nD;
xstar = Table@a + i * dx, 8i, 0, n<D;
lrect = Table@Line@88xstar@@iDD, 0<, 8xstar@@iDD, f@xstar@@iDDD <,8xstar@@i + 1DD, f@xstar@@iDDD <, 8xstar@@i + 1DD, 0<<D, 8i, 1, n<D;
rrect = Table@Line@88xstar@@iDD, 0<, 8xstar@@iDD, f@xstar@@i + 1DDD<,8xstar@@i + 1DD, f@xstar@@i + 1DDD<, 8xstar@@i + 1DD, 0<<D, 8i, 1, n<D;
mrect = Table@Line@88xstar@@iDD, 0<, 8xstar@@iDD, f@Hxstar@@iDD + xstar@@i + 1DDL �2D<,8xstar@@i + 1DD, f@Hxstar@@iDD + xstar@@i + 1DDL �2D<, 8xstar@@i + 1DD, 0<<D, 8i, 1, n<D;
plot = Plot@f@xD, 8x, a, b<, Filling ® AxisD;
Show@plot, Graphics@8Blue, rrect<D, Graphics@8Green, lrect<D, Graphics@ 8Red, mrect<DDD
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In[333]:= Clear@fD
f@x_D := x2

ALL@f, 80, 1, 10<D

Out[335]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Here is how all three Riemann sums behave when we increase the number of rectangles.

In[336]:= Animate@ALL@f, 80, 1, a<D , 8a, 1, 100, 5 <D
Out[336]=

NOTE: All three limits from the left-endpoint, right-endpoint, and midpoint methods are equal. This is not surprising since each

is equal to Ù0

1
x2 â x (remember that the existence of a definite integral requires that all Riemann sums converge to the same limit).

However, the midpoint method tends to converge faster to the limit than the other two methods (discussed in your calculus text).

Example 5.7.  Let f  HxL = x3 + x2 + 1 on @0, 1D and let P = 80, 1 � n, 2 � n, ...., n � n = 1< be a partition of  @0, 1D.
a) Find the Riemann sum of f  relative to P using the left endpoints of the partition.

b) Find the Riemann sum of f  relative to P using the right endpoints of the partition.

c) Show that the difference between the two sums goes to 0 at n ® ¥.  

d) Find the limit of the Riemann sums in parts a) and b). Is this consistent with part c)?
e) What do you conclude from part d)?

Solution: a) The Riemann sum using left endpoints is given by 

In[337]:= Clear@fD
LRSUM@a_, b_, n_D := Sum@f@a + i * Hb - aL �nD * N@Hb - aL �nD, 8i, 0, n - 1<D

In[339]:= f@x_D := x3 + x2 + 1

LRSUM@0, 1, nD
Out[340]=

1

4
H-1 + nL2 n2 + n4 +

1

6
H-1 + nL n2 H-1 + 2 nL

n4

In[341]:= Simplify@%D
Out[341]=

5 - 12 n + 19 n2

12 n2

b) The Riemann sum using right endpoints is given by

In[342]:= Clear@fD
RRSUM@a_, b_, n_D := Sum@f@a + i * Hb - aL �nD * N@Hb - aL �nD, 8i, 1, n<D
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In[344]:= f@x_D := x3 + x2 + 1

RRSUM@0, 1, nD
Out[345]=

n4 +
1

4
n2 H1 + nL2

+
1

6
n2 H1 + nL H1 + 2 nL

n4

In[346]:= Simplify@%D
Out[346]=

19

12
+

5

12 n2
+
1

n

c) We now evaluate and simplify the difference between the two Riemann sums: 

In[347]:= Simplify@RRSUM@0, 1, nD - LRSUM@0, 1, nDD
Out[347]=

2

n

As n ® ¥, observe that this difference goes to zero. 

d) Next we use the limit command to evaluate the limit of the two Riemann sums:

In[348]:= Limit@LRSUM@0, 1, nD, n ® InfinityD
Out[348]=

19

12

In[349]:= Limit@RRSUM@0, 1, nD, n ® InfinityD
Out[349]=

19

12

In light of c), we should not be surprised that the two limits are the same. After all, their difference was seen to converge to zero!

e) By definition of a definite integral, we conclude from d) that Ù0

1Ix3 + x2 + 1M â x = 19 � 12. We confirm this by evaluating 

In[350]:= à
0

1Ix3 + x2 + 1M âx

Out[350]=
19

12

� Exercises 

1. Let f HxL =
x

x2+1
for 0 £ x £ 1 and let P = 80 � n, 1 � n, 2 � n, ... , n � n = 1< be a partition of @0, 1D.

a) Find the Riemann sum of f  using the left endpoints of P and plot the rectangles that approximate the integral of f  over @0, 1D.
Also use the Animate command to see if the total area of the rectangles converges to the area of the region under the graph of f

and above the x-axis.

b) Repeat a) using right endpoints of P.

c) Repeat a) using midpoints of P.

2. Let f HxL = x sin x on @0, ΠD.  Use a uniform partition P and repeat Exercise 1 (immediately above) for this function. 

� 5.3.  The Fundamental Theorem of Calculus
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�

5.3.  The Fundamental Theorem of Calculus

Students should read Sections 5.3 and 5.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

The crowning achievement in calculus is the Fundamental Theorem of Calculus (FTC), which reveals that integration and
antidifferentiation are equivalent.  This can be expressed in two parts:

FTC - Part I: Given a continuous function f HxL on @a, bD, we have

 Ùa

b
f HxL â x = FHbL - FHaL.

Here, FHxL is any antiderivative of f HxL.
FTC - Part II: If FHxL = Ùa

x
f HtL â t, then F ' HxL = f HxL.

NOTE: Physically the Fundamental Theorem of Calculus tells us that the area under a velocity curve of an object is the same as
the change in position of the object.

Mathematica naturally uses FTC to evaluate definite integrals whenever it is able to find an antiderivative.  Of course there are
examples where it is not able to do this, as the latter examples following demonstrate.

Example 5.8.  Evaluate Ù1

5 x

2 x-1
 â x.

Solution:  

In[351]:= à
1

5 x

2 x - 1

 âx

Out[351]=
16

3

Example 5.9.  Evaluate Ù 3

2 x2-3

x
 â x.

Solution:  

In[352]:= Integrate@Sqrt@x^2 - 3D �x, 8x, Sqrt@3D, 2<D
Out[352]= 1 -

Π

2 3

In[353]:= N@%D
Out[353]= 0.0931003

Example 5.10.  Approximate Ù0

1
tan x2 â x.

Solution:  Here  is an example of an integral that Mathematica  cannot  evaluate  exactly but returns  the integral unevaluated
because the precise answer is not expressible in terms of elementary functions.
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In[354]:= Integrate@Tan@x^2D, 8x, 0, 1<D
Out[354]= à

0

1

TanAx2E âx

However, a numerical approximation is still possible through the command N.

In[355]:= N@%D
Out[355]= 0.398414

Or we could use the command NIntegrate to perform both steps at once:

In[356]:= NIntegrate@Tan@x^2D, 8x, 0, 1<D
Out[356]= 0.398414

Example 5.11.   Use  the  fact  that  if  m £ f HxL £ M  for  all  x Î @a, bD,  then  mHb - aL £ Ùa

b
f HxL â x £ M Hb - aL  to  approximate

Ù0

2
x3 + 1  â x.

Solution: We note that the function f HxL = x3 + 1  is increasing on @0, 2D.  This can be checked by finding f ' HxL and observing

that f ' HxL > 0 for all x (or by simply drawing the graph of f ).  Thus 1 = f H0L £ f HxL £ f H2L = 3 and so

1 H2 - 0L £ Ù0

2
1 + x3  â x £ 3 H2 - 0L 

or

2 £ Ù0

2
1 + x3  â x £ 6

We can confirm this by evaluating 

In[357]:= IntegrateB x3 + 1 , 8x, 0, 2<F
Out[357]= 2 Hypergeometric2F1B-

1

2
,
1

3
,
4

3
, -8F

Since the function Hypergeometric2F1 is not known to us, we use 

In[358]:= NIntegrateB x3 + 1 , 8x, 0, 2<F
Out[358]= 3.24131

Example 5.12.  Let f HxL = cosIx2M on @0, 2D and define gHxL = Ù0

x
f HtL â t = Ù0

x
cosIt2M â t. 

a) Plot the graph of f .

b) Find the value(s) of x for which gHx) starts to decrease.

c) Estimate gHxL for x = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1, 4, 1.6, 1.8, 2.

d) Draw the graphs of gHxL and g ' HxL.
e) How do the graphs of f HxL and g ' HxL compare?

Solution: a) We plot the graph of f .
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In[359]:= Clear@fD
f@x_D = CosAx2E
g@x_D = à

0

x

f@tD ât

Out[360]= CosAx2E

Out[361]=
Π

2
FresnelCB 2

Π
xF

NOTE: The function FresnelC is called the Fresnel Cosine function and plays an important role in physics and engineering.  The
Fresnel sine function is defined in the obvious manner.

In[362]:= Plot@f@xD, 8x, 0, 2<D

Out[362]=
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

b) We note that the graph of f  is above the x-axis (positive area) for x between 0 and Π � 2  and below the x-axis for x between

Π � 2  and 2.  Thus the graph of g starts to decrease after Π � 2 .  The following table of the Riemann sums of f  on @0, xD (for x

varying from 0 to 2) shows this point.

In[363]:= LRSUM@a_, b_, n_D := Sum@f@a + i * Hb - aL �nD * N@Hb - aL �nD, 8i, 0, n - 1<D
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In[364]:= Table@8x, LRSUM@ 0, x, 100D<, 8x, 0, 2, 0.1<D �� TableForm

Out[364]//TableForm=

0. 0.

0.1 0.099999

0.2 0.199969

0.3 0.299763

0.4 0.399003

0.5 0.496961

0.6 0.592462

0.7 0.683788

0.8 0.768634

0.9 0.844106

1. 0.906809

1.1 0.953042

1.2 0.979133

1.3 0.981926

1.4 0.959393

1.5 0.911352

1.6 0.840164

1.7 0.751263

1.8 0.653331

1.9 0.557883

2. 0.478099

NOTE: Since g is the integral, it should start to decrease at x = Π � 2 » 1.25.  We can confirm this by examining the values of g

in the neighborhood of this point:

In[365]:= Table@8x, LRSUM@ 0, x, 100D<, 8x, 1.2, 1.3, 0.01<D �� TableForm

Out[365]//TableForm=

1.2 0.979133

1.21 0.980506

1.22 0.981641

1.23 0.982538

1.24 0.983193

1.25 0.983603

1.26 0.983768

1.27 0.983684

1.28 0.98335

1.29 0.982765

1.3 0.981926

From the above table, we see that the function g does indeed start to decrease at approximately x = 1.25:

c) Here is the table of values for gHxL:
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In[366]:= TableForm@Table@8x, g@xD<, 8x, 0.2, 2, 0.2<DD
Out[366]//TableForm=

0.2 0.199968

0.4 0.398977

0.6 0.592271

0.8 0.767848

1. 0.904524

1.2 0.973945

1.4 0.949779

1.6 0.825517

1.8 0.635365

2. 0.461461

d) The graphs of the function f HxL and g ' HxL are given below 

In[367]:= Plot@8g@xD, g'@xD<, 8x, 0, 2<, PlotStyle ® 8Red, Blue<D

Out[367]=
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

e) The graphs of the function f HxL and g ' HxL are given below 

In[368]:= Plot@8f@xD, g'@xD<, 8x, 0, 2<, PlotStyle ® 8Red, Blue<D

Out[368]=
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

This means that the two graphs are the same.  In fact, from the Fundamental Theorem of Calculus, we know that g ' HxL = f HxL. 
� Exercises 

1. Evaluate the following integrals:

a) Ù0

1Ix2 + 2M â x b) Ù0

Π
cos 3 x â x c) Ù0

1
1 - x2  â x d) Ù-Π

Π
sin 2

 x â x

2.  Evaluate the following integrals.

a) Ù0

3Ix3 - 4 x2 + xM d x b) Ù1

4J 1

x
+ 2 x N d x c) Ù0

Π

4 sec x d x d) Ù0

2

4
2

1-4 x2

d x
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2.  Evaluate the following integrals.

a) Ù0

3Ix3 - 4 x2 + xM d x b) Ù1

4J 1

x
+ 2 x N d x c) Ù0

Π

4 sec x d x d) Ù0

2

4
2

1-4 x2

d x

3. Let SHxL = Ù0

x
sinI 1

2
 Π t2M â t (SHxL is called the Fresnel sine)

a) Plot the graph of S and approximate the value of S as x ® ¥.  Confirm your approximation by evaluating the limit as x ® ¥.

b) Find S ' HxL and use it to find the interval(s) on whcih SHxL increase and decrease.   Hint: Apply the Fundamental Theorem of

Calculus.

c) On what intervals is S concave up? Concave down?

d) Find the value of x for which SHxL = 0.7.  

4. Find an explicit formula for a continuous function f  such that 

Ù0

x
f HtL â t = x ex + Ù0

x f HtL
2 t2+1

 â t

(Hint: First take the derivative of both sides and then solve for f HxL.)

� 5.4.  Integrals Involving Trigonometric, Exponential, and Logarithmic Functions

In your calculus text you will learn how to evaluate integrals using different  techniques.   In Mathematica  we do not need to
specify the technique.  It chooses the technique appropriate for the problem. However, there are some integrals that cannot be
evaluated in terms of elementary functions. In such cases, Mathematica will return the integal unevaluated or gives us a name for
the integral.       

Below we will consider some examples of integrals that involve trigonometric functions, exponential, and logarithmic functions.
If done by hand, some of these integrals require integration by parts, partial fraction decompositions, or trigonometric substitu-
tions.       

Example 5.13.  Evaluate à x2

Ix3+1M2
 â x.

Solution: If done by hand this integral involves using the substitution method.

In[369]:= Integrate@x^2 � Hx^3 + 1L^2, xD
Out[369]= -

1

3 I1 + x3M
Example 5.14.   Evaluate Ù x5+x2+x+2

x2-1
 â x.

Solution:  This integral involves long division and partial fraction decomposition.  

In[370]:= à x5 + x2 + x + 2

x2 - 1
 âx

Out[370]= x +
x2

2
+
x4

4
+
5

2
Log@-1 + xD -

1

2
Log@1 + xD

Example 5.15.   Evaluate à x4+x3+x+1

Ix2+1M2
 â x.
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Example 5.15.   Evaluate à x4+x3+x+1

Ix2+1M2
 â x.

Solution:  This integral involves long division, partial fraction decomposition, and inverse trigonometric functions.  

In[371]:= á x4 + x3 + x + 1

Ix2 + 1M2
 âx

Out[371]= x +
x

1 + x2
- ArcTan@xD +

1

2
LogA1 + x2E

NOTE: All functions that appear as output are written in Mathematica's notation. To convert the output to a more familiar form

the command TraditionalForm can be used.  Here is the "traditional" form of the output below (note that log x means the same

as ln x in this case).  

In[372]:= á x4 + x3 + x + 1

Ix2 + 1M2
 âx �� TraditionalForm

Out[372]//TraditionalForm=

x

x2 + 1
+ x - tan-1HxL +

1

2
logIx2 + 1M

Example 5.16.  Evaluate Ù x2 sin x â x.

Solution:  This integral involves integration by parts (twice).  

In[373]:= à x2 Sin@xD âx

Out[373]= -I-2 + x2M Cos@xD + 2 x Sin@xD

Example 5.17.  Evaluate à -1

1-x2

 â x.

Solution:  This integral involves trigonometric substitution.  

In[374]:= Integrate@-1 �Sqrt@1 - x^2D, xD
Out[374]= -ArcSin@xD
NOTE: Your calculus textbook may give arccos x for the answer, as opposed to -arcsin x as above. Can you explain how the

integration constant resolves the difference in these two answers?

Here are some examples of integrals that are important in applications but do not have an elementary antiderivative.

In[375]:= à SinAx2E âx

Out[375]=
Π

2
FresnelSB 2

Π
xF

In[376]:= à E-x2  âx

Out[376]=
1

2
Π Erf@xD

94 Mathematica for Rogawski's Calculus



In[377]:= Integrate@Sin@xD �x, xD
Out[377]= SinIntegral@xD
We can use NIntegrate to evaluate these integrals over any finite interval. For example:

In[378]:= NIntegrateAE-x2, 8x, 0, 10<E
Out[378]= 0.886227

In[379]:= NIntegrate@Log@xD �x, 8x, 2, 100<D
Out[379]= 10.3636

� Exercises 

1. Evaluate the following integrals:

a) Ù x 2 - x  â x b) à x3 1 + x2  â x c) Ù tan2 x sec4 x â x

d) Ù x2-2 x-1

x3+x
 â x e) à x-1

x2+x-1

 â x

2. Use various values of a, b, and n to evaluate the following integrals. Then make a conjecture for a general formula and prove

your conjecture. 

a) Ù 1
Hx+aL Hx+bL  â x b) Ù cos Ha xL sinHb xL â x c) Ù xn ln x â x

d) Ù xn ex â x e) Ù xn sinHxL â x f) Ù ea x cosHb xL â x
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Chapter 6. Applications of the Integral
Evaluating integrals can be tedious and difficult.  Mathematica makes this work relatively easy.  For example, when computing
the area of a region the corresponding integral can be difficult to set up because the limits of integration are not known.  Mathe-
matica, with its powerful plotting capability, can turn this job into a very doable one.  We will examine several applications that
demonstrate this.

� 6.1  Area Between Curves

Students should read Section 6.1 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Let us consider the problem of finding the area between two curves.

Example 6.1. Determine the area of the region bounded between the curves f HxL = sin x and gHxL = csc2 x on @Π � 4, 3 Π � 4D.
Solution: To find the area here, we first plot the graphs of f  and g.

In[380]:= Clear@f, gD
In[381]:= f@x_D := Sin@xD

g@x_D := Csc@xD^2
In[383]:= Plot@8f@xD, g@xD<, 8x, Π �4, 3 Π �4<,

PlotStyle ® 8Red, Blue<, PlotRange ® 8-.5, 2.5<,
Filling ® 81 ® 8 2<<D

Out[383]=

1.0 1.5 2.0

-0.5

0.5

1.0

1.5

2.0

2.5

Looking at the plot above and recalling that csc x is always greater than or equal to 1 on this interval, it follows that csc2 x is

always greater than or equal to sin x, which is less than or equal to 1 on the same interval.  Hence calculating the area between

these two curves between x = Π � 4 and x = 3 Π � 4 is straightforward:

In[384]:= à
Π�4
3 Π�4Hg@xD - f@xDL âx

Out[384]= 2 - 2

In[385]:= N@%D
Out[385]= 0.585786

Example 6.2. Determine the area of the region enclosed between the curves f HxL = xIx2 - 3 x + 3M and gHxL = x2.
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Example 6.2. Determine the area of the region enclosed between the curves f HxL = xIx2 - 3 x + 3M and gHxL = x2.

Solution: To find the area between these two curves, we will need to see if they intersect and if so where by plotting their graphs.

In[386]:= Clear@f, g, xD
In[387]:= f@x_D := x Ix2 - 3 x + 3M
In[388]:= g@x_D := x2

In[389]:= Plot@8f@xD, g@xD<, 8x, -2, 4<,
PlotStyle ® 8Red, Blue<, PlotRange ® 8-2, 11<,
Filling ® 81 ® 8 2<<D

Out[389]=

-2 -1 1 2 3 4

-2

2

4

6

8

10

Notice that f HxL is graphed in red, while gHxL is graphed in blue.  Also, the "Filling" option in the Plot command fills in the

region between the two graphs (functions 1 and 2 in the Filling command) in gray.  The bounded region between the two curves
seems to lie between x = 0 and x = 3.  To ascertain this we solve for the intersection points:

In[390]:= Solve@ f@xD � g@xD, xD
Out[390]= 88x ® 0<, 8x ® 1<, 8x ® 3<<
Hence the intersection points are at x = 0, 1, and 3.  Noting that f HxL is greater than gHxL on [0, 1] and gHxL is greater than f HxL
on [1, 3], we need two integrals to calculate  the (physical) area between the two curves since areas are always calculated by

subtracting the smaller function from the larger one.  In particular, on @0, 1D the area is given by Ù0

1@ f HxL - gHxLD â x and on @1, 3D
the area is given by Ù1

3@gHxL - f HxLD â x.

In[391]:= à
0

1Hf@xD - g@xDL âx + à
1

3Hg@xD - f@xDL âx

Out[391]=
37

12

In[392]:= N@%D
Out[392]= 3.08333

Example 6.3. Determine the area of the region bounded between the curves f HxL = È x È and gHxL = cos x on @-Π � 2, Π � 2D.
Solution: To find the area here, we first plot the graphs of f  and g.

In[393]:= Clear@f, gD
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In[394]:= f@x_D := Abs@xD
g@x_D := Cos@xD

In[396]:= Plot@8f@xD, g@xD<, 8x, -Π �2, Π �2<,
PlotStyle ® 8Red, Blue<, PlotRange ® 8-1, 2<,
Filling ® 81 ® 8 2<<D

Out[396]=

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

From the picture above, we will need to consider the total area as a sum of three separate regions.  To this end we first find the

intersection points of these two curves in order to obtain the limits of integration. Make note of the fact that the Solve command

does not work here, because it is only able to solve algebraic equations. Instead we use the FindRoot  command to solve the
equation f HxL - gHxL = 0 using an initial guess of x = 0.75 (based on the plot above):

In[397]:= FindRoot@f@xD - g@xD, 8x, 0.75<D
Out[397]= 8x ® 0.739085<
Thus our root is approximately x = 0.739085.  By symmetry we see there is another root at x = -0.739085.  Hence the area

between these two curves is the sum of the three integrals:  

In[398]:= à
-Π�2
-0.739085Hf@xD - g@xDL âx + à

-0.739085

0.739085Hg@xD - f@xDL âx + à
0.739085

Π�2 Hf@xD - g@xDL âx

Out[398]= 2.06936

Hence the area of our bounded region is 2.06936. 

NOTE: Observe that our region is symmetric about the y-axis and thus the same answer could have been found by computing the

area of only half the region (the right half, say) and doubling the result.

�  Exercises 

1.  Find the area between the curves y = sin x and y = sin H2 xL between x = 0 and x = Π.

2.  Find the area between the graphs of x = sin y and x = 1 - cos y between y = 0 and y = Π � 2.

3.  Find the area above y = 1 - x � Π and below y = sin x.
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� 6.2  Average Value

Students should read Sections 6.2 and 6.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

Remember that the average value of a function f HxL on @a, bD is defined as

fave =
1

b-a
 Ùa

b
f HxL â x

Related to this notion is the Mean Value Theorem for Integrals (MVTI), which states that for any continuous function f HxL on

@a, bD there exists a value c Î @a, bD such that

f HcL = fave

Example 6.4. Let f HxL = 2 cos x - x.

a) Find the only positive root Α of f .

b) Calculate the average value of f  on @0, ΑD.
c) Determine a value c that satisfies the Mean Value Theorem for Integrals on @0, ΑD.
Solution: 

a) To calculate Α, we first plot the graph of f  and then use the FindRoot command with x = 1 as our initial guess:

In[399]:= Clear@fD
In[400]:= f@x_D := 2 Cos@xD - x

In[401]:= Plot@f@xD, 8x, -Π, Π<D

Out[401]=

-3 -2 -1 1 2 3

-5

-4

-3

-2

-1

1

2

In[402]:= root = FindRoot@f@xD, 8x, 1<D
Out[402]= 8x ® 1.02987<
Therefore,  Α = 1.02987 accurate to 5 decimal places.

b) We next calculate the average value of f  on @0, ΑD:
In[403]:= Α = root@@1, 2DD
Out[403]= 1.02987
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In[404]:= fave =
1

Α - 0
à
0

Α

f@xD âx

Out[404]= 1.14981

Thus the average value is approximately fave = 1.14981.  

c) By MVTI there exists a value c Î @0, ΑD such that f HcL = fave.  To find c, we solve this equation for c, or equivalently,

f HcL - fave = 0

In[405]:= FindRoot@f@cD - fave, 8c, .5<D
Out[405]= 8c ® 0.55256<

�  Exercises 

1.  Which of f HxL = x sin2
 x and gHxL = x2 sin2

 x has a larger average value over @0, 2D?  Over @2, 4D?
2.  Let fave denote the average value of f HxL = x3 + x2 + 5 on @0, 4D.  Find a value for c inside @0, 4D such that f HcL = fave.

� 6.3.  Volume of Solids of Revolution

Students should read Sections 6.2-6.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

We recall that a definite integral can be evaluated by employing the definition

Ùa

b
f HxL â x = lim

n®+¥
AÚi=1

n f  Hxi
*L D xiE

Another application of the definite integral involves finding the volume of a solid of revolution, i.e., a solid obtained by revolving
a region in the plane about one of the coordinate axes.   

� 6.3.1.  The Method of Discs

Let S be a solid of revolution obtained by revolving the region bounded by the graphs of y = f HxL, y = 0, and the vertical lines

x = a and x = b, about the x-axis.  To obtain the volume of S, we can approximate S by discs, i.e., cylinders obtained by revolv-

ing each rectangle, constructed by a Riemann sum of f  relative to a partition P = 8x0, x1, x2, .... , xn< of @a, bD, about the x-axis.

Using the fact that the volume of a cylinder with radius R and height h is given by

 V = Π R2 h, 

it follows that the volume of the ith cylinder (corresponding to the ith rectangle) is Vi = Π@ f Hxi
*LD2

 D x.  Hence an approximation to

the volume of S is given by the Riemann sum

VolHSL » Úi=1
n Vi = Π Úi=1

n @ f  Hxi
*LD2

 D x.

In the limit as n ® ¥, we obtain the exact volume of S:

VolHSL = Π limn®¥ Úi=1
n @ f  Hxi

*LD2
 D x = Π Ùa

b@ f HxLD2
 â x. 

NOTE: If the region is revolved about the y-axis, then the volume of S is given by

 VolHSL = Π Ùc

d @ f HyLD2
 â y.
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 VolHSL = Π Ùc

d @ f HyLD2
 â y.

Example 6.5. Find the volume of the solid of revolution obtained by rotating the region bounded by the graph of f HxL = x , the

x-axis, and the vertical line x = 3.

Solution:  We define f HxL in Mathematica  and illustrate both the region and rectangles that are rotated to obtain the solid and

discs, respectively.  For this we recall our program from Chapter 5 of this manual that was used to draw these rectangles.  

In[406]:= LEPT@f_, 8a_, b_, n_<D := Module@8dx, k, xstar, lrect, plot<,
dx = N@Hb - aL �nD;
xstar = Table@a + i * dx, 8i, 0, n<D;
lrect = Table@Line@88xstar@@iDD, 0<, 8xstar@@iDD, f@xstar@@iDDD <,8xstar@@i + 1DD, f@xstar@@iDDD <, 8xstar@@i + 1DD, 0<<D, 8i, 1, n<D;
plot = Plot@f@xD, 8x, a, b<, Filling ® AxisD;
Show@plot, Graphics@8Green, lrect<DDD

In[407]:= f@x_D := x

plot = LEPT@f, 80, 3, 20<D

Out[408]=

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

The plot above shows our region shaded in gray and our rectangles outlined in green.  We now rotate this shaded region about

the x-axis to obtain a solid of revolution called  a  paraboloid.   This  is achieved in Mathematica  using the RevolutionPlot3-

D[{f,x},{x,a,b}]  command, which generates a surface of revolution having radius f at height x.  This means that the vertical axis
shown in the plot below is actually the x-axis.
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In[409]:= S = RevolutionPlot3DB: x , x>, 8x, 0, 3<F

Out[409]=

-1

0

1

-1

0

1

0

1

2

3

The exact volume of the paraboloid is then given by

In[410]:= V = Π à
0

3Hf@xDL2
 âx

Out[410]=
9 Π

2

� 6.3.2.  The Method of Washers

For a solid of revolution S generated by revolving a region bounded between two curves f HxL and gHxL on @a, bD about the x-axis,

we employ washers (rings) instead of discs.  Refer to your calculus textbook for a detailed treatment.  The corresponding volume
of S is given by (let's assume gHxL ³ f HxL)

VolHSL = Π Ùa

b9@gHxLD2 - @ f HxLD2= â x. 

Example 6.6. Find the volume of the solid generated by revolving about the x-axis the region enclosed by the parabola y = x2 + 1

and the straight line y = x + 3.

Solution:   Our initial goal is to find the points of intersection and secure the limits of integration.

In[411]:= Clear@f, g, xD
f@x_D := x2 + 1

g@x_D := x + 3
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In[414]:= Plot@8f@xD, g@xD<, 8x, -2, 4<, PlotStyle ® 8Red, Blue<, PlotRange ® 8-2, 8<, Filling ® 81 ® 82<<D

Out[414]=

-2 -1 1 2 3 4

-2

2

4

6

8

We notice that f HxL is graphed in red, while gHxL  is graphed in blue.  The following command solves for their intersection points: 

In[415]:= Solve@f@xD � g@xD, xD
Out[415]= 88x ® -1<, 8x ® 2<<
One can easily verify that the intersection points are H-1, 2L and H2, 5L.  Thus our limits of integration are x = -1 and x = 2.

Let P and Q denote the solids of revolution by revolving each of the regions lying under f  and g, respectively, along the interval

@-1, 2D.  Our solid S, obtained by rotating the region between f  and g  on @-1, 2D about the x-axis, can then be viewed as the

difference of Q and P, i.e., the solid Q with the solid P removed from it.  Following are surface plots of the three solids P, Q, and

S. Again, note that the vertical axis shown in each of the plots below is actually the x-axis. 
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In[416]:= P = RevolutionPlot3D@8f@xD, x<, 8x, -1, 2<, AspectRatio ® AutomaticD
Q = RevolutionPlot3D@8g@xD, x<, 8x, -1, 2<, AspectRatio ® AutomaticD

Out[416]=

-5

0

5
-5

0

5

-1

0

1

2

Out[417]=

-5

0

5
-5

0

5

-1

0

1

2
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In[418]:= S = Show@P, QD

Out[418]=

-5

0

5
-5

0

5

-1

0

1

2

Since the curve y = f HxL = x + 3 is lower than the curve y = gHxL = x2 + 1, it follows that the volume of S is given by

In[419]:= V = Π à
-1

2IHg@xDL2 - Hf@xDL2M âx

Out[419]=
117 Π

5

Observe that in the above discussion, the methods for calculating volumes of solids of revolution were via discs and washers.  In
other words, the element of volume is obtained by taking the rectangular element of area whose height is perpendicular  to the
axis of revolution and revolving it to construct a disc or washer.     

� Exercises 

1.   Plot the solid of revolution obtained by rotating the region enclosed by the graphs about the given axis and calculate  its
volume.

a)  y =
9

x2
, y = 10 - x2 about the x-axis

b) y = 16 - x4, y = 0, x = 2, x = 3 about the y -axis

2.  Plot the hypocycloid x2�3 + y2�3 = 1 and find the volume of the solid obtained by revolving the region enclosed by the hypocy-

cloid about the y-axis. Is the volume of the solid obtained by revolving the same region about the x-axis the same?  Justify your

answer.  (Hint: Use the ContourPlot command.)

� 6.3.3.  The Method of Cylindrical Shells

Students should read Section 6.4 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Another approach to finding the volume of a solid of revolution is to approximate it using cylindrical shells in contrast to discs
(or washers).  Recall that a cylindrical shell element is one that is obtained by revolving a rectangular element of area whose
height is parallel to the axis of revolution.  
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A cylindrical shell is by definition a solid contained between two concentric cylinders having the same axis of rotation.  Suppose
a cylindrical shell has inner radius r1, outer radius r2, and altitude h, then its volume V  is given by

V = Π r2
2

 h - Π r1
2

 h = 2 Π hI r2+r1

2
M Hr2 - r1L = 2 Π r� h D x,

where r� = Hr2 + r1L � 2 is the average radius and D x =r2 - r1.  

Let S  denote denote the solid obtained by revolving the region bounded between a function f HxL, the x-axis, x = a, and x = b,

about the y-axis.  The volume of the ith shell corresponding to the ith rectangle is defined to be Vi = 2 Π xi
* f Hxi

*L D x, where

xi
* = Hxi + xi-1L � 2.  Hence an approximation to the volume of S is given by the Riemann sum

VolHSL » Úi=1
n Vi = 2 Π Úi=1

n xi
* f  Hxi

*L D x.

In the limit as n ® ¥, we obtain the exact volume of S:

VolHSL = 2 Π limn®¥ Úi=1
n xi

* f  Hxi
*L D x = 2 Π Ùa

b
x f HxL â x. 

NOTE: If the region is revolved about the x-axis using cylindrical shells, then the volume of S is given by

 VolHSL = 2 Π Ùc

d
y f HyL â y.

Example 6.7.  Consider the region bounded by the curve y = x2, the x-axis, and the line x = 2.  Find the volume of the solid

generated by revolving this region about the y-axis using the method of cylindrical shells.   

Solution: Let us first plot the region bounded by the given curves (shaded in the plot below):

In[420]:= f@x_D = x^2;

Plot@f@xD, 8x, 0, 2<, Filling ® AxisD

Out[421]=

0.5 1.0 1.5 2.0

1

2

3

4

We then revolve this shaded region about the y-axis to obtain our solid S  (parabolic bowl).  This can be seen in the three plots

following, which illustrate S as the difference of the solids Q (cylinder) and P (paraboloid), i.e., Q with P removed from it.   
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In[422]:= P = RevolutionPlot3D@8f@xD< , 8x, 0, 2<D
Q = RevolutionPlot3D@882, y<< , 8y, 0, 4<D

Out[422]=

-2

-1

0

1

2
-2

-1

0

1

2

0

1

2

3

4

Out[423]=

-2

-1

0

1

2

-2

-1

0

1

2

0

1

2

3

4
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In[424]:= S = Show@P, QD

Out[424]=

-2

-1

0

1

2
-2

-1

0

1

2

0

1

2

3

4

The volume of S is given by

In[425]:= V = 2 Π à
0

2

x *f@xD âx

Out[425]= 8 Π

NOTE: The volume in this example can also be calculated using the washer method.  However, one would first have to solve the

equation y = x2  for x, yielding x = y .  Moreover, the limits of integration (with respect to y ) would have to be determined,

which in this case would be y = 0 and y = 4 corresponding to x = 0 and x = 2, respectively.  Hence, 

In[426]:= V = Π à
0

4

22 - K y O2

 ây

Out[426]= 8 Π

 The two answers from both methods agree as they should.

Example 6.8.  Sketch the ellipse x2

a2
+

y2

b2
= 1 and find the volume of the solid obtained by revolving the region enclosed by the

ellipse about the x-axis.

Solution: We will use the ContourPlot command to plot the ellipse for a = 2 and b = 3.  The reader should experiment with

other values of a and b.  
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In[427]:= a = 2;

b = 3;

ContourPlotBx2
a2

+
y2

b2
� 1, 8x, -a - 1, a + 1<,

8y, -b - 1, b + 1<, AspectRatio ® Automatic, Axes ® True, Frame -> FalseF

Out[429]=
-3 -2 -1 1 2 3

-4

-2

2

4

To plot the corresponding solid of revolution (ellipsoid), we first solve x2

a2
+

y2

b2
= 1 for y.

In[430]:= Clear@a, bD
sol = SolveBx2

a2
+
y2

b2
� 1, yF

Out[431]= ::y ® - b2 -
b2 x2

a2
>, :y ® b2 -

b2 x2

a2
>>

The positive and negative solutions above correspond to the upper half and lower half, respectively, of the ellipse.  We shall
consider the upper half in plotting the ellipsoid and computing its volume by defining

f HxL = b2 -
b2 x2

a2
= b 1 -

x2

a2
.
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In[432]:= f@x_D = sol@@2, 1, 2DD
Out[432]= b2 -

b2 x2

a2

Here is a plot of S (rotated 90 degrees about the x-axis).

In[433]:= a = 2;

b = 3;

RevolutionPlot3D@8f@xD, x< , 8x, -a, a<D

Out[435]=

-2

0

2

-2

0

2

-2

-1

0

1

2

To find the volume of the ellipsoid, we can employ either method, disc or shell, but in this case the disc method is preferable

from a computational standard.  This is because the disc formula for volume contains the square term @ f HxLD2 which lets us avoid

having to deal with radical  terms if the shell method were used.  Since the ellipsoid is defined along the integral @-a, aD, its
volume based on the disc method is therefore

In[436]:= V = Π à
-a

aHf@xDL2
 âx

Out[436]= 24 Π

More generally, the volume of the ellipsoid for arbitrary positive values of a and b is given by

In[437]:= Clear@a, bD
V = Π à

-a

aHf@xDL2
 âx

Out[438]=
4

3
a b2 Π

Thus V =
4
3

 Π a b2. 
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NOTE: If we let a = b, then the ellipsoid becomes a sphere and the formula above reduces to the classic formula V =
4
3

 Π a3,

where a is the radius of the sphere.

� Exercises 

1. Use the Shell Method to find the volume of the solid obtained by rotating the region enclosed by the graphs in each part below
about the y-axis.

a)  y = x2, y = 8 - x2, and x = 0

b) y =
1
2

 x2and y = sinIx2M
2. The solid generated by revolving the region between the two branches of the hyperbola y2 - x2 = 1 from x = -a to x = a about

the x-axis is called a hyperboloid.  Find the volume of the hyperboloid for a = 2 and then for any arbitrary value of a.
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Chapter 7 Techniques of Integration

� 7.1.  Numerical Integration

Students should read Section 7.1 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Numerical integration is the process of approximating a definite integral using appropriate sums of function values.  We already

saw in  Chapter  5  of  this  text  formulas for  Right,  Left,  and  Midpoint  Rules  and  their  subroutines  LRSUM,  RRSUM,  and

MRSUM, respectively.  In this section, we will develop two additional rules: the Trapezoidal Rule and Simpson's Rule. 

� 7.1.1.  Trapezoidal Rule

The Trapezoidal Rule approximates the definite integral Ùa

b
f HxL â x by using areas of trapezoids and is given by the formula:

         Tn = .5 HHb - aL � n L Hy0 + 2 y1 + ... + 2 yn-1 + ynL
where n is the number of trapezoids and yi = f Ha + i Hb - aL � nL .  This formula can be found in your calculus text.  Here is a

Mathematica subroutine, called TRAP, for implementing the Trapezoidal Rule:

In[439]:= Clear@f, a, b, nD
In[440]:= TRAP@a_, b_, n_D := Hf@aD + 2 Sum@f@a + i * Hb - aL �nD, 8i, 1, n - 1<D + f@bDL H.5 Hb - aL �nL
Example 7.1.  Calculate the area under the function f HxL = x2 on @0, 1D using the Trapezoidal Rule for various values of n.

Solution: The following output gives a table of approximations of Ù0

1
x2 â x based on the Trapezoidal Rule for n = 10, 20, ..., 100.

In[441]:= f@x_D := x2

Table@8n, N@TRAP@0, 1, nDD<, 8n, 10, 100, 10<D �� TableForm

Out[442]//TableForm=

10 0.335

20 0.33375

30 0.333519

40 0.333438

50 0.3334

60 0.33338

70 0.333367

80 0.333359

90 0.333354

100 0.33335

It is clear that these values are converging to 1/3, which is the exact value of our definite integral:

In[443]:= à
0

1

x2 âx

Out[443]=
1

3
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� 7.1.2.  Simpson's Rule

One difference  between  Simpson's Rule and all  the other rules  we have developed so far  (TRAP,  LRSUM,  RRSUM,  and

MRSUM) is that the number of partition points, n, in this case, must be even.  The other difference is that Simpson's Rule is a

quadratic approximation based on parabolas whereas the other rules are linear approximations based on lines.  The formula for
Simpson's Rule is given by (refer to your calculus text for details):

Sn = H1 � 3L @y0 + 4 y1 + 2 y2 + 4 y3 + 2 y4 + ... + 4 yn-3 + 2 yn-2 + 4 yn-1 + ynD Hb - aL � n

    = H1 � 3L@Hy0 + 4 y1 + y2L + Hy2 + 4 y3 + y4L + ... + Hyn-2 + 4 yn-1 + ynLD Hb - aL � n

where yi = f Ha + i Hb - aL � nL.  Here is a Mathematica subroutine, called SIMP, for implementing Simpson's Rule:

In[444]:= Clear@a, b, nD
In[445]:= SIMP@a_, b_, n_D :=H1 �3L Sum@f@a + H2 i - 2L Hb - aL �nD + 4 f@a + H2 i - 1L Hb - aL �nD + f@a + 2 i Hb - aL �nD,8i, 1, n �2<D Hb - aL �n
Example 7.2.  Calculate the area under the function f HxL = x2 on @0, 1D using Simpson's Rule for various values of n.

Solution: We use the same set of values of n as in the previous example.  This will allow us to compare Simpson's Rule with the

Trapezoidal Rule.  

In[446]:= f@x_D := x2

Table@8n, N@SIMP@0, 1, nDD<, 8n, 10, 100, 10<D �� TableForm

Out[447]//TableForm=

10 0.333333

20 0.333333

30 0.333333

40 0.333333

50 0.333333

60 0.333333

70 0.333333

80 0.333333

90 0.333333

100 0.333333

Notice how fast SIMP converges to the actual value of the integral (1/3) compared to TRAP.

Example 7.3.   Calculate  the definite  integral of f HxL = sinI25 x2M  on @0, 1D  using Simpson's Rule and approximate it to five

decimal places.  What is the minimum number of partition points needed to obtain this level of accuracy?

Solution: We first evaluate SIMP using values for n in increments of 20.
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In[448]:= f@x_D := SinA25 x2E
Table@8n, N@SIMP@0, 1, nDD<, 8n, 20, 200, 20<D �� TableForm

Out[449]//TableForm=

20 0.0958943

40 0.10526

60 0.105526

80 0.105566

100 0.105576

120 0.10558

140 0.105582

160 0.105582

180 0.105583

200 0.105583

Based  on the  output  our  approximation,  accurate  to five  decimal  places,  is  0.10558.   This  first  occurs  between  n = 100 to

n = 120.  We evaluate SIMP inside this range to zoom in on the minimum number of partition points needed.

In[450]:= f@x_D := SinA25 x2E
Table@8n, N@SIMP@0, 1, nDD<, 8n, 100, 120, 2<D �� TableForm

Out[451]//TableForm=

100 0.105576

102 0.105577

104 0.105577

106 0.105578

108 0.105578

110 0.105579

112 0.105579

114 0.105579

116 0.10558

118 0.10558

120 0.10558

Thus we see that the minimum number of points needed is n = 116.  How does this compare with the minimum number of points

needed by TRAP to obtain the same level of accuracy?

NOTE: Observe that SIMP does not converge as fast in this example as in the previous example.  This is because the function
f HxL = sinI25 x2M is oscillatory as the following graph demonstrates:

In[452]:= Plot@f@xD, 8x, 0, 1<D

Out[452]=
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0
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Try increasing the frequency of this function, say to sinI100 x2M, to see how well SIMP performs. 

� 7.1.3.  Midpoint Rule

Since most calculus texts include again the Midpoint Rule in the section on numerical integration, for completeness, we will too.
The Riemann sum using the midpoints of each subinterval is given by the following formula:

In[453]:= Clear@fD
MRSUM@a_, b_, n_D := Sum@f@a + Hi - 1 �2L * Hb - aL �nD * Hb - aL �n, 8i, 1, n<D

Example 7.4.  Calculate the area under the function f HxL = x2 on @0, 1D using the Midpoint Rule for various values of n.

Solution: 

In[455]:= f@x_D := x2

Table@8n, N@MRSUM@0, 1, nDD<, 8n, 10, 100, 10<D �� TableForm

Out[456]//TableForm=

10 0.3325

20 0.333125

30 0.333241

40 0.333281

50 0.3333

60 0.33331

70 0.333316

80 0.33332

90 0.333323

100 0.333325

� Exercises 

1. Consider the definite integral Ù1

2
lnHxL â x.

a) Using the Trapezoidal Rule, Simpson's Rule, and Midpoint Rule, approximate this integral for n = 10, 20, ..., 100.

b) Compare how fast  each subroutine (TRAP,  SIMP,  MRSUM) converges to Ùa

b
lnHxL â x and decide which of these rules is

"best." 

2. Repeat Exercise 1 for the following definite integrals:

a)  Ù0

2 ex

x+1
 â x   b)  Ù0

1
cosIx2M â x

Can you make any general conclusions about which rule (Trapezoidal, Simpson, Midpoint) is best?  

3.  For each of the functions given below, set up a definite integral for the volume of the solid of revolution obtained by revolving

the region under f  HxL along the given interval and about the given axis.  Then use the subroutines TRAP, SIMP, and MRSUM

to approximate the volume of each solid accurate to 2 decimal places (use various values of n to obtain the desired accuracy).

a) f  HxL = cos x;    @0, Π � 2D;    x-axis           b) f  HxL = e-x2
;    @0, 1D;   y-axis

� 7.2.  Techniques of Integration

Students should read Sections 7.2-7.4 and 7.6 of Rogawski's Calculus  [1] for a detailed discussion of the material pre-
sented in this section.

All calculus texts have at least a chapter devoted to "Techniques of Integration."  When using Mathematica, these techniques are
usually not necessary, since Mathematica automatically gives you the answer.  
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All calculus texts have at least a chapter devoted to "Techniques of Integration."  When using Mathematica, these techniques are
usually not necessary, since Mathematica automatically gives you the answer.  

� 7.2.1. Substitution

On occasion, we do need to use techniques of integration, even when using Mathematica.

Example 7.5.  Evaluate the following integral: à 2x H2xL2
- 1  â x

Solution: We evaluate this integral in Mathematica:

In[457]:= à 2x H2xL2
- 1  âx

Out[457]= 2x 21+2 x Log@2D - Log@4D - 1 - 4x Hypergeometric2F1B1
2
,
Log@2D
Log@4D,

Log@8D
Log@4D, 4xF Log@4D �

-1 + 4x Log@2D Log@16D
To students in a first-year calculus  course,  this answer  makes no sense.   There  are many integrals that Mathematica  cannot
evaluate at all, or cannot evaluate in terms of elementary functions (such as the integral above).  Some of these integrals are
doable in terms we should understand, once we first use an appropriate technique of integration. In the above example, all we
need to do is first make the following substitution:  u = 2x  and du = (ln 2) 2x dx, which transforms the integral to:

In[458]:=
1

Log@2D  à u2 - 1  âu

Out[458]=

1

2
u -1 + u2 -

1

2
LogBu + -1 + u2 F

Log@2D
This is the correct answer.  All we need to do is substitute 2x for u, and add the arbitrary constant of integration, getting:

1
2 Log@2D ( 2x -1 + H2xL2  - Log[2x + -1 + H2xL2 ] ) + C

Note that the Mathematica function Log[x] is equivalent to the standard form ln x.

� 7.2.2. Trigonometric Substitution

Example 7.6.  Evaluate à 1

x2 x2-9

 â x

Solution:  By hand,  the  integral  à 1

x2 x2-9

 â x  would normally be  evaluated  with  a  trigonometric substitution of  the  form

x = 3 secΘ.  But with Mathematica, we can do this directly:

In[459]:= á 1

x2 x2 - 9

 â x

Out[459]=
-9 + x2

9 x

This,  of course,  is the correct  answer,  when we remember that Mathematica  does not add an arbitrary constant to indefinite
integrals.

� 7.2.3. Method of Partial Fractions
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�

7.2.3. Method of Partial Fractions

Integrals of rational expressions often require the Method of Partial  Fraction Decomposition to evaluate them (by hand).  For
example:

Ù 3 x-3

x2+5 x+4
 â x = Ù I 5

x+4
-

2
x+1

M â x = 5 ln È x + 4 È -2 ln È x + 1 È = ln Ë Hx+4L5

Hx+1L2
Ë

On the other hand, Mathematica  will give us essentially the same answer for this integral, but does its work behind the scenes
without revealing its technique:

In[460]:= SimplifyBà 3 x - 3

x2 + 5 x + 4
 âxF

Out[460]= -2 Log@1 + xD + 5 Log@4 + xD
If we would like to see the partial fraction decomposition of the integrand, 3 x-3

x2+5 x+4
, Mathematica will also do that for us without

strain by using the Apart command:

In[461]:= ApartB 3 x - 3

x2 + 5 x + 4
F

Out[461]= -
2

1 + x
+

5

4 + x

Example 7.7.  Evaluate à 2 x3+x2-2 x+2

Ix2+1M2
 â x.

Solution:  We simply evaluate this integral using Mathematica:

In[462]:= á 2 x3 + x2 - 2 x + 2

Ix2 + 1M2
 âx

Out[462]=
4 + x

2 I1 + x2M +
3 ArcTan@xD

2
+ LogA1 + x2E

But again, if we would like to see the partial fraction decomposition of the integrand, 2 x3+x2-2 x+2

Ix2+1M2
, then this is straightforward

with Mathematica:

In[463]:= ApartB2 x3 + x2 - 2 x + 2

Ix2 + 1M2
F

Out[463]=
1 - 4 x

I1 + x2M2
+
1 + 2 x

1 + x2

� Exercises 

1. Try to evaluate à H1 + lnHxLL 1 + Hx ln HxLL2
 â x with Mathematica. If it doesn't give an understandable answer, use a tech-

nique of integration that changes the integral into one that Mathematica will evaluate.

2. Use Mathematica to find the partial fraction decomposition of the following functions and then integrate them:

a)  x2+3 x - 44
Hx-3L Hx+5L H3 x-2L       b)  3 x2-4 x+5

Hx-1L Ix2+1M       c)  25

x Ix2+2 x+5M  
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2. Use Mathematica to find the partial fraction decomposition of the following functions and then integrate them:

a)  x2+3 x - 44
Hx-3L Hx+5L H3 x-2L       b)  3 x2-4 x+5

Hx-1L Ix2+1M       c)  25

x Ix2+2 x+5M  

� 7.3.  Improper Integrals

Students should read Section 7.7 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Recall that there are two types of improper integrals.  

Type I: If we assume that f  HxL is integrable over @a, bD for all b ³ a then the improper integral of f  HxL over @a, ¥L is defined as

Ùa

¥
f HxL â x = limt® ¥ Ùa

t
f HxL â x,

provided this limit exists.  Similarly, we define

Ù-¥

b
f HxL â x = limt® -¥ Ùt

b
f HxL â x,

provided this limit exists.

Type II: If f  HxL is continuous on @a, bL but discontinuous at x = b, we define

Ùa

b
f HxL â x = limt® b- Ùa

t
f HxL â x ,

provided this limit exists.  Similarly, if f  HxL is continuous on Ha, bD but discontinuous at x = a,

Ùa

b
f HxL â x = limt® a+ Ùt

b
f HxL â x,

provided this limit exists.  Finally, if f  HxL is continuous for all x on @a, bD except at x = c where a < c < b, we define

Ùa

b
f HxL â x = limt®c- Ùa

t
f HxL â x + limt®c+ Ùt

b
f HxL â x,

provided both of these limits exist.

By using the Limit command in Mathematica along with Integrate, Mathematica eliminates the drudgery of having to evaluate
these integrals by hand.

Example 7.8.  Evaluate the following improper integrals:

a)  Ù20

¥ 1
y

 â y

b) Ù2

¥
ã-2 x â x

c) Ù0

1
x ln x â x

d) Ù-¥

¥ 1

1+x2
 â x

Solution: 

a)  We evaluate

In[464]:= à
20

¥ 1

y
 ây

Integrate::idiv :  Integral of
1

y
does not converge on 820, ¥<. �

Out[464]= à
20

¥ 1

y
 ây

Thus, evaluating this integral directly using Mathematica  tells us it does not exist.  Alternatively, we could have used the limit
definition:
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In[465]:= LimitBà
20

t 1

y
 ây, t ® ¥F

Out[465]= ¥

Observe the difference in the two outputs above.  Both correctly express the answer as divergent; however, the second answer is
better since it reveals the nature of the divergence (infinity), which is the answer we would expect if solving this problem by hand.

b)  We evaluate

In[466]:= à
2

¥

ã-2 x âx

Out[466]=
1

2 ã4

Again we obtain the same answer using the limit definition (as it should):

In[467]:= LimitBà
2

t

ã-2 x âx , t ® ¥F
Out[467]=

1

2 ã4

Mathematica will similarly handle discontinuities. In the following example, the function has a discontinuity at x = 0. 

c) We evaluate

In[468]:= à
0

1

x Log@xD âx

Out[468]= -
1

4

In[469]:= LimitBà
t

1

x Log@xD âx, t ® 0, Direction ® -1F
Out[469]= -

1

4

d)  We evaluate

In[470]:= à
-¥

¥ 1

1 + x2
 â x

Out[470]= Π

Note that Mathematica does not require us to break the integral up into two integrals, which would be required according to its
definition, if evaluated by hand.  On the other hand, there is nothing wrong with dividing this integral into two in Mathematica:

In[471]:= à
-¥

0 1

1 + x2
 âx + à

0

¥ 1

1 + x2
 âx

Out[471]= Π

NOTE:  Observe  that it does not matter where we divide the integral.   It is valid to express  Ù-¥

a 1

1+x2
 â x + Ùa

¥ 1

1+x2
 â x  for the

integral  Ù-¥

¥ 1

1+x2
 â x for any real value a as long as they are convergent.  However, evaluating this sum in Mathematica  yields

different  expressions for the answer, which depend on the sign of a and whether it is real or complex.  This is shown in the

following output: 
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NOTE:  Observe  that it does not matter where we divide the integral.   It is valid to express  Ù-¥

a 1

1+x2
 â x + Ùa

¥ 1

1+x2
 â x  for the

integral  Ù-¥

¥ 1

1+x2
 â x for any real value a as long as they are convergent.  However, evaluating this sum in Mathematica  yields

different  expressions for the answer, which depend on the sign of a and whether it is real or complex.  This is shown in the

following output: 

In[472]:= Clear@aD
à

-¥

a 1

1 + x2
 âx + à

a

¥ 1

1 + x2
 âx

Out[473]= IfBa > 0, ArcTanB1
a

F, IntegrateB 1

1 + x2
, 8x, a, ¥<, Assumptions ® a £ 0FF +

IfB-1 < Im@aD < 1 ÈÈ Re@aD £ 0,

1

2
Π + ä Log@1 - ä aD - ä

Conjugate@Log@1 + ä aDD Re@aD � 0 && Im@aD > 1

Log@1 + ä aD True
,

IntegrateB 1

1 + x2
, 8x, -¥, a<, Assumptions ® Re@aD > 0 && HIm@aD £ -1 ÈÈ Im@aD ³ 1LFF

If instead, a is given a fixed value, then Mathematica will give us our answer of Π:

In[474]:= a = 1

à
-¥

a 1

1 + x2
 âx + à

a

¥ 1

1 + x2
 âx

Out[474]= 1

Out[475]= Π

� Exercises 

1.  Evaluate the following improper integrals:

a)  Ù-¥

4
ã.01 t  â t    b)  Ù-3

¥ 1

Hx+4L3�2
 â x    c)  Ù-2

4 1

Hx+2L1�3
 â x    d)  Ù-¥

¥
x ã-x2

 â x e) Ù0

3 1
x-1

 â x

2.  Find the volume of the solid obtained by rotating the region below the graph of  y = ã-x about the x-axis for  0 £ x < ¥.

3.  Determine how large the number b has to be in order that   Ùb

¥ 1

x2+1
 â x <  .0001.

4. Evaluate the improper integral Ù-1

1 1

Ë x
3 Ë  â x.

5.  Determine how large the number b should be so that  Ùb

¥ 1

x2+1
 â x < .0001.

6. Consider the function defined by 

 GHxL = Ù0

¥
tx-1 e-t  â t

a)  Evaluate GHnL  for n = 0, 2, , 3, 4, ...., 10.  Make  a conjecture about these values.  Verify your conjecture.

b) Evaluate GHH2 n - 1L � 2L, for n = 1, 2, 3, ... 10.  Make a conjecture about these values.  Verify your conjecture.

c) Plot the graph of GHxL on the interval @0, 5D.
NOTE: The function G is called the gamma function and is denoted by G@xD. In Mathematica it is denoted by Gamma[x].   The

gamma function was first introduced by Euler as a generalization of the factorial function.
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� 7.4.  Hyperbolic and Inverse Hyperbolic Functions

Students should read Section 7.5 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

� 7.4.1. Hyperbolic Functions

The  hyperbolic  functions  are  defined  in  terms of  the  exponential  functions.   They have a  direct  connection to engineering
mathematics, include bridge construction.  For example, cables from suspension bridges typically form a curve called a catenary
(derived from the Latin word catena, which means chain) that is described by these functions.

The six hyperbolic functions are denoted and defined as follows

sinh x =
e

x- e
-x

2
,  cosh x =

e
x+ e

-x

2
, tanh x =

e
x- e

-x

e
x+ e

-x

coth x =
e

x+ e
-x

e
x- e

-x
,  sech x =

2

e
x+ e

-x
, csch x =

2

e
x- e

-x
 

The reason these functions are called hyperbolic functions is due to their connection with the equilateral hyperbola x2 - y2 = 1.

Here one defines x = cosh t and y = sinh t.  Hence one obtains the basic hyperbolic identity cosh2
 t - sinh2

 t = 1, much the same

manner  as  the  corresponding  trigonometric  identity  cos2 t + sin2
 t = 1,  when  one  considers  the  unit  circle  x2 + y2 = 1  with

x = cos t and y = sin t.

In Mathematica, we use the same notation with the obvious convention that the first letter of each function is capitalized and

square brackets must be used in place of parentheses.  Thus sinh x will be entered as Sinh[x].

Example 7.9.  Consider the hyperbolic sine function f HxL = sinh x.

a) Plot the graph of f . 

b) From the graphs deduce the domain and range of the function. 
c) Is f  bounded? 

d) Does f  attain an absolute minimum? Maximum?

e) Repeat a) through d) for the hyperbolic function gHxL = cosh x  

f) Repeat a) through d) for the hyperbolic function hHxL = tanh x.

Solution: We begin by defining f  in Mathematica:

In[476]:= Clear@f, xD
f@x_D = Sinh@xD

Out[477]= Sinh@xD
a) We next plot its graph on the interval @-3, 3D.
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In[478]:= Plot@f@xD, 8x, -3, 3<D

Out[478]=
-3 -2 -1 1 2 3

-10

-5

5

10

b) The preceding graph indicates that the domain and range of sinh x is H-¥, ¥L. To convince yourself, you should plot the graph

over wider intervals.  We should also expect this from the definition of sinh x itself.  Can you explain why?

c) The function sinh x is not bounded. The graph earlier should not be used as a proof of this.  However, we can evaluate its limit

at -¥ and ¥ to see that this is indeed true.

In[479]:= Limit@f@xD, x ® -¥D
Limit@f@xD, x ® ¥D

Out[479]= -¥

Out[480]= ¥

d) The limits just computed show that sinh x has no absolute maximum or minimum since it is unbounded.

e) Next we consider the hyperbolic cosine function denoted by cosh x.

In[481]:= Clear@g, xD
g@x_D = Cosh@xD

Out[482]= Cosh@xD
In[483]:= Plot@g@xD, 8x, -3, 3<D

Out[483]=

-3 -2 -1 1 2 3

4

6

8

10

The preceding graph indicates that the domain of cosh x is H-¥, ¥L. The range appears to be @1, ¥L. Can you prove this?

The hyperbolic cosine function, cosh x, is not bounded from above. This can be seen from the following limits:
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In[484]:= Limit@Cosh@xD, x ® -¥D
Limit@Cosh@xD, x ® ¥D

Out[484]= ¥

Out[485]= ¥

Again, since cosh x is not bounded from above, it follows that cosh x has no absolute maximum. As we have observed in part b)

of this example, cosh x has absolute minimum value 1, attained at x = 0. 

f) Finally we consider the hyperbolic tangent function, tanh x:

In[486]:= Clear@h, xD
h@x_D = Tanh@xD

Out[487]= Tanh@xD
In[488]:= Plot@h@xD, 8x, -3, 3<D

Out[488]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Again the preceding graph indicates that the domain of tanh x is H-¥, ¥L. The range appears to be H-1, 1L. This can be seen

from the following limits:

In[489]:= Limit@Tanh@xD, x ® -¥D
Limit@Tanh@xD, x ® ¥D

Out[489]= -1

Out[490]= 1

The graph of tanh x also indicates that it is strictly increasing on its domain.  This can be proven by showing that its derivative,

which we will calculate later, is strictly positive.  It is clear that tanh x has no absolute extrema. 

NOTE: The reader  will notice some similarities between the hyperbolic functions and the associated trigonometric functions.
Moreover, if one studies the theory of functions of a complex variable, the relationship between these classes of transcendental
functions becomes even more transparent; for numerous identities exist between the classes of functions. 

� 7.4.2. Identities Involving Hyperbolic Functions

It is immediate that the ratio and reciprocal identities for the hyperbolic functions coincide with their trigonometric counterparts.
In fact for each trigonometric identity there is a corresponding (not necessarily the same) hyperbolic identity.  Here are some
examples. 

Example 7.10.  Show that the following identities hold true.

a) 1 - tanh2
 x = sech2

 x b)  coshHx + yL = cosh x cosh y + sinh x sinh y
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Example 7.10.  Show that the following identities hold true.

a) 1 - tanh2
 x = sech2

 x b)  coshHx + yL = cosh x cosh y + sinh x sinh y

Solution: 

a) We use the definitions for tanh x and sech x to express each side of the identity in terms of exponentials: 

In[491]:= SimplifyAI1 - Tanh@xD2M �. Tanh@xD ® HE^x - E^H-xLL � HE^x + E^H-xLLE
Out[491]=

4 ã2 x

I1 + ã2 xM2

In[492]:= SimplifyASech@xD2 �. Sech@xD ® 2 � HE^x + E^H-xLLE
Out[492]=

4

Hã-x + ãxL2

We leave it for the reader to verify that both of these outputs agree, i.e., 4 e2 x

I1+e2 xM2
=

4

He-x+exL2
 (cross-multiply and then simplify).

The identity can also be confirmed in Mathematica  by evaluating the difference  between its left- and right-hand sides, which
should equal zero:

In[493]:= SimplifyA1 - Tanh@xD2
- Sech@xD2E

Out[493]= 0

NOTE: We can also confirm the identity graphically by plotting the graphs of each side of the identity, which should coincide.

In[494]:= Plot@81 - Tanh@xD^2, Sech@xD^2<, 8x, -2, 2<D

Out[494]=

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

b) We again evaluate the difference between the left- and right-hand sides of the identity:

In[495]:= Simplify@Cosh@x + yD - HCosh@xD Cosh@yD + Sinh@xD Sinh@yDLD
Out[495]= 0

� 7.4.3. Derivatives of Hyperbolic Functions

We next contrast the formulas for the derivatives of the trigonometric functions versus the formulas for the derivatives of the
companion hyperbolic functions.

Example 7.11.  Compare the derivatives of the given pair of functions.
a) sinh x and sin x b)  cosh x and cos x  c) tanh x and tan x
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Example 7.11.  Compare the derivatives of the given pair of functions.
a) sinh x and sin x b)  cosh x and cos x  c) tanh x and tan x

Solution: We use the derivative command, D, to evaluate derivatives of each pair.

a)

In[496]:= D@Sinh@xD, xD
D@Sin@xD, xD

Out[496]= Cosh@xD
Out[497]= Cos@xD
b)

In[498]:= D@Cosh@xD, xD
D@Cos@xD, xD

Out[498]= Sinh@xD
Out[499]= -Sin@xD
b)

In[500]:= D@Tanh@xD, xD
D@Tan@xD, xD

Out[500]= Sech@xD2

Out[501]= Sec@xD2

It is clear that derivatives of hyperbolic and trigonometric functions are quite similar.

� 7.4.4. Inverse Hyperbolic Functions

In light of the fact  that hyperbolic functions are defined in terms of the exponential functions, it is readily apparent  that the
inverse hyperbolic functions are defined in terms of the natural logarithmic function.  The inverses of the hyperbolic functions

have notation similar to those of inverse trigonometric functions.  Thus the inverse of sinh x is denoted by arcsinh x or sinh-1 x.

In Mathematica, the notation is sinh-1
 x is ArcSinh[x].

Example 7.12.  Plot the graphs of sinh-1
 x and sinh x on the same axis.

Solution: Recall that the graph of a function and the graph of its inverse are reflections of each other across the line y = x.  This

is confirmed by the following plot of sinh-1
 x (in blue) and sin x (in red).
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In[502]:= Plot@8Sinh@xD, x, ArcSinh@xD<, 8x, -3, 3<,
PlotStyle ® 8Blue, Green, Red<, AspectRatio ® Automatic, PlotRange ® 8-3, 3<D

Out[502]=
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Example 7.13.  Show that tanh-1
 x =

1
2

 lnI 1+x
1-x

M for -1 < x < 1.

Solution: We plot the graphs of y = tanh-1
 x and y =

1
2

 lnI 1+x
1-x

M on the same axes. Note that Mathematica's notation of tanh-1
 x is

ArcTanh [x] and ln y is entered as Log[y]:

In[503]:= PlotB:ArcTanh@xD, 1

2
 LogB1 + x

1 - x
F>, 8x, -2, 2<F

Out[503]=
-2 -1 1 2

-3

-2

-1

1

2

3

The fact that there is only one graph indicates that the functions are the same. We prove this by letting y = tanh-1
 x and solving

for y as follows.  From y = tanh-1
 x we get x = tanh y =

ey-e-y

ey+e-y .  Now solving this last equation for y in Mathematica yields:
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In[504]:= Solve@x � HE^y - E^H-yLL � HE^y + E^H-yLL, yD
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[504]= ::y ® LogB-
-1 - x

-1 + x
F>, :y ® LogB -1 - x

-1 + x
F>>

The first solution in the preceding output is imaginary, which we ignore, and consider only the second solution.  Hence,

tanh-1 x = y = ln 
-1-x

-1+x
= ln 

1+x
1-x

=
1
2

 lnI 1+x
1-x

M .

NOTE: The message in the previous output refers  to the fact that when solving equations involving inverse functions, not all
solutions are necessarily found by Mathematica  since there may be infinitely many of them or they depend on the domain of
definition.  For example, the equation sin x = 1 has infinitely many solutions, in particular all values of the form x = Π � 2 + 2 Π n,

where n is any integer.  On the other hand, solving this equation in Mathematica yields only the solution in its principal domain,

i.e., x = Π � 2: 

In[505]:= Solve@Sin@xD � 1, xD
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[505]= ::x ®
Π

2
>>

� Exercises 

1. Verify the following hyperbolic identities using the Simplify command.  In addition, confirm the identities in parts b) and c) by
plotting each side of the identity.  Also state the corresponding trigonometric identity.  

a)  sinhHx + yL = sinh x cosh y + cosh x sinh y b)  cosh 2 x = cosh2
 x + sinh2

 x c)  tanh 2 x =
2 tanh x

1+tanh2
 x

 

2. Determine the first few positive integral powers of cosh x + sinh x. Can you form a general conjecture for the nth case, namely

Hcosh x + sinh xLn, where n is any natural number?  Then justify your conclusion via mathematical induction. 

3. Determine the derivatives of the following functions and simplify your answers where possible. Compare your solution via
paper and pencil methods with the one generated by Mathematica. 

a)  f HxL = tanh I1 + x2M b)  f HxL = x sinh x - cosh x c) f HxL =
1+tanh x
1- tanh x

d)  f HxL = x2 sinh-1H2 xL e)  f HxL = x tanh-1
 x + ln 1 - x2

4. The Gateway Arch in St. Louis was designed by Eero Saarinen and was constructed using the equation 

 y = 211.49 - 20.96 cosh H0.03291765 xL 
for the central curve of the arch, where x and y are measured in meters and È x È £ 91.20.

a) Plot the graph of the central curve.
b) What is the height of the arch at its center?
c) At what points is the arch 100 meters in height?
d) What is the slope of the arch at the points in part (c)?
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for the central curve of the arch, where x and y are measured in meters and È x È £ 91.20.

a) Plot the graph of the central curve.
b) What is the height of the arch at its center?
c) At what points is the arch 100 meters in height?
d) What is the slope of the arch at the points in part (c)?

5. A flexible cable always hangs in the shape of a catenary y = c + a cosh Hx � aL where c and a are constants and a > 0.  Plot

several members of the family of functions y = a cosh Hx � aL for various values of a.  How does the graph change as a varies?

6. Evaluate each of the following integrals:

 a)  Ù sinh x coshn
 x â x b)  à cosh x

cosh2
 x-1

 â x c)  à sech2
 x

2+tanh x
 â x

7.  Let t = lnK 1+ 5
2

O and define

f HnL = :
2

5
 coshHt nL, if n is odd

2

5
 sinh Ht nL, if n is even

Evaluate f HnL for n = 1, 2, 3, ..., 20.  Do these values seem familiar? If not, we highly recommend the interesting article by

Thomas Osler,  Vieta-like  products of nested radicals with Fibonacci  and Lucas numbers,  to appear  in the journal Fibonacci
Quarterly.
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Chapter  8 Further Applications of Integration

� 8.1.  Arc Length and Surface Area  

Students should read Section 8.1 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

� 8.1.1 Arc Length

The integrals for calculating arc length and surface area are generally difficult to do by hand.  Thus Mathematica is the appropri-
ate tool for evaluating these integrals.

If y is a function of x, i.e., y = f  HxL, and f ' HxL exists and is continuous on @a, bD then the arc length of the graph of f  HxL over

the interval @a, bD is   

 L = Ùa

b
1 + f ' HxL2  â x. 

If x is a function of y, i.e., x = g HyL, and g ' HyL exists and is continuous on @c, dD then the arc length of the graph of g HyL over the

interval @c, dD is
  L = Ùc

d
f ' HyL2 + 1  â y. 

Example 8.1.  Estimate the arc length of  y =
1
x
 over the interval @1, 2D.

Solution: Finding the arc length of this simple rational function by hand is virtually impossible.  This is because f ' HxL = -
1

x2
 and

thus the arc length integral is L = Ù1

2
1 +

1

x4
 â x, which cannot be evaluated in terms of elementary functions, as the following

answer illustrates.

In[506]:= à
1

2

1 +
1

x4
 âx

Out[506]=

2 Π GammaA 7

4
E

3 GammaA 5

4
E -

1

2
Hypergeometric2F1B-

1

2
, -

1

4
,
3

4
, -16F

However, there are numerical techniques that we can use.  For example, the Mathematica  command NIntegrate  uses sophisti-
cated algorithms to gives us a good estimate for this definite integral: 

In[507]:= NIntegrateB 1 +
1

x4
, 8x, 1, 2<F

Out[507]= 1.13209

A more elementary method of estimating this arc length is Simpson's Rule as shown in Section 7.1 of this text.
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In[508]:= Clear@f, a, b, nD
SIMP@a_, b_, n_, f_D :=H1 �3L Sum@f@a + H2 i - 2L Hb - aL �nD + 4 f@a + H2 i - 1L Hb - aL �nD + f@a + 2 i Hb - aL �nD,8i, 1, n �2<D Hb - aL �n

In[510]:= f@x_D := 1 +
1

x4

TableFormATable@8n, N@SIMP@1, 2, n, fDD<, 8n, 10, 100, 10<D,
TableHeadings ® 98<, 9"n", "Sn"== E

Out[511]//TableForm=

n Sn

10 1.1321

20 1.13209

30 1.13209

40 1.13209

50 1.13209

60 1.13209

70 1.13209

80 1.13209

90 1.13209

100 1.13209

Thus, we see that Simpson's Rule gives us as accurate an estimate of the arc length, as does the NIntegrate command for n as
small as 20.

Example 8.2.  Consider the the ellipse whose equation is given by 

 x2

a2
+

y2

b2
= 1.

Assume that a > b. Find the arc length of the upper half of the ellipse.   

Solution: To plot the ellipse for various values of a and b, we define a plotting command plot[a,b] as follows. 

In[512]:= Clear@a, b, x, y, eq, plotD
eq@x_, y_, a_, b_D :=

x2

a2
+
y2

b2
- 1

plot@a_, b_D := ContourPlot@eq@x, y, a, bD � 0, 8x, -a, a<, 8y, -b, b<,
AspectRatio ® Automatic, Axes ® True, Frame ® FalseD

Here is a plot of the ellipse for a = 2 and b = 3.
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In[515]:= plot@2, 3D

Out[515]=
-2 -1 1 2

-3

-2

-1

1

2

3

 On the upper half of the ellipse, we have y ³ 0. Thus we can solve for y and and take the positive solution. We will denote this

positive solution as a function of x, a, and b.

In[516]:= sol = SolveBx2
a2

+
y2

b2
� 1, yF;

f@x_, a_, b_D = sol@@2, 1, 2DD
Out[517]= b2 -

b2 x2

a2

Clearly the domain of f  is @-a, aD. The natural thing to do would be to evaluate the integral Ù-a

a
1 + H f ' HxLL2

 â x.  Try this

yourself, but be prepared to wait awhile.  Moreover, Mathematica will give the following output:

IfBIm@aD � 0 && a ImB 1

-a2 + b2
F ³ 1 ÈÈ

ÈÈ ÈÈ ,
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1 + a ImB 1

-a2 + b2
F £ 0 ÈÈ a ImB 1

-a2 + b2
F � 0 ÈÈ a ReB 1

-a2 + b2
F ¹ 0 ,

2 H-aL3�2 b2 EllipticEA1 -
b2

a2
E Sign@aD

-a b2
, IntegrateB 1 +

b2 x2

a4 - a2 x2
, 8x, -a, a<,

Assumptions ® HRe@bD � 0 && Re@aD ¹ 0 && Im@aD � 0 && Im@bD ¹ 0L ÈÈ Im@aD < 0 ÈÈ Im@aD > 0FF
To understand this output, let us make a change of variable x = a sin t. Then the integral becomes (verify this): 

 Ù-a

a
1 + H f ' HxLL2

 â x = a Ù-Π�2
Π�2

1 +
b2 sin2

 t

a2 cos2 t
 cos t d t

The latter integral can be expressed as 

 2 a Ù0

Π�2
1 +

b2 sin2
 t

a2 cos2 t
 cos t d t = 2 a Ù0

Π�2
cos2 t + Ib2 � a2M sin2

 t d t = 2 a Ù0

Π�2
1 - c2 sin2

 t d t ,

where  c = 1 - Hb � aL2 and we have used the identity cos2 t = 1 - sin2
 t.

To simplify our notation, let us define the integrand in the preceding far left integral as

In[518]:= g@t_, a_, b_D = 1 - I1 - Hb �aL2M HSin@tDL2

Out[518]= 1 - 1 -
b2

a2
Sin@tD2

Here are some values of the arc length of the upper half of the ellipse.

In[519]:= TableFormBTableB2 a à
0

Π�2
g@t, a, bD ât, 8a, 1, 3<, 8b, 1, 3<F,

TableHeadings ® 88"a=1", "a=2", "a=3"<, 8"b=1", "b=2", "b=3"< <F
Out[519]//TableForm=

b=1 b=2 b=3

a=1 Π 2 EllipticE@-3D 2 EllipticE@-8D
a=2 4 EllipticEA 3

4
E 2 Π 4 EllipticEA-

5

4
E

a=3 6 EllipticEA 8

9
E 6 EllipticEA 5

9
E 3 Π

Observe that we obtain exact values for the arc length when a = b.  Can you explain why?

The approximate values of the numbers appearing in the preceding table are:
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In[520]:= TableFormBNBTableB2 a à
0

Π�2
g@t, a, bD ât, 8a, 1, 3<, 8b, 1, 3<F, 10F,

TableHeadings ® 88"a=1", "a=2", "a=3"<, 8"b=1", "b=2", "b=3"< <F
Out[520]//TableForm=

b=1 b=2 b=3

a=1 3.141592654 4.844224110 6.682446610

a=2 4.844224110 6.283185307 7.932719795

a=3 6.682446610 7.932719795 9.424777961

NOTE: The integral à 1 - c2 sin2
 t  â t is known as an elliptic integral.  It is very useful in mathematics and has many applica-

tions. In Mathematica it is denoted by Elliptic[t,c^2].  The command Elliptic[x,m]  gives Ù0

x
1 - m sin2

 t  dt while Elliptic[m]

gives  Ù0

Π�2
1 - m sin2

 t  dt.

� 8.1.2. Surface Area

If f ' HxL exists and is continuous on @a, bD then the surface area of revolution obtained by rotating the graph of f  HxL about the x-

axis for a £ x £ b is  

 S = 2 Π Ùa

b
f HxL 1 + @ f ' HxLD2

 â x

Similarly, if x = gHyL and g ' HyL exists and is continuous on @c, dD, then the surface area of revolution obtained by rotating g HyL
about the y-axis for c £ y £ d  is 

  S = 2 Π Ùc

d
gHyL @g ' HyLD2

+ 1  â y.

Again, evaluating these complicated integrals is what Mathematica does best, as the following examples illustrate.

Example 8.3.  Determine the surface area of revolution obtained by rotating the region under y = ã-x  along the interval @0, 2D
about the x-axis.

Solution: We calculate

In[521]:= Clear@f, xD
f@x_D := ã-x

S = 2 Π à
0

2

f@xD 1 + f'@xD2
 âx

Out[523]=
1

2
Π 4 + 2 2 -

2

1 + ã4

-
2

ã4 1 + ã4

+ LogB3 + 2 2 F - LogB2 + ã4 + 2 1 + ã4 F

In[524]:= N@%D
Out[524]= 6.35887

Here is the corresponding surface of revolution (rotated 90 ° about the y-axis):
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In[525]:= RevolutionPlot3D@E-x, 8x, 0, 2<D

Out[525]=

-2

-1

0

1

2
-2

-1

0

1

2

0.2
0.4
0.6

0.8

1.0

NOTE: Observe in this case that Mathematica was able to find an anti-derivative of the integrand.  However, not all integrals of
this form can be evaluated analytically as the next example illustrates.

Example 8.4.  Determine the surface area of revolution obtained by rotating the region under y = tan x along the interval A0, Π

4
E

about the x-axis.

Solution: As in the previous example, we evaluate

In[526]:= Clear@f, xD
f@x_D := Tan@xD
NIntegrateB2 Π f@xD 1 + f'@xD2 , 8x, 0, Pi �4<F

Out[528]= 3.83908

To appreciate  the complexity of the integral and understand why we used the command NIntegrate, we advise the reader  to

define the anti-derivative F[t] below and evaluate F[Π/4] (be prepared to wait awhile).

In[529]:= F@t_D := IntegrateBf@xD 1 + f'@xD2 , 8x, 0, t<F
Here is the corresponding surface of revolution:
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In[530]:= RevolutionPlot3D@Tan@xD, 8x, 0, Pi �4<D

Out[530]=

-0.5

0.0

0.5

-0.5

0.0

0.5

0.0

0.5

1.0

� Exercises 

1.  Calculate the arc length of the given function over the given interval:

a)  y = x4,  over @1, 2D           b)  y = sin x,  over A0, Π

2
E

2.  Calculate the arc length of the astroid  x2�3 + y2�3 = 1.  Below is a plot of its graph.  Hint: By symmetry it suffices to calculate

only the portion in the first quadrant.

In[531]:= ContourPlot@Hx^2L^H1 �3L + Hy^2L^H1 �3L � 1, 8x, -1, 1<, 8y, -1, 1<D

Out[531]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

3.  Show that the circumference of the unit circle is 2Π by calculating its arc length. Use the fact that the equation of the unit
circle is given by   x2 + y2 = 1.  

4.  Compute the surface area of the following functions rotated about the x-axis over the given intervals:

a)  y = x3 +
1
x
,  over @1, 4D      b)  y = I4 - x2�3M2�3

 over @0, 8D    c)  y = cos x, over @0, ΠD 
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4.  Compute the surface area of the following functions rotated about the x-axis over the given intervals:

a)  y = x3 +
1
x
,  over @1, 4D      b)  y = I4 - x2�3M2�3

 over @0, 8D    c)  y = cos x, over @0, ΠD 
5.  Show that the surface area of the unit sphere is 4Π by rotating the top half of the unit circle  x2 + y2 = 1 about the x-axis.

� 8.2.  Center of Mass

Students should read Section 8.3 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

A lamina is a thin plate whose mass is distributed throughout a region in the plane. Suppose a lamina has a constant density Ρ and

that the lamina occupies a region in the plane under the graph of a continuous function f  over the interval @a, bD, where f HxL ³ 0

for all x. 

The mass of the lamina is given by 

M = Ρ Ùa

b
f HxL â x.

Then the moments of the lamina with respect to x-axis and y-axis are denoted by Mx and My and are defined by       

 Mx =
1
2

 Ρ Ùa

b@ f HxLD2
 â x,

My = Ρ Ùa

b
x f HxL â x.

The center of mass (also called the centroid) of the lamina is defined to be Hx, yL, where

 x =
My

M
 and y =

Mx

M

NOTE:  If the lamina described above as a density Ρ that continuously depends on x, that is if Ρ = ΡHxL for x in the interval @a, bD,
then the moments, the total mass, and the center of mass are given by   

M = Ùa

b
ΡHxL f HxL â x.

 Mx =
1
2 Ùa

b
ΡHxL@ f HxLD2

 â x

My = Ùa

b
x ΡHxL f HxL â x.

 x =
My

M
 and y =

Mx

M

Example 8.5.  Suppose a lamina lies underneath the graph of y = 16 - x2 and over the interval @-4, 4D.
a)  Assume the density of the lamina is Ρ = 3. Find the mass, moments, and the center of mass of the lamina. 

b)  Assume the density of the lamina is Ρ =
x
2

+ 2. Find the mass, moments, and the center of mass of the lamina. 

Solution: 

a) We use the above formulas with Ρ = 3:
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In[532]:= f@x_D = 16 - x2

Out[532]= 16 - x2

The mass is given by 

In[533]:= M = 3 à
-4

4

f@xD âx

Out[533]= 256

The moment with respect to the x-axis is 

In[534]:= Mx = H3 �2L à
-4

4Hf@xDL2
 âx

Out[534]=
8192

5

The moment with respect to the y-axis is 

In[535]:= My = 3 à
-4

4

x f@xD âx

Out[535]= 0

The coordinates for the center of mass are 

In[536]:= xbar = My � M

ybar = Mx � M

Out[536]= 0

Out[537]=
32

5

Observe that the region of the lamina is symmetric with respect to the y-axis. Hence the fact that x = 0 is also clear from the fact

that the density is a constant. 

Below is the plot of the lamina and its center of mass:

In[538]:= plot1 = Plot@f@xD, 8x, -4, 4< , Filling ® AxisD;
plot2 = ListPlot@88xbar, ybar<<, PlotStyle ® 8PointSize@0.02D, Red<D;
Show@plot1, plot2D

Out[540]=

-4 -2 2 4

5

10

15

b) Here Ρ = x + 4. With the above notation we have 
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b) Here Ρ = x + 4. With the above notation we have 

In[541]:= f@x_D = 16 - x2

Ρ@x_D =
x

2
+ 2

Out[541]= 16 - x2

Out[542]= 2 +
x

2

The mass is 

In[543]:= Mv = à
-4

4

Ρ@xD f@xD âx

Out[543]=
512

3

The moment with respect to the x-axis is 

In[544]:= Mxv = H1 �2L à
-4

4

Ρ@xD Hf@xDL2
 âx

Out[544]=
16 384

15

The moment with respect to the y-axis is 

In[545]:= Myv = à
-4

4

Ρ@xD x f@xD âx

Out[545]=
2048

15

The coordinates for the center of mass are 

In[546]:= xbarv = Myv � M

ybarv = Mxv � M

Out[546]=
8

15

Out[547]=
64

15

Here is a plot of the lamina showing the center of masses with the uniform density of Ρ = 3 and variable density of Ρ =
x
2

+ 2

represented by the red and green dots, respectively.
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In[548]:= plot3 = ListPlot@88 xbarv, ybarv<<, PlotStyle ® 8Green, PointSize@.02D<D;
Show@plot1, plot2, plot3D

Out[549]=

-4 -2 2 4

5

10

15

NOTE: Observe that the center of mass with variable density (green dot) is shifted to the right, as expected, since the density is
more weighted to the right.

Example 8.6.  Suppose a lamina covers the top half of the ellipse

 x2

a2
+

y2

b2
= 1

a) Assume the density of the lamina is Ρ = 1. Find the mass, moments and the center of mass of the lamina. 

b) Assume the density of the lamina is Ρ = e-x. Find the mass, moments and the center of mass of the lamina. 

Solution: To distinguish between the uniform and variable density cases in parts a) and b), respectively, we attach the letter u and

v to the notation in this solution. Thus Mu will be the mass corresponding to the uniform density while Mv is the mass correspond-

ing the variable density. 

a) We solve the equation of the ellipse for y:

In[550]:= Clear@a, b, x, yD
sol = SolveBx2

a2
+
y2

b2
� 1, yF

Out[551]= ::y ® - b2 -
b2 x2

a2
>, :y ® b2 -

b2 x2

a2
>>

In the top half of the ellipse , we have y ³ 0. Thus we take the second solution, simplify, and define it as a function of x, a, and b  

In[552]:= f@x_, a_, b_D = b 1 -
x2

a2

Out[552]= b 1 -
x2

a2

Let the mass, the moment with respect to the x-axis, the moment with respect to the y -axis, and the center of mass be denoted by

M Ha, bL, MxHa, bL, MyHa, bL, and HxHa, bL.y Ha, bL, respectively.  We now compute these quantities assuming Ρ = 1.

Chapter 8 139



In[553]:= Clear@a, b, Mu, Mxu, Myu, xbaru, ybaruD
Mu@a_, b_D = à

-a

a

f@x, a, bD âx

Mxu@a_, b_D = H1 �2L à
-a

aHf@x, a, bDL2
 âx

Myu@a_, b_D = à
-a

a

x f@x, a, bD âx

Out[554]=
a b Π

2

Out[555]=
2 a b2

3

Out[556]= 0

In[557]:= xbaru@a_, b_D =
Myu@a, bD
Mu@a, bD

ybaru@a_, b_D =
Mxu@a, bD
Mu@a, bD

Out[557]= 0

Out[558]=
4 b

3 Π

That  x = 0 is also clear from the fact that the density is a constant and the upper half of the ellipse is symmetric with respect to

the y -axis.  

The mass of the lamina, the moments of the lamina with respect to the x- and y-axis for various values of a and b are as follows:

In[559]:= umass = TableForm@Table@Mu@a, bD, 8a, 1, 3<, 8b, 1, 3<D,
TableHeadings ® 88"a=1", "a=2", "a=3"<, 8"b=1", "b=2", "b=3"<<D;

uxmoment = TableForm@ Table@Mxu@a, bD , 8a, 1, 3<, 8b, 1, 3<D ,

TableHeadings ® 88"a=1", "a=2", "a=3"<, 8"b=1", "b=2", "b=3"<<D;
uymoment = TableForm@ Table@Myu@a, bD , 8a, 1, 3<, 8b, 1, 3<D ,

TableHeadings ® 88"a=1", "a=2", "a=3"<, 8"b=1", "b=2", "b=3"<<D;
TableForm@8umass, uxmoment, uymoment<,
TableHeadings ® 88"Mass", "x-moment", "y-moment"<, 8<<D

Out[562]//TableForm=

Mass

b=1 b=2 b=3

a=1 Π

2
Π

3 Π

2

a=2 Π 2 Π 3 Π

a=3 3 Π

2
3 Π

9 Π

2

x-moment

b=1 b=2 b=3

a=1 2

3

8

3
6

a=2 4

3

16

3
12

a=3 2 8 18

y-moment

b=1 b=2 b=3

a=1 0 0 0

a=2 0 0 0

a=3 0 0 0

The corresponding y-coordinate of the center of mass in each case is (recall that x = 0 for all cases)
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The corresponding y-coordinate of the center of mass in each case is (recall that x = 0 for all cases)

In[563]:= centermassu = TableB Mxu@a, bD
Mu@a, bD , 8a, 1, 3<, 8b, 1, 3<F;

TableForm@centermassu,
TableHeadings ® 88"a=1", "a=2", "a=3"<, 8"b=1", "b=2", "b=3"<<D

Out[564]//TableForm=

b=1 b=2 b=3

a=1 4

3 Π

8

3 Π

4

Π

a=2 4

3 Π

8

3 Π

4

Π

a=3 4

3 Π

8

3 Π

4

Π

The following animation shows how the center of mass changes as a and b varies.

In[565]:= Clear@plot4, plot5D
plot4@a_, b_D := Plot@f@x, a, bD, 8x, -a, a<, PlotRange ® 88-5, 5<, 8-15, 15<<, Filling ® AxisD;
plot5@a_, b_D := ListPlotB:: Myu@a, bD

Mu@a, bD ,
Mxu@a, bD
Mu@a, bD >>, PlotStyle ® 8Red, PointSize@0.02D<F

plotu@a_, b_D := Show@plot4@a, bD, plot5@a, bDD
Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

In[569]:= Animate@plotu@a, bD, 8a, 1, 8<, 8b, 1, 10<D
Out[569]=

b) Here Ρ = e-x. With the above notations modified to reflect variable density,  we have 

In[570]:= Clear@a, b, Mv, Mxv, Myv, xbarv, ybarvD
Ρ@x_D = E-x

Mv@a_, b_D = à
-a

a

Ρ@xD f@x, a, bD âx

Mxv@a_, b_D = H1 �2L à
-a

a

Ρ@xD Hf@x, a, bDL2
 âx

Myv@a_, b_D = à
-a

a

Ρ@xD x f@x, a, bD âx

Out[571]= ã-x

Out[572]= b IfBa > 0, Π BesselI@1, aD, IntegrateBã-x 1 -
x2

a2
, 8x, -a, a<, Assumptions ® a £ 0FF

Out[573]=
2 b2 Ha Cosh@aD - Sinh@aDL

a2

Out[574]= b IfBa > 0, -a Π BesselI@2, aD, IntegrateBã-x x 1 -
x2

a2
, 8x, -a, a<, Assumptions ® a £ 0FF
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In[575]:= xbarv@a_, b_D =
Myv@a, bD
Mv@a, bD

ybarv@a_, b_D =
Mxv@a, bD
Mv@a, bD

Out[575]= IfBa > 0, -a Π BesselI@2, aD, IntegrateBã-x x 1 -
x2

a2
, 8x, -a, a<, Assumptions ® a £ 0FF �

IfBa > 0, Π BesselI@1, aD, IntegrateBã-x 1 -
x2

a2
, 8x, -a, a<, Assumptions ® a £ 0FF

Out[576]= H2 b Ha Cosh@aD - Sinh@aDLL �

a2 IfBa > 0, Π BesselI@1, aD, IntegrateBã-x 1 -
x2

a2
, 8x, -a, a<, Assumptions ® a £ 0FF

Observe that the formulas for the mass and moments of the lamina are no longer elementary.  Here is a table of numerical values
for these quantities assuming various choices for a and b:

In[577]:= TableForm@N@8t1, t2, t3<D, TableHeadings ® 88"Mass", "x-moment", "y-moment"<, 8<<D
Out[577]//TableForm=

Mass 0.212207 0.0276791 0.0148051 0.0101051 0.00767012 0.00618077

x-moment 0.106103 0.0138396 0.00740256 0.00505254 0.00383506 0.00309039

y-moment t3

The coordinates for the center of mass are 

In[578]:= centermassv = NBTableB: Myv@a, bD
Mv@a, bD ,

Mxv@a, bD
Mv@a, bD >, 8a, 1, 3<, 8b, 1, 3<FF

Out[578]= 888-0.240194, 0.414395<, 8-0.240194, 0.828791<, 8-0.240194, 1.24319<<,
88-0.866255, 0.389977<, 8-0.866255, 0.779953<, 8-0.866255, 1.16993<<,
88-1.70377, 0.361161<, 8-1.70377, 0.722323<, 8-1.70377, 1.08348<<<

Here is a plot showing the two centers of mass with for uniform and variable density.

In[579]:= Clear@plot4, plot6D
plot4@a_, b_D := Plot@f@x, a, bD, 8x, -a, a<,

PlotRange ® 88-8, 8<, 8-1, 8<<, AspectRatio ® Automatic, Filling ® AxisD;
plot6@a_, b_D := ListPlotB:: Myv@a, bD

Mv@a, bD ,
Mxv@a, bD
Mv@a, bD >>, PlotStyle ® 8Green, PointSize@0.02D<F

plotv@a_, b_D := Show@plot4@a, bD, plot5@a, bD, plot6@a, bDD
Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.
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In[583]:= Animate@plotv@a, bD, 8a, 1, 8<, 8b, 1, 8<D
Out[583]=

� Exercises 

1.  Suppose a lamina is lying underneath the graph of y = 1 + x2 over the interval @0, 2D .
a) Assume the density of the lamina is Ρ = 3. Find the mass, moments, and the center of mass of the lamina. 

b) Assume the density of the lamina is Ρ = 2 x. Find the mass, moments, and the center of mass of the lamina. 

c) Plot the lamina and the center of mass on the same axes for both parts a) and b) above.

2.  Suppose a lamina of constant density Ρ = 2 is in the shape of the astroid  x2�3 + y2�3 = 1.  Find its mass, moments, and center

of mass.  Plot the lamina with its center of mass.
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Chapter 9 Introduction to Differential Equations

� 9.1.  Solving Differential Equations

Students should read Section 9.1 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

An ordinary differential equation is an equation that involves an unknown function, its derivatives, and an independent variable.
Given a differential equation, our objective is to find all functions that satisfy it. 

Mathematica's command for solving a differential  equation is DSolve[eqn,y[x],x]  where eqn is the differential  equation to be
solved, y is the dependent variable, and x is the independent variable.

If the differential  equation has initial condition(s) we use braces  8 < and enter  the equation as well as the initial condition(s)

separated by a comma: DSolve[{eqn,cond1,cond2,...,condn},y[x],x] where cond1, cond2,...,condn are initial conditions.

Example 9.1.  Solve the given differential equation and plot the graph of the solutions.  

a)  y ' = 2 H4 - yL, yH0L = 1 b)  1 - x2  y ' = x y  c) y
d y

d x
+ 5 x = 0

Solution: 

a) This is an initial value problem. When entering a differential equation in Mathematica, we write y@xD instead of y to make

explicit the dependence on x.

In[584]:= sola = DSolve@8y'@xD � 2 H4 - y@xDL, y@0D � 1<, y@xD, xD
Out[584]= 99y@xD ® ã-2 x I-3 + 4 ã2 xM==
Let y = f HxL be the solution given above. Then we can use the following command to extract this solution and define it as f HxL.
In[585]:= f@x_D = sola@@1, 1, 2DD
Out[585]= ã-2 x I-3 + 4 ã2 xM
Here is the plot of the solution:

In[586]:= Plot@f@xD, 8x, -2, 7<D

Out[586]=

-2 2 4 6

-10

-5
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b)  We proceed as in a) above.

In[587]:= solb = DSolveB 1 - x2  y'@xD � x y@xD, y@xD, xF
Out[587]= ::y@xD ® ã- 1-x2 C@1D>>
Note that the above solution has an arbitrary constant C@1D.  To plot the graph of some particular  solutions corresponding to

different values of C@1D, we define gHx, cL,  where c = C@1D, as follows.  

In[588]:= Clear@g, x, cD
g@x_, c_D = solb@@1, 1, 2DD �. C@1D ® c

Out[589]= c ã- 1-x2

Here are the graphs for c = -5, -4, ..., 5.

In[590]:= Plot@Table@g@x, cD, 8c, -5, 5<D, 8x, -2, 2<D

Out[590]=
-2 -1 1 2

-4

-2

2

4

c) 

In[591]:= Clear@yD
solde = DSolve@ y@xD y'@xD - 5 x � 0, y@xD, xD

Out[592]= ::y@xD ® - 5 x2 + 2 C@1D >, :y@xD ® 5 x2 + 2 C@1D >>
We extract the two solutions as follows.

In[593]:= f@x_, c_D = solde@@1, 1, 2DD �. C@1D ® c

g@x_, c_D = solde@@2, 1, 2DD �. C@1D ® c

Out[593]= - 2 c + 5 x2

Out[594]= 2 c + 5 x2

The plots for c = -2, -1.5, -1, ...., 1.5, 2 are given below.
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In[595]:= Plot@Table@8f@x, cD, g@x, cD<, 8c, -2, 2, .5<D, 8x, -3, 3<D

Out[595]=
-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

Observe that the two solutions y = - 5 x2 + 2 c  and y = 5 x2 + 2 c can be combined into one: 

 y2 - 5 x2 = 2 c.

This is a family of hyperbolas. Here is a contour plot of this equation. 

In[596]:= ContourPlotAy2 - 5 x2, 8x, -3, 3<, 8y, -7.5, 7.5<, Frame ® False, Axes -> TrueE

Out[596]=
-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

� Exercises 

1. Solve the following differential equations and plot some solutions.

a) I1 + x2M y ' = x2  y b)  x y ' + 3 y = sin x c)  Ix2 + 4 yM y ' = -2 x y

2. Consider the differential equation

 H3 + 2 yL y ' = 2 - ex,  yH0L = a

a) Solve the equation.
b) Plot the graphs for values of a = -2, -1, 0, 1, 2.

c) Plot the graphs for the values of a = -.5, -.1, .1, .5.

NOTE: For parts b) and c) make sure to use a large interval for x.
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a) Solve the equation.
b) Plot the graphs for values of a = -2, -1, 0, 1, 2.

c) Plot the graphs for the values of a = -.5, -.1, .1, .5.

NOTE: For parts b) and c) make sure to use a large interval for x.

3. Consider the differential equation

y = x y Hb - yL � H4 + xL,    yH0L = a.

a) Solve the equation.
b) Plot the graphs for values of a = -2, -1, 0, 1, 2  and b = -2, -1, 0, 1, 2.

c) Plot the graphs for the values of a = -.5, -.1, .1, .5 and b = -.5, -.1, .1, .5

d) Show that the limit as x ® ¥ of the solution does not depend on a. Does the limit depend on b? If so, how?

� 9.2.  Applications

Students should read Sections 9.1, 9.2, and 9.4 of Rogawski's Calculus  [1] for a detailed discussion of the material pre-
sented in this section.

NOTE: The differential  equations we encounter  in this section can be solved by the method of separation of variables.  This
method is discussed in the text. We leave it to the reader to solve the differential equation of the examples in this section by hand. 

� 9.2.1. Growth and Decay

The growth of bacteria in a culture is known to be proportional to the amount of the bacteria present at time t.  Suppose the initial

amount of the bacteria is y0 and the amount at time t is yHtL. Then the above physical law yields the differential equation 

 y ' = k y, yH0L = y0,

where k is the proportionality constant. 

NOTE: Since the bacteria is growing in number, yHtL is increasing and hence y ' HtL > 0. Thus k must be a positive number. 

Example 9.2.  Suppose the amount of bacteria in a culture was 200 at time t = 0.  It was found that there were 450 bacteria after

2 minutes.
a) Find the amount of the bacteria at any time t. 

b) At what time will the number of bacteria exceed 10,000? 

Solution: 

a) First note that yH0L = 200 and yH2L = 450. We solve the differential equation y ' = k y :

In[597]:= Clear@y, t, kD
solde = DSolve@8y'@tD � k y@tD, y@0D � 200<, y@tD, tD

Out[598]= 99y@tD ® 200 ãk t==
In[599]:= f@t_D = solde@@1, 1, 2DD
Out[599]= 200 ãk t

To find the value of k we solve f H2L = 450 for k.
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In[600]:= solk = Solve@f@2D � 450, kD
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[600]= ::k ®
1

2
LogB9

4
F>>

In[601]:= N@%D
Out[601]= 88k ® 0.405465<<
Thus the proportionality constant is k =

l nH9�4L
2

» 0.405465. Using this in yHtL, we see that the amount of bacteria at a given time t

is  

yHtL = 200 e0.405465 t

b) To find the time it takes for the bacteria to exceed 10,000, we solve

In[602]:= k =
Log@9 �4D

2
;

Solve@f@tD � 10 000, tD
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[603]= ::t ® -
Log@50D

Log@2D - Log@3D >>

We approximate this by evaluating

In[604]:= N@%D
Out[604]= 88t ® 9.64824<<
Thus it takes about 9.64824 minutes for the bacteria to reach 10,000. To visually see this, we plot the graphs of the solution

yHtL = 200 e0.405465 t (in blue) and y = 10 000 (in red) on the same axes.

In[605]:= Plot@8f@tD, 10 000<, 8t, 0, 15<, PlotStyle ® 8Blue, Red<D

Out[605]=

2 4 6 8 10 12 14

5000

10 000

15 000

20 000

NOTE: The differential equation y ' = k y is also used to model the amount of a radioactive substance.  However, in this case we

note that k < 0. (Explain this!) 

Example 9.3.  Carbon dating is used to determine the age of a fossil. Suppose that a fossil has 5 % of Carbon-14 of the original

amount in a bone. If the half-life of Carbon-14 is 5600 years, estimate the age of the bone. 
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Example 9.3.  Carbon dating is used to determine the age of a fossil. Suppose that a fossil has 5 % of Carbon-14 of the original

amount in a bone. If the half-life of Carbon-14 is 5600 years, estimate the age of the bone. 

Solution:  Let yHt) be the amount of Carbon-14 in the bone and let y0  be the initial amount of Carbon-14. Then the differential

equation we need to solve is   

In[606]:= Clear@k, y, y0D
solde = DSolve@8y'@tD == k y@tD, y@0D == y0< , y@tD, tD

Out[607]= 99y@tD ® ãk t y0==
Thus the solution to the differential equation is yHtL = y0 ek t.  The half-life of Carbon-14 is 5600 implies that yH5600L =

1
2

 y0. We

solve this equation for k.

In[608]:= y@t_D = solde@@1, 1, 2DD
SolveBy@5600D �

1

2
 y0, kF

Out[608]= ãk t y0

Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[609]= ::k ® -
Log@2D
5600

>>
In[610]:= N@%D
Out[610]= 88k ® -0.000123776<<
Thus k = -0.000123776. To find the age of the bone, we solve y HtL = .05 y0 for t.

In[611]:= k = -
Log@2D
5600

;

Solve@y@tD � 0.05 y0, tD
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[612]= 88t ® 24 202.8<<
Thus the bone is about 24,203 years old. Observe that we do not have to know the original amount of Carbon-14 in the bone. 

� 9.2.2. Annuity

 An annuity is an  investment in which a principal amount of money is placed in an account earning interest rate r and money is

withdrawn at a regular interval. The differential equation that models an annuity is given by the annuity equation,

 P ' HtL = r PHtL - W = rIPHtL -
W
r

M,
where PHtL  is balance in the annuity, r  is the interest rate,  and W  is the rate (dollars per year) at which money is withdrawn

continuously.

Example 9.4.  Find the general solution of the annuity equation for PHtL and then use it to calculate the following:

a) Assume r = 6 % and W = $ 6000 per year and PH0L = $ 50 000.  Find PHtL and determine if and when the annuity runs out of

money.
b) Assume r = 6 % and W = $ 6000 per year and PH0L = $ 100 000.  Find PHtL and determine if and when the annuity runs out of

money.
c) Assume r = 6 % and W = $ 12 000 per year.  If we want the annuity to run out of money after 20 years, how much should be

invested now?
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Example 9.4.  Find the general solution of the annuity equation for PHtL and then use it to calculate the following:

a) Assume r = 6 % and W = $ 6000 per year and PH0L = $ 50 000.  Find PHtL and determine if and when the annuity runs out of

money.
b) Assume r = 6 % and W = $ 6000 per year and PH0L = $ 100 000.  Find PHtL and determine if and when the annuity runs out of

money.
c) Assume r = 6 % and W = $ 12 000 per year.  If we want the annuity to run out of money after 20 years, how much should be

invested now?

Solution: We solve

In[613]:= DSolveBP'@tD � r P@tD -
W

r
, P@tD, tF

Out[613]= ::

-2

-1

0

1

2
-2

-1

0

1

2

0

1

2

3

4

@tD ®
W

r
+ ãr t C@1D>>

Thus the general solution is PHtL = W � r + c er t.

a) We use r = 0.06, W = 6000, and solve the initial value problem and define PHtL as the solution.

In[614]:= Clear@r, W, PD
r = 0.06;

W = 6000;

solde = DSolveB:P'@tD � r P@tD -
W

r
, P@0D � 50 000>, P@tD, tF;

P@t_D = solde@@1, 1, 2DD
Out[618]= 100 000. - 50 000. ã0.06 t

 We plot the graph of PHtL to see when the money will run out.

In[619]:= Plot@P@tD, 8t, 0, 15<D

Out[619]=

2 4 6 8 10 12 14

-20 000

-10 000

10 000

20 000

30 000

40 000

50 000

As the graph indicates the money runs out after 11 and half years. We can confirm this by solving PHtL = 0:
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As the graph indicates the money runs out after 11 and half years. We can confirm this by solving PHtL = 0:

In[620]:= NSolve@P@tD � 0, tD
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[620]= 88t ® 11.5525<<
b) We repeat the above procedure with the obvious modifications:

In[621]:= Clear@r, W, PD
r = 0.06;

W = 6000;

solde = DSolveB:P'@tD � r P@tD -
W

r
, P@0D � 100 000>, P@tD, tF;

P@t_D = solde@@1, 1, 2DD
Out[625]= 100 000.

In[626]:= Plot@P@tD, 8t, 0, 80<D

Out[626]=

20 40 60 80

50 000

100 000

150 000

200 000

Observe that the money will never run out.  What happens if we invest $100,001? $99,999?

c) In this case we have r = 0.06 and W = 10 000 per year

In[627]:= Clear@r, W, P, cD
r = 0.06;

W = 12 000;

dsol = DSolveB:P'@tD � r P@tD -
W

r
, P@0D � c>, P@tD, tF;

P@t_D = dsol@@1, 1, 2DD
Out[631]= 200 000. - 200 000. ã0.06 t + 1. c ã0.06 t

We solve PH20L = 0 for c.

In[632]:= NSolve@P@20D � 0, cD
Out[632]= 88c ® 139 761.<<
Thus we need to invest $139,761.00 now.
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� 9.2.3. Logistics Equation  

The differential equation 

d y

d t
= k yI1 -

y

A
M

is called the logistics equation. Here k > 0 and A is a constant called the carrying capacity.  This equation is useful for modeling

the growth of a population where resources are limited and can only sustain a certain maximum population given by the carrying
capacity. 

Example 9.5.   The population pHtL of mosquito larvae growing in a tree hole increases according to the logistics equation with

growth constant k = 0.3 per day and carrying capacity A = 1000.

a) Assuming that the initial population of the larvae is 50, find the population pHtL at any time t. 

b) After how many days will the larvae population exceed 500?
c) When does the larvae population reach 99% of the maximum capacity?

Solution:  

a) We use k =
3
10

 and solve the corresponding differential equation in Mathematica:

In[633]:= Clear@yD
solde = DSolveB:y'@tD �

3

10
y@tD 1 -

y@tD
1000

, y@0D � 50>, y@tD, tF
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[634]= ::y@tD ®
1000 ã3 t�10
19 + ã3 t�10 >>

NOTE:  Be careful with using a decimal approximation for k.  For example, try using k = 0.3 and see what happens.

Next, for convenience we write the solution given in the previous output as 

In[635]:= Clear@p, tD
p@t_D = solde@@1, 1, 2DD

Out[636]=
1000 ã3 t�10
19 + ã3 t�10

Thus the population of larvae at any time t is given by

 pHtL =
1000 e3 t�10

19+e3 t�10

b) To find how long it takes for the larvae population to reach 500, we solve

In[637]:= NSolve@p@tD � 500, tD
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[637]= 88t ® 9.8148<, 8t ® 9.8148 - 20.944 ä<, 8t ® 9.8148 + 20.944 ä<<
Thus it takes about ten days for the larvae population to exceed 500.  Observe that pH10L » 513.887.

NOTE: We ignored the other two solutions in the previous output since they are complex-valued and not physically relevant.

152 Mathematica for Rogawski's Calculus



NOTE: We ignored the other two solutions in the previous output since they are complex-valued and not physically relevant.

c) We first plot the graph of pHtL to estimate the number of days required for the larvae population to reach 99% of the maximum

capacity, i.e., pHtL = 999.

In[638]:= Plot@p@tD, 8t, 0, 60<D

Out[638]=

10 20 30 40 50 60

200

400

600

800

1000

It appears that the population reaches 999 larvae after t = 30. We use the Table command to numerically confirm this.

In[639]:= TableForm@Table@8t, N@p@tD, 20D<, 8t, 10, 50, 5<D,
TableHeadings ® 88<, 8"Days ", "Larvae Population"<<D

Out[639]//TableForm=

Days Larvae Population

10 513.88668301168543188

15 825.71546532788782007

20 955.02200538248404316

25 989.60067930023585514

30 997.66069888351031767

35 999.47708104964742173

40 999.88327359193169386

45 999.97395245585093165

50 999.99418788969128789

We can reasonably conclude that the population reaches 999 larvae between 30 and 35 days. To obtain a more precise answer,
we have Mathematica solve pHtL = 999 for t:

In[640]:= NSolve@p@tD � 999, tD
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[640]= 88t ® 32.8373<, 8t ® 32.8373 - 20.944 ä<, 8t ® 32.8373 + 20.944 ä<<
Thus the desired time is t = 33 days.

� 9.2.4. Newton's Law of Cooling

Newton's Law of Cooling states that the rate of change in the temperature of an object is proportional to the difference between its
temperature and that of the surrounding environment (known as the ambient temperature).   If A is the ambient temperature and

T HtL is the temperature of the object, then the differential equation that governs this law is 

T ' HtL = -kHT HtL - AL,   T H0L = T0,
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T ' HtL = -kHT HtL - AL,   T H0L = T0,

where T0 is the initial temperature of the object and k is a positive constant.

NOTE: This is a differential equation that can be solved by separation of variables. We leave it to the reader to solve the differen-
tial equation of the next example by hand. 

Example 9.6.  The temperature in an oven is 350°  F when the oven is turned off. After 15 minutes, the temperature is 250°  F.

Assume the temperature in the house is 70° F.

a) Find the temperature of the oven at any time t.

b) At what time will the temperature become 75° F? 
c) What will the temperature be in the limit as t ® ¥?

d) Does your answer in c) conform with your physical intuition?

Solution: 

a) The ambient temperature here is room temperature.  Hence A = 70.  The initial temperature is T0 = 350.  Newton's Law of

Cooling then gives 

T ' HtL = -kHT HtL - 70LL,   T H0L = 350,

We solve the equation to get 

In[641]:= Clear@T, kD
sol = DSolve@8T'@tD � -k HT@tD - 70L, T@0D == 350<, T@tD, tD

Out[642]= 99T@tD ® 70 ã-k t I4 + ãk tM==
In[643]:= T@t_D = sol@@1, 1, 2DD
Out[643]= 70 ã-k t I4 + ãk tM
Thus the solution is T HtL = 70 e-k tI4 + ek tM or T HtL = 70 + 280 e-k t. To find the value of k, we solve T H15L = 250 for k.

In[644]:= solk = Solve@T@15D � 250, kD
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[644]= ::k ®
1

15
LogB14

9
F>>

In[645]:= k = solk@@1, 1, 2DD
Out[645]=

1

15
LogB14

9
F

In[646]:= N@%D
Out[646]= 0.0294555

Thus k =
lnH14�9L

15
= 0.0294555.  Hence the temperature of the oven at any time t is given by

 T HtL = 20 + 280 e-0.0294555  t

b) We solve T HtL = 75 for t:
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In[647]:= NSolve@T@tD � 75, tD
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[647]= 88t ® 136.659<<
After about two hours and 17 minutes the temperature will be 75° F.

c) We make a plot of the solution:

In[648]:= Plot@T@tD, 8t, 0, 100<, AxesOrigin ® 80, 0<D

Out[648]=

20 40 60 80 100

50

100

150

200

250

300

350

To find the limiting temperature, we evaluate 

In[649]:= Limit@T@tD, t ® InfinityD
Out[649]= 70

d) Since heat flows from a region of higher temperature to a region of lower temperature, it is intuitively clear that the oven will

cool down to the room (ambient) temperature.  Hence the limit should be 70° F as expected.

� Exercises 

1. A bacteria in a culture grows at a rate proportional to its size. Suppose the culture contains 200 cells intially and there are 800
cells after 3 hours.

a) Find the formula for the number of cells in the culture at time t.

b) Find the number of bacteria after 2 hours.
c) At what time will the bacteria exceed 10000?

2. Solve the following using the annuity differential eqaution: P ' = rIP -
W
r

M
a) Assume r = 6 % and W = $500 per year and PH0L = $5, 000. Find PHtL and determine when the annuity runs out of money.

b) Assume r = 6 % and W = $500 per year and PH0L = $9, 000. Find PHtL and determine when the annuity runs out of money.

c) Assume r = 6 % and W = $20000 per year.  If we want the annuity to run out after 40 years, how much should we invest now? 

3. A population of squirrels live in a forest with a carrying capacity of 3000. Assume logistic growth with growth constant k = 0.8

per year.
a) Find the population of the squirrels at any time t assuming an initial population of PH0L = 800.

b) How long will it take for the squirrel population to double?  Triple?

4. A hot metal rod is placed in a water bath whose temperature is 40 ° F. The rod cools from 300 to 200 ° F in 1 minute. How long

will take the rood to cool down to 150 ° F?  45 ° F? 
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4. A hot metal rod is placed in a water bath whose temperature is 40 ° F. The rod cools from 300 to 200 ° F in 1 minute. How long

will take the rood to cool down to 150 ° F?  45 ° F? 

� 9.3.  Numerical Methods Using Slope Fields 

Students should read Section 9.3 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

� 9.3.1.  Euler's Method

The simplest numerical method for solving a first order differential equation is Euler's Method. This method uses the approxima-
tion of a function given by its tangent line.  Here is a brief description.  

Let y = ΦHxL be the solution of the differential equation 

y ' = f Hx, yL, yHx0L = y0

Then the equation of the line tangent to the graph of y = jHxL at x = x0 is given by 

 y = j ' Hx0L Hx - x0L + jHx0L.
But when x = x0, we have jHt0L = y0 and j ' Hx0L = f Hx0, y0L. Thus when x is close to x0, jHxL can be approximated by 

 y = f Hx0, y0L Hx - x0L + y0.

We now choose h > 0 to be a small positive number, called the step size, and define x1 = x0 + h. Then jHx1L is approximately

equal to

 y1 = y0 + f Hx0, y0L Hx1 - x0L
or 

 y1 = y0 + h f Hx0, y0L
We repeat the above argument at the point Hx1, y1L to get an approximation of jHx2L, where x2 = x1 + h = x0 + 2 h:  

 y2 = y1 + h f Hx1, y1L
Proceeding in this manner, we obtain Euler's Method:  

 yn+1 = yn + h f Hxn, ynL  for n = 0, 1, 2, 3, ....

where jHxnL » yn.

If the approximated solution is calculated over an interval @a, bD and the step size h is specified, then the number of iterations (or

steps) required is given by m = Hb - aL � h, where x0 = a and xn = x0 + n h.

Here is a Mathematica program called Euler for evaluating Euler's Method in m steps (the option SetPrecision sets the precision

of our calculations to 10 digits). 
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In[650]:= Clear@f, x, y, x0, y0, h, mD
Euler@f_, h_, m_D := Module@8n<,

Do@
y@n + 1D = SetPrecision@N@y@nD + h *f@x@nD, y@nDDD, 10D;
x@n + 1D = x@nD + h,8n, 0, m<DD

Example 9.7.  Use the Euler program to construct a table of solution values for the differential equation y ' = x2 + 2 y, yH0L = 1

with a step size of h = 0.1 and for m = 10 steps.

Solution: Here f Hx, yL = x2 + 2 y, x0 = 0, y0 = 1.

In[652]:= f@x_, y_D := x2 + 2 y

m = 10;

x0 = 0;

y0 = 1;

h = 0.1;

x@0D = x0;

y@0D = y0;

Euler@f, h, mD
TableFormATable@8n, x@nD, y@nD<, 8n, 1, m<D, TableHeadings ® 98<, 9"n ", "xn ", "yn" ==E

Out[660]//TableForm=

n xn yn

1 0.1 1.200000000

2 0.2 1.441000000

3 0.3 1.733200000

4 0.4 2.088840000

5 0.5 2.522608000

6 0.6 3.052129600

7 0.7 3.698555520

8 0.8 4.487266624

9 0.9 5.448719949

10 1. 6.619463939

To see how accurate  the above approximation is, we solve the differential  equation for the exact  solution and plot both the
approximate and exact solutions on the same axes. 

In[661]:= Clear@z, t, exactD
exact = DSolve@8z'@tD � f@t, z@tDD, z@x0D � y0<, z@tD, tD;
z@t_D = z@tD �. exact@@1DD

Out[663]=
1

4
I-1 + 5 ã2 t - 2 t - 2 t2M

Chapter 9 157



In[664]:= Clear@plot1, plot2D
plot1 = Plot@z@tD, 8t, 0, 1< D;
plot2 = ListPlot@Table@8x@nD, y@nD<, 8n, 0, m<D, PlotStyle ® PointSize@0.01D D;
Show@8plot1, plot2<D

Out[667]=

0.2 0.4 0.6 0.8 1.0

2

3

4

5

6

7

8

Observe that the approximations become less accurate as we move away from the initial point H0, 1L. This is typical of numerical

methods such as Euler's Method. 

Here is a modification of the Euler progam that allows the user to input the endpoints a and b directly (instead of the step size h)

and m. 

In[668]:= Clear@f, x, y, h, a, b, mD
EulerEndpt@f_, a_, b_, m_D := ModuleB8n, h<, h = NB b - a

m
F;

Do@
y@n + 1D = SetPrecision@N@y@nD + h *f@x@nD, y@nDDD, 10D;
x@n + 1D = x@nD + h,8n, 0, m<DF

Example 9.8.  For the differential equation y ' = x2 + 2 y, yH0L = 1, approximate its solution over the interval @0, 2D using m = 10

steps.

Solution: Again, we have f Hx, yL = x2 + y, x0 = 0, y0 = 1.  However, we now input the interval @a, bD = @0, 2D into EulerEndPt.

In[670]:= f@x_, y_D := x2 + y

m = 10;

x0 = 0;

y0 = 1;

x@0D = x0;

y@0D = y0;

a = 0;

b = 2;
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In[678]:= EulerEndpt@f, 0, 2, mD
TableFormATable@8n, x@nD, y@nD<, 8n, 1, m<D,
TableHeadings ® 98<, 9"n ", "xn ", "yn" ==E

Out[679]//TableForm=

n xn yn

1 0.2 1.200000000

2 0.4 1.448000000

3 0.6 1.769600000

4 0.8 2.195520000

5 1. 2.762624000

6 1.2 3.515148800

7 1.4 4.506178560

8 1.6 5.799414272

9 1.8 7.471297126

10 2. 9.613556552

This time we numerically compare the approximate solution with the exact solution:

In[680]:= Clear@z, t, exactD
exact = DSolve@8z'@tD � f@t, z@tDD, z@x0D � y0<, z@tD, tD;
z@t_D = z@tD �. exact@@1DD
TableFormATable@8n, x@nD, y@nD, N@z@x0 + n Hb - aL �mDD<, 8n, 1, m<D,
TableHeadings ® 98<, 9"n ", "xn ", "yn", "yHnL" ==E

Out[682]= -2 + 3 ãt - 2 t - t2

Out[683]//TableForm=

n xn yn yHnL
1 0.2 1.200000000 1.22421

2 0.4 1.448000000 1.51547

3 0.6 1.769600000 1.90636

4 0.8 2.195520000 2.43662

5 1. 2.762624000 3.15485

6 1.2 3.515148800 4.12035

7 1.4 4.506178560 5.4056

8 1.6 5.799414272 7.0991

9 1.8 7.471297126 9.30894

10 2. 9.613556552 12.1672

� 9.3.2.  Vector Fields

Consider a differential equation in the form 

 y ' = f Hx, yL.
Since y ' represents the slope of the line tangent to the graph of the solution y, we can think of f Hx, yL as the slope of the same

tangent line at the point Hx, yL, which we indicate by drawing a segment of it at the point of tangency.  The set of all such line

segments (normalized to have the same length) is called the direction field of the differential equation. Note that the direction
field gives a graphical approximation to the solution.  It enables us to draw or visualize the graph of the unique solution of the
equation passing through a given point. We will illustrate this in an upcoming example.

To plot the slope field  of the differential  equation y ' = f Hx, yL  along the intervals Ha, bL  and Hc, dL  along the x- and y-axis,

respectively, the command to use is VectorFieldPlot[{1, f[x, y]}, {x, a, b}, {y, c, d}]. 

However,  before  evaluating  this  command, we need  to evaluate  the  command Needs@"VectorFieldPlots`"D,  which  loads  a

graphics package for plotting vector fields. This needs to be done once for each session.
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However,  before  evaluating  this  command, we need  to evaluate  the  command Needs@"VectorFieldPlots`"D,  which  loads  a

graphics package for plotting vector fields. This needs to be done once for each session.

Warning: If you evaluate the VectorFieldPlot  command before you evaluate the Needs["VectorFieldPlots`"]  command, no

graphics output will be generated.  Moreover, if you then evaluate Needs["VectorFieldPlots`"] and go back to evaluate Vector-
FieldPlot, the same problem may occur. To solve this, you must quit the kernel (under the Evaluation menu) and then start over

by evaluating Needs["VectorFieldPlots`"] first. 

In[684]:= Needs@"VectorFieldPlots`"D
Example 9.9.  Consider the differential equation y ' = x2 - 2 y, yH0L = -1.

a)  Draw the slope fields for the differential equation.
b)  Solve the differential equation.
c)  Plot both the slope field and the solution on the same axes.
d)  Redo parts b) and c) for the same equation but with initial condition given by yHaL = b.  Choose various values for a and b.

Solution:

a) Here, f Hx, yL = x2 - 2 y.  We use the VectorFieldPlot command to plot the corresponding slope field:

In[685]:= f@x_, y_D := x2 - 2 y

In[686]:= plot1 = VectorFieldPlot@81, f@x, yD<, 8x, -5, 5<,8y, -10, 10<, Axes ® True, Frame ® False, ColorFunction ® HueD

Out[686]=
-4 -2 2 4

-10

-5

5

10

b) We use the DSolve command to find the exact solution of the differential equation.
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b) We use the DSolve command to find the exact solution of the differential equation.

In[687]:= Clear@y, x, gD
sol = DSolve@8y'@xD � f@x, y@xDD, y@0D � -1<, y@xD, xD
g@x_D = sol@@1, 1, 2DD

Out[688]= ::y@xD ®
1

4
ã-2 x I-5 + ã2 x - 2 ã2 x x + 2 ã2 x x2M>>

Out[689]=
1

4
ã-2 x I-5 + ã2 x - 2 ã2 x x + 2 ã2 x x2M

c) We now plot the slope field together with the solution above:

In[690]:= plot2 = Plot@g@xD, 8x, -5, 5<, PlotRange ® 8-10, 10<D

Out[690]=
-4 -2 2 4

-10

-5

5

10
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In[691]:= Show@plot1, plot2D

Out[691]=
-4 -2 2 4

-10

-5

5

10

d) We can show several plots on the slope fields. Here is an example of how this can be done.

In[692]:= Clear@y, x, h, a, bD
sola = DSolve@8y'@xD � f@x, y@xDD, y@aD � b<, y@xD, xD;
h@x_, a_, b_D = Simplify@sola@@1, 1, 2DDD

Out[694]=
1

4
ã-2 x II-1 + 2 a - 2 a2 + 4 bM ã2 a + ã2 x I1 - 2 x + 2 x2MM
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In[695]:= plot3 = Plot@Evaluate@Table@h@x, a, bD, 8a, -3, 3, 2<, 8b, -3, 3, 2<DD,8x, -5, 5<, PlotRange ® 8-10, 10<D;
Show@
plot1,

plot3D

Out[696]=
-4 -2 2 4

-10

-5

5

10

� Exercises 

1. Use Euler's Method to find a numerical solution for the following initial value problems.  Also find their exact solutions and
compare the results.
a) y ' = x2 - y,  yH0L = 1 b)  y ' = I1 - x2M cos y,  yH1L = 0

2. Plot the direction field for the following differential equations:
a) y ' = x2 + y2 b) y ' = t2 y

3. Consider the differential equation  y ' = 3 y - 2 y2.

a) Draw the direction field for the differential equation.
b) Solve the differential equation.
c) Assume yH0L = 2.  Plot the graph of the solution for this case  and also the direction field on the same axes.   Discuss the

behavior of the solution as x ® ¥.

d)  Redo part c) for the same differential equation but with initial condition given by yHaL = b (choose various values for a and b).
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Chapter 10. Infinite Series

� 10.1. Sequences

Students should read Section 10.1 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Recall that a sequence is a function whose domain is the set of non-negative integers. 

In Mathematica, we denote a sequence an as a function. Thus, instead of an we write aHnL. The limit of a sequence is evaluated by

using the  Limit command. When Limit[a[n], n®¥] is evaluated,  Mathematica  automatically assumes that n is a continuous

variable (instead of a discrete variable). It employs various techniques to evaluate limits.  

To plot the graph of a sequence, we use the ListPlot command. ListPlot[list] plots the graph of list, where list is a list of points

Hx, yL, denoted in Mathematica by {x,y}. In our case, list will be the table of values of the form {n,a[n]}.  The corresponding plot

command in this case would be ListPlot[Table[{n,a[n]},{n,min,max}].

Example 10.1.  Consider the sequence defined by 

an =
4 n+1
3 n+2

a) Find the first few terms of the sequence.

b) Plot the graph of the sequence.

c) Make a conjecture for the limit based on the graph.

d) Find the limit of the sequence.

Solution: 

a) We define the sequence as a function of n and use the Table command to generate the first ten terms of the sequence. 

In[697]:= Clear@a, nD
a@n_D :=

4 n + 1

3 n + 2
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In[699]:= TableFormATable@8n, a@nD<, 8n, 1, 10<D,
TableHeadings ® 98<, 9"n", "an"==E

Out[699]//TableForm=

n an

1 1

2 9

8

3 13

11

4 17

14

5 21

17

6 5

4

7 29

23

8 33

26

9 37

29

10 41

32

To obtain decimal expressions of these values we evaluate

In[700]:= TableFormAN@Table@8n, a@nD<, 8n, 1, 10<DD,
TableHeadings ® 98<, 9"n", "an"==E

Out[700]//TableForm=

n an

1. 1.

2. 1.125

3. 1.18182

4. 1.21429

5. 1.23529

6. 1.25

7. 1.26087

8. 1.26923

9. 1.27586

10. 1.28125

b) To plot the graph of the sequence, we use the ListPlot command. Here is a plot of the first 100 terms of the sequence.

In[701]:= ListPlot@Table@8n, a@nD<, 8n, 1, 100<DD

Out[701]=

20 40 60 80 100

1.28

1.29

1.30

1.31

1.32

c) The graph suggests that the limit is 1.333 ....  We can use the Table command to see this more clearly.
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In[702]:= TableFormAN@Table@8n, a@nD<, 8n, 1000, 10 000, 1000<DD,
TableHeadings ® 98<, 9"n", "an"==E

Out[702]//TableForm=

n an

1000. 1.33278

2000. 1.33306

3000. 1.33315

4000. 1.33319

5000. 1.33322

6000. 1.33324

7000. 1.33325

8000. 1.33326

9000. 1.33327

10 000. 1.33328

Hence the limit seems to be 1.3333... or 4/3. Here is a plot of y = 4 � 3 and the graph of the sequence for large values of n:

In[703]:= Clear@plot1, plot2D
plot1 = ListPlot@Table@8n, a@nD<, 8n, 1, 1000, 10<DD;
plot2 = Plot@4 �3, 8x, 1, 1000<D;
Show@plot1, plot2, PlotRange ® 81.25, 4 �3<D

Out[706]=

200 400 600 800 1000

1.28

1.30

1.32

d) Finally, we confirm this in Mathematica by evaluating the limit as n goes to ¥.

In[707]:= Limit@a@nD, n -> InfinityD
Out[707]=

4

3

Example 10.2.  Consider the sequence defined by 

an =
H-1Ln

n

a) Plot the graph of the sequence.

b) Does the sequence converge?

Solution:

a) Again we use ListPlot to plot the graph.
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In[708]:= Clear@a, nD
a@n_D :=

H-1Ln

n

In[710]:= ListPlot@Table@8n, a@nD<, 8n, 1, 100<DD

Out[710]=
20 40 60 80 100

-0.10

-0.05

0.05

0.10

b) From the graph it is clear that the sequence approaches 0 in the limit. We confirm this using the Limit command.

In[711]:= Limit@a@nD, n -> InfinityD
Out[711]= 0

NOTE: There are instances where the sequence an  may not be well-defined if n  is treated as a real variable (as opposed to an

integer variable). In such case Mathematica may return the limit unevaluated or else gives an output that indicates the limit may
not exist, as the following example illustrates.

Example 10.3.  Determine whether or not the sequence defined below converges: 

an = H-1Ln
 

n
n+1

Solution: First we will plot the graph of the sequence. 

In[712]:= Clear@a, nD
a@n_D := H-1Ln

 
n

n + 1

In[714]:= ListPlot@Table@8n, a@nD<, 8n, 1, 100<DD

Out[714]=
20 40 60 80 100

-1.0

-0.5

0.5

1.0

The graph clearly indicates the sequence does NOT converge (to a unique limiting value). We can see this by investigating the
following tables of values. The first one lists the even terms while the second one lists the odd terms of the sequence.
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In[715]:= TableFormATable@8n, N@a@2 nDD<, 8n, 10, 100, 10<D,
TableHeadings ® 98<, 9"n", "a2n"==E

Out[715]//TableForm=

n a2n

10 0.952381

20 0.97561

30 0.983607

40 0.987654

50 0.990099

60 0.991736

70 0.992908

80 0.993789

90 0.994475

100 0.995025

In[716]:= TableFormATable@8n, N@a@2 n - 1DD<, 8n, 10, 100, 10<D,
TableHeadings ® 98<, 9"n", "a2n-1"==E

Out[716]//TableForm=

n a2n-1

10 -0.95

20 -0.975

30 -0.983333

40 -0.9875

50 -0.99

60 -0.991667

70 -0.992857

80 -0.99375

90 -0.994444

100 -0.995

Finally, let us evaluate the limit.  

In[717]:= Limit@a@nD, n -> InfinityD
Out[717]= ã2 ä Interval@80,Π<D

This output, specifically the notation Interval[{0, Π}], means that the limit does not exist uniquely, but has subsequences whose

limits take on the set of complex values e2 i x for all x Î @0, ΠD.  This is because the variable n that appears in the Limit command

is automatically assumed by Mathematica to be a complex variable.  In our case, for n an integer variable, we have two subse-
quences, a2 n and a2 n+1 (even and odd, respectively), converging to different limits (1 and -1, respectively).  Thus, an diverges.

Example 10.4.  Consider the sequence 8an< defined recursively by a1 = 1 and an+1 = an + 1 .  Generate the first ten terms of

this sequence and compute its limit.

Solution: Here is one method of defining a recursive sequence.  

In[718]:= Clear@a, nD
a@1D = 1

a@n_D := a@nD = Sqrt@a@n - 1D + 2D
Out[719]= 1
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NOTE:  The  second occurrence  of a[n]  in the preceding  command tells Mathematica  to store all  intermediate  values of the

recurrence in evaluating a[n]. 

Here are the first ten terms of the sequence:

In[721]:= TableFormATable@8n, a@nD<, 8n, 1, 10<D,
TableHeadings ® 98<, 9"n", "an"==E

Out[721]//TableForm=

n an

1 1

2 3

3 2 + 3

4 2 + 2 + 3

5 2 + 2 + 2 + 3

6 2 + 2 + 2 + 2 + 3

7 2 + 2 + 2 + 2 + 2 + 3

8 2 + 2 + 2 + 2 + 2 + 2 + 3

9 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3

10 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3

The following table gives decimal expressions of the same first ten terms and reveals the limit to be equal to 2.
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In[722]:= TableFormATable@8n, N@a@nDD<, 8n, 1, 10<D,
TableHeadings ® 98<, 9"n", "an"==E

Out[722]//TableForm=

n an

1 1.

2 1.73205

3 1.93185

4 1.98289

5 1.99572

6 1.99893

7 1.99973

8 1.99993

9 1.99998

10 2.

NOTE: In general Mathematica is not able to directly compute limits of sequences defined recursively.  Assuming an converges

(prove this!), we then compute its limit, called L, say, by letting n ® ¥ in the recurrence formula for an: 

L = limn®¥ an = limn®¥ an-1 + 2 = limn®¥ an-1 + 2 = L + 2

Solving the equation L = L + 2  then yields L = 2 as the limit.

In[723]:= Solve@L � Sqrt@L + 2D, LD
Out[723]= 88L ® 2<<
Example 10.5.  Let a1 = 1 and b1 = 2 .  Define two sequences recursively by  

an+1 = an bn   and bn+1 =
an+bn

2

a) Choose various values of a1 and b1 and calculate the first ten terms of the sequences 8an< and 8bn<. 
b)  Show that an £ bn for every positive integer n.

c) Show that both sequences converge to the same limit.  (NOTE:  This common limit is called the arithmetic-geometric mean of
a1and b1.)

Solution:

a) Here is a program that generates the first ten values of an and bn.  

In[724]:= Clear@a, b, nD
a@1D = 1

b@1D = 10

a@i_D := a@iD = a@i - 1D * b@i - 1D ;

b@i_D := b@iD =
a@i - 1D + b@i - 1D

2
;

Out[725]= 1

Out[726]= 10
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In[729]:= TableForm@Table@8k, N@a@ kD, 10D, N@b@ kD, 10D<, 8k, 1, 10< D,
TableHeadings ® 88<, 8"n", "a@nD", "b@nD"< <D

Out[729]//TableForm=

n a@nD b@nD
1 1.000000000 10.00000000

2 3.162277660 5.500000000

3 4.170434885 4.331138830

4 4.250027349 4.250786858

5 4.250407086 4.250407103

6 4.250407095 4.250407095

7 4.250407095 4.250407095

8 4.250407095 4.250407095

9 4.250407095 4.250407095

10 4.250407095 4.250407095

b) The following table suggests that an £ bn for at least the first ten terms: 

In[730]:= TableForm@Table@8k, N@a@ kD, 10D, N@b@ kD, 10D, N@b@kD, 10D - N@a@kD, 10D<, 8k, 1, 10< D,
TableHeadings ® 88<, 8"n", "a@nD", "b@nD", "b@nD-a@nD"< <D

Out[730]//TableForm=

n a@nD b@nD b@nD-a@nD
1 1.000000000 10.00000000 9.00000000

2 3.162277660 5.500000000 2.337722340

3 4.170434885 4.331138830 0.160703945

4 4.250027349 4.250786858 0.000759508

5 4.250407086 4.250407103 1.7 ´10-8

6 4.250407095 4.250407095 0. ´10-10

7 4.250407095 4.250407095 0. ´10-10

8 4.250407095 4.250407095 0. ´10-10

9 4.250407095 4.250407095 0. ´10-10

10 4.250407095 4.250407095 0. ´10-10

For a better feel on this, let us plot the graphs on the same axes. To this end, we define two lists using the Table command and

use the ListPlot command to plot the graphs.

In[731]:= plot1 = ListPlot@Table@8k, a@kD<, 8k, 1, 10<D, PlotStyle ® 8Blue<D;
plot2 = ListPlot@Table@8k, b@kD<, 8k, 1, 10<D, PlotStyle ® 8Red<D;
Show@plot1, plot2, PlotRange ® 80, 10<D

Out[733]=

0 2 4 6 8 10

2

4

6

8

10

The above graph suggests that the two sequences  converge to the same limit.  Unfortunately, Mathematica's Limit  command
cannot help us compute the limit of an and bn due to their recursive nature. (Try this!) 
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The above graph suggests that the two sequences  converge to the same limit.  Unfortunately, Mathematica's Limit  command
cannot help us compute the limit of an and bn due to their recursive nature. (Try this!) 

NOTE: We encourage the reader to experiment with different initial values for a1 and b1 to see if the sequences an and bn always

converge to the same limit.

Example 10.6.  Consider the sequence 

an =
Hn!L1�n

n
  

 a) Show that if  bn = ln an, then bn =
ln Hn!L-n ln n

n
 

 b)  Does bn converge? If so, find the limit. 

 c)  Does an converge? If so, find the limit. 

Solution:

a)  We define a sequence cn =
ln Hn!L-n ln n

n
 and then show that bn = cn.

In[734]:= Clear@a, b, cD
a@n_D :=

Hn!L1�n
n

b@n_D := Log@a@nDD
c@n_D :=

Log@ n!D - n Log@nD
n

In[738]:= TableFormATable@8N@c@nDD, N@b@nDD, N@c@nD, 10D - N@b@nD, 10D<, 8n, 2, 10<D,
TableHeadings ® 9Automatic, 9" cn", " bn", " cn-bn"==E

Out[738]//TableForm=

cn bn cn-bn

1 -0.346574 -0.346574 0. ´10-11

2 -0.501359 -0.501359 0. ´10-10

3 -0.591781 -0.591781 0. ´10-10

4 -0.65194 -0.65194 0. ´10-10

5 -0.695218 -0.695218 0. ´10-10

6 -0.72803 -0.72803 0. ´10-10

7 -0.753866 -0.753866 0. ´10-10

8 -0.774799 -0.774799 0. ´10-10

9 -0.792144 -0.792144 0. ´10-10

The preceding table indicates that the two sequences are the same.  Here is a plot of both:
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In[739]:= ListPlot@8Table@8n, b@nD<, 8n, 1, 100<D, Table@8n, c@nD<, 8n, 1, 100<D<,
PlotRange ® 8-1, 0.1<, AxesOrigin ® 80, 0<D

Out[739]=

20 40 60 80 100

-1.0

-0.8

-0.6

-0.4

-0.2

This plot clearly shows that bn = cn, i.e., lnHanL = lnJ Hn!L1�n

n
N =

ln Hn!L-n ln n

n
.  We leave it to the student to establish this equality using

properties of the natural logarithmic function.  

b) The previous plot indicates that the limit of bn is -1.  To confirm this, we use the Limit command.

In[740]:= Limit@b@nD, n ® InfinityD
Out[740]= -1

c) Since bn = ln HanL, it follows that an = ebn  and hence limn® ¥ an = e-1.  Again we verify this using the Limit command: 

In[741]:= Limit@a@nD, n ® InfinityD
Out[741]=

1

ã

� Exercises 

1.  Determine the convergence of the given sequence. 

a)  an =
3 n2+n+2

2 n2+1
b) an = ln I 2 n+3

n+1
M  c) an = n

n

 

2.  Let   cn =
1

n+1
+

1
n+2

+
1

n+3
+ ... +

1
2 n

. 

a) Find the first ten terms of the sequence.
b) Plot the graph of the sequence.
c) Is the sequence increasing? Bounded? Convergent? Prove each of your assertions.
d) Find limn® ¥ cn.

3.  The nth harmonic number is defined to be the sum  

Hn = 1 +
1
2

+
1
3

+ ... +
1
n

.

Let an = Hn - ln n and bn = Ù1

n+1 1
x

â x.

a) Show that Hn ³ bn for n = 1, 2, 3, ..., 10.  Prove that this holds for all positive integers n.

b) Show that an ³ 0 for n = 1, 2, 3, ..., 10.  Prove that this holds for all positive integers n.

c) Use the ListPlot command to plot the graph of an.  Does the graph indicate that an is decreasing or increasing?
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c) Use the ListPlot command to plot the graph of an.  Does the graph indicate that an is decreasing or increasing?

d) Evaluate limn® ¥ an.

e) The limit in part d) is called Euler's Constant and is denoted by Γ. Compute Γ accurate to 20 digits.

� 10.2.  Infinite Series

Students should read Section 10.2-10.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

� 10.2.1.  Finite Sums

Sum[a[n], n, n1, n2] evaluates the finite sum of an as n goes from n1 to n2.  

Sum[a[n], n, n1, Infinity] evaluates the infinite series of an as n goes from n1 to ¥.  

Using the BasicMathInput Palette, we can also enter finite sums or infinite series as Ún=n1
n2 a@nD or Ún=n1

¥ a@nD, respectively.

Example 10.7.  Compute the following finite sums:

a) Ún=1
10 H-1Ln

n
b)  Úk=1

5 Hk - 1L Hk + 1L
c) Úk=1

30 20

k
 2k d)  Úi=1

n H3 i - 2L e)  Úk=0
10 k2+1

k3+2 k2+1

Solution: 

a) 

In[742]:= â
n=1

10 H-1Ln

n

Out[742]= -
1627

2520

b) 

In[743]:= Sum@Hk + 1L Hk - 1L, 8k, 1, 5<D
Out[743]= 50

c) The binomial coefficient 
n

m
=

n!

m! Hn-mL!
 is expressed in Mathematica by the command Binomial[n, m].

In[744]:= â
k=0

30

Binomial@30, kD 2k

Out[744]= 205 891 132 094 649

NOTE: The above number is the same as 330 = 205 891 132 094 649. Verify this!

d) 
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In[745]:= â
j=1

n H3 j - 2L
Out[745]= -2 n +

3

2
n H1 + nL

In[746]:= Simplify@%D
Out[746]=

1

2
n H-1 + 3 nL

e) 

In[747]:= â
k=0

10 k2 + 1

k3 + 2 k2 + 1

Out[747]=
361 278 549 115 758 513

126 627 880 430 636 728

� 10.2.2.  Partial Sums and Convergence

Example 10.8.  Consider the series Ún=1
¥ 1

4 n2-1
.   Let sn denote its nth partial sum. 

a)  Find s100. 

b)  Compute every 10th partial sum up to n = 100.

c)  Compute every 1000th partial sum up to n = 10, 000.

d)  From the tables of values in parts a) and b) what do you infer about the convergence of the series?  Prove your assertion. 

Solution:   

a) First we define sn in Mathematica and then evaluate s100.

In[748]:= Clear@s, nD
s@n_D := â

j=1

n 1

4 j2 - 1

s@100D
Out[750]=

100

201

In[751]:= N@%D
Out[751]= 0.497512

b) Here we use the command Table[s[n],{n,1,J,K}]  which gives the list of every K-th value of sn  as n goes from 1 to J.  The

command TableForm[N[Table[s[n],{n, 1, J, K }]]] lists the values in column form.

In[752]:= Table@s@nD, 8n, 1, 100, 10<D
Out[752]= :1

3
,
11

23
,
21

43
,
31

63
,
41

83
,

51

103
,

61

123
,

71

143
,

81

163
,

91

183
>

In[753]:= N@%D
Out[753]= 80.333333, 0.478261, 0.488372, 0.492063,

0.493976, 0.495146, 0.495935, 0.496503, 0.496933, 0.497268<
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In[754]:= TableFormATable@8n, N@s@nDD<, 8n, 10, 100, 10<D,
TableHeadings ® 98<, 9"n", "sn"==E

Out[754]//TableForm=

n sn

10 0.47619

20 0.487805

30 0.491803

40 0.493827

50 0.49505

60 0.495868

70 0.496454

80 0.496894

90 0.497238

100 0.497512

c)

In[755]:= TableFormATable@8n, N@s@nDD<, 8n, 1000, 10 000, 1000<D,
TableHeadings ® 98<, 9"n", " sn"==E

Out[755]//TableForm=

n sn

1000 0.49975

2000 0.499875

3000 0.499917

4000 0.499938

5000 0.49995

6000 0.499958

7000 0.499964

8000 0.499969

9000 0.499972

10 000 0.499975

d) It seems that the partial sums converge to 0.5. We  confirm this by evaluating

In[756]:= Limit@s@nD, n ® ¥D
Out[756]=

1

2

Can you prove this?  Hint: Use the method of partial fractions to decompose this series into a telescoping series as discussed in
your calculus text.

Example 10.9.  Let sn be the nth partial sum of the harmonic series 

  Úk=1
¥ 1

k
.   

a)  Find   s100. 

b)  Compute every 1000th partial sum up to n = 10, 000

c)  Plot the graphs of the partial sums.
d)  From the table of values in part b) what do you infer? Prove your assertion. 

Solution: We will follow the method of the preceding example.  First we define the nth partial sum.
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In[757]:= Clear@s, nD
s@n_D := Sum@1 �k, 8k, 1, n<D

a) Then s100 is given by 

In[759]:= s@100D
Out[759]=

14 466 636 279 520 351 160 221 518 043 104 131 447 711

2 788 815 009 188 499 086 581 352 357 412 492 142 272

In[760]:= N@%D
Out[760]= 5.18738

b) Here is a table of values of every 1000th term in the sequence sn for n less than or equal to 10, 000. 

In[761]:= TableFormATable@8n, N@s@nDD<, 8n, 1000, 10 000, 1000<D,
TableHeadings ® 98<, 9"n", " sn"==E

Out[761]//TableForm=

n sn

1000 7.48547

2000 8.17837

3000 8.58375

4000 8.87139

5000 9.09451

6000 9.27681

7000 9.43095

8000 9.56447

9000 9.68225

10 000 9.78761

c) Here is a plot of sn

In[762]:= ListPlot@Table@8n, s@nD<, 8n, 1, 300, 20<DD

Out[762]=

50 100 150 200 250

1

2

3

4

5

6

The above graph indicates a slow growth that makes it difficult to reach a definitive conclusion regarding the convergence of the
harmonic series. 

d) The table in b) and the plot in c) both suggest that the sequence of the partial sums is increasing. To convince ourselves of this

we compare s2n  and n
2

.
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In[763]:= TableFormATable@8n �2., N@s@2nDD<, 8n, 1, 10<D,
TableHeadings ® 98<, 9" n

2
", " s2n "==E

Out[763]//TableForm=
n

2
s2n

0.5 1.5

1. 2.08333

1.5 2.71786

2. 3.38073

2.5 4.0585

3. 4.74389

3.5 5.43315

4. 6.12434

4.5 6.81652

5. 7.50918

This table suggests that s2n ³
n
2

 for n ³ 2.  Use this fact (a proof of it can be found in your calculus text) to establish the diver-

gence of the harmonic series.

Example 10.10.  Determine whether the following series converges or diverges.

a)   Ún=1
¥ H-1Ln

n2
b)  Új=1

¥ j-1

j
c)  Ún=1

¥ J 1

n
-

1

n+1
N d)  Ún=1

¥ HlnHn + 1L - ln nL
Solution: In all cases we let Mathematica  attempt to evaluate the infinite sum. For those cases where Mathematica  returns a
numeric output, this is understood to mean that the series converges and that the sum of the series is the given value. 

a)

In[764]:= â
n=1

¥ H-1Ln

n2

Out[764]= -
Π2

12

Thus the series converges to - Π2

12
. To see this graphically, we plot the graph of the partial sums of the series using the ListPlot

command, along with the horizontal line representing its sum s = -
Π2

12
» -0.822467.

In[765]:= Clear@s, nD
s@n_D = â

k=1

n H-1Lk

k2
;
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In[767]:= plot1 = ListPlot@Table@8n, s@nD<, 8n, 1, 100<DD;
plot2 = PlotB-

Π2

12
, 8x, 1, 100<F;

Show@plot1, plot2D

Out[769]=

0 20 40 60 80 100

-0.8230

-0.8228

-0.8226

-0.8224

-0.8222

-0.8220

-0.8218

b) Observe that lim j®¥

j-1

j
= 1 ¹ 0.  Hence, the series does not converge according to the Test for Divergence. This explains the

following output message from Mathematica if we attempt to evaluate the series.

In[770]:= â
j=1

¥ j - 1

j

Sum::div :  Sum does not converge. �

Out[770]= â
j=1

¥ -1 + j

j

c) Since this is a telescoping series, it can be shown that the nth partial sum is given by sn = 1 -
1

n+1
.  This can be seen in the

following output:

In[771]:= s@n_D := â
k=1

n 1

k

-
1

k + 1
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In[772]:= TableFormATable@8n, s@nD<, 8n, 1, 10<D,
TableHeadings ® 98<, 9"n", " sn"==E

Out[772]//TableForm=

n sn

1 1 -
1

2

2 1 -
1

3

3 1

2

4 1 -
1

5

5 1 -
1

6

6 1 -
1

7

7 1 -
1

2 2

8 2

3

9 1 -
1

10

10 1 -
1

11

Hence, the series converges to 1, which we confirm with Mathematica.

In[773]:= â
n=1

¥ 1

n
-

1

n + 1

Out[773]= 1

d) This, too, is a telescoping series with the nth partial sum given by sn = ln Hn + 1L (verify this).  Hence the series diverges, as

shown by the following output.

In[774]:= â
n=1

¥ HLog@n + 1D - Log@nDL
Sum::div :  Sum does not converge. �

Out[774]= â
n=1

¥ H-Log@nD + Log@1 + nDL

� Exercises 

1. Consider the series Ún=1
¥ 1

n2+3 n+2
.

a) Use the Apart command to decompose the terms of the series, an =
1

n2+3 n+2
, into partial fractions.

b) Use part a) to find a formula for the nth partial sum of the series. 

c) Is the series convergent? If so, then find its sum. 

2.  Determine if the given series is convergent.  If it is, then find its sum.

a)  Ún=1
¥ 1

nHn+1L b)  Ún=0
¥ H-1Ln

n!
c)  Ún=1

¥ H-1Ln+1   

3. The sereis Ún=0
¥ a rn is called a geometric series.  
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3. The sereis Ún=0
¥ a rn is called a geometric series.  

a) Find the nth partial sum of the geometric series.

b) For what values of r does the series converge? Diverge?

c) Find the sum of the geometric series for those values where the series converges.

4.  Consider the series Ún=1
¥ 1

n
3

.

a)  Use the ListPlot command to plot the first ten partial sums of this series.

b) Show that the series converges.

� 10.3.  Tests for Convergence  

Students should read Sections 10.4-10.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

� 10.3.1.  Comparison and Limit Comparison Tests

 The Comparison Test: Suppose 0 £ an £ bn for all n > M  where M  is some positive integer. 

a) If Ún�1
¥ bn is convergent, then Ún=1

¥ an is also convergent.

b) If Ún�1
¥ an is divergent, then Ún=1

¥ bn is also divergent.

The Limit Comparison Test: Suppose an and bn are both positive and  limn®¥
an

bn
= l. If  0 < l < ¥ (that is, if l is a finite positive

number), then Ún=1
¥ an and Ún=1

¥ bn both converge or both diverge. 

To test convergence of a given seriesÚn=1
¥ an  using the Limit Comparison Test,  it is important that the series Ún=1

¥ bn  easily be

checked for convergence. 

Example 10.11.  Discuss the convergence of the series  

  Ún=1
¥ 1

n2+2

 

Solution:  Since 1

n2+2

<
1

n2

=
1
n

 and the harmonic series Ún=1
¥ 1

n
 was shown to divergence in Example 10.8 of this text, it

follows by the Comparison Test that our series diverges also.  This is verified by Mathematica:

In[775]:= â
n=1

¥ 1

n2 + 2

Sum::div :  Sum does not converge. �

Out[775]= â
n=1

¥ 1

2 + n2

Example 10.12.  Discuss the convergence of the series  

  Ún=1
¥ 3 n3+40 n2+4

n5+200 n4+1
 

Solution: To find another series to compare ours with, we consider one with terms bn =
3

n2
.  This comes from considering lower

powers of n in both the numerator and denominator of an.
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Solution: To find another series to compare ours with, we consider one with terms bn =
3

n2
.  This comes from considering lower

powers of n in both the numerator and denominator of an.

In[776]:= Clear@a, b, nD
a@n_D :=

3 n3 + 40 n2 + 4

n5 + 200 n4 + 1

b@n_D :=
3

n2

In[779]:= LimitBa@nD
b@nD, n ® InfinityF

Out[779]= 1

Since the series Ún=1
¥ 3

n2
 is convergent (p-series) and limn®¥

an

bn
= 1, we conclude from the Limit Comparison Test that our series

Ún=1
¥ 3 n3+40 n2+4

n5+200 n4+1
 is also convergent.

Example 10.13.  Discuss the convergence of the series Ún=1
¥ A1 - cosI 1

n
ME. 

Solution: We note that limn®¥ A1 - cosI 1
n

ME = 0.  This is confirmed by Mathematica.

In[780]:= Limit@1 - Cos@1 �nD, n ® ¥D
Out[780]= 0

Thus the necessary condition for convergence is satisfied. But this does not guarantee convergence.  We will use the ListPlot
command to plot the graph of the partial sums to see if the series converges.

In[781]:= Clear@sD
s@n_D := Sum@1 - Cos@1 �kD, 8k, 1, n<D

In[783]:= ListPlot@Table@8n, s@nD<, 8n, 1, 100<D, PlotRange ® 80, 1<D

Out[783]=

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

The above graph clearly indicates convergence. To see that this is indeed true, we compare it with a series that is known to

converge: Ún=1
¥ 1

n2
. To this end let us define an and bn as follows.
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In[784]:= Clear@a, b, nD
a@n_D := 1 - CosB1

n
F

b@n_D :=
1

n2

Observe that both an and bn are positive terms for all n. Hence we can apply Limit Comparison Test:

In[787]:= LimitBa@nD
b@nD, n ® InfinityF

Out[787]=
1

2

Therefore, the given series, Ún=1
¥ A1 - cosI 1

n
ME, converges.

� Exercises 

1.  Use the Comparison Test or the Limit Comparison Test to determine if the given series is convergent. If it is convergent, then
find its sum.

a)  Ún=1
¥ n

n3+1

b)  Ún=2
¥ ln n

n2+3 ln n
c)  Ún=1

¥ n4+200 n2+1000 n+2222

n6+5 n4+n+1
  

d)  Ún=1
¥ ln n

n2
   e)  Ún=2

¥ 1

nln n
f)  Ún=1

¥ I1 - 2-1�nM   

� 10.3.2.  The Integral Test

The Integral Test.  Given an infinite series 

 Ún=1
¥ an

 we define f HxL so that f HnL = an  . If f HxL is positive on the interval @1, ¥L, decreasing on this interval, and if limx®¥ f HxL = 0,

then 

 Ù1

¥
f HxL â x     and      Ún=1

¥ an

both converge or both diverge.

Example 10.14.  Use the integral test to determine the convergence of the following series.

a)   Ún=1
¥ 1

n
c)   Új=1

¥ j e- j2
c)  Ún=1

¥ 1

n  ln n

Solution:

a) Here an =
1

n
 and so we define f HnL in Mathematica: 

In[788]:= Clear@f, xD
f@x_D :=

1

x
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In[790]:= f'@xD
Out[790]= -

1

2 x3�2

Since f ' HxL < 0 for all x Î @1, ¥L, it follows that f  is decreasing.  Clearly f  is positive in value and  limx®¥ f HxL = 0. Thus we

can apply the Integral Test by evaluating Ù1

¥
f HxL â x:

In[791]:= Integrate@f@xD, 8x, 1, Infinity<D
Integrate::idiv :  Integral of

1

x

does not converge on 81, ¥<. �

Out[791]= à
1

¥ 1

x
 âx

To confirm this, we evaluate this improper integral according to its limit definition:

In[792]:= Clear@F, bD
F@b_D := Integrate@f@xD, 8x, 1, b<D

In[794]:= Limit@F@bD, b ® ¥D
Out[794]= ¥

b) Here we define f  as 

In[795]:= Clear@f, xD
f@x_D = x E-x2

Out[796]= ã-x2 x

In[797]:= Plot@f@xD, 8x, 0, 5<, PlotRange ® 80, 1<D

Out[797]=

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

The graph clearly shows that the function is decreasing. We can confirm this by solving 

In[798]:= f'@xD
Solve@f'@xD == 0D

Out[798]= ã-x2 - 2 ã-x2 x2

Out[799]= ::x ® -
1

2
>, :x ®

1

2
>>
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In[800]:= f'@1D
Out[800]= -

1

ã

In[801]:= N@1 �Sqrt@2DD
Out[801]= 0.707107

Thus f has critical points at ± 1

2
» 0.707.  Since f ' H1L < 0 we conclude that f  is decreasing on H1, ¥L. 

The graph also shows that limx®¥ f HxL = 0. Again we can confirm this by evaluating 

In[802]:= Limit@f@xD, x ® InfinityD
Out[802]= 0

Hence the Integral Test can be used to determine if the series is convergent. That the series Új=1
¥ j e- j2

 is convergent follows from

the fact that   

In[803]:= à
1

¥

f@xD âx

Out[803]=
1

2 ã

Since the corresponding integral is convergent it follows that the series Új=1
¥ j e- j2

 is also convergent.   

c) In this case, we define f  as 

In[804]:= Clear@f, xD
f@x_D =

1

x  Log@xD
Out[805]=

1

x Log@xD
In[806]:= Plot@f@xD, 8x, 2, 100<D

Out[806]=

20 40 60 80 100
0.02

0.04

0.06

0.08

0.10

0.12

0.14

We leave it for the reader to check that f  satisfies all the conditions of the Integral Test, which we now apply.
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In[807]:= à
2

¥

f@xD âx

Integrate::idiv :  Integral of
1

x Log@xD does not converge on 82, ¥<. �

Out[807]= à
2

¥ 1

x Log@xD  âx

Since the preceding output states that the integral is divergent, we conclude that the corresponding series is divergent also.

Example 10.15.  For what values of p does the series Ún=2
¥ 1

nHln nLp  converge?

Solution: We apply the Integral Test.  Towards this end, we define f HxL so that f HnL =
1

nHln nLp  and then verify that f HxL is positive

and decreasing on the interval @a, ¥L,  and that limx®¥ f HxL = 0:

In[808]:= Clear@f, x, pD
f@x_D :=

1

x HLog@xDLp

In[810]:= Limit@f@xD, x ® InfinityD
Out[810]= 0

 To confirm this limit we will plot graphs of f HxL for some values of p

In[811]:= Plot@Evaluate@Table@f@xD, 8p, -4, 2, .5<DD, 8x, 2, 100<, PlotRange ® 80, 5<D

Out[811]=

0 20 40 60 80 100
0

1

2

3

4

5

In the above plot, observe that some of the graphs are initially increasing, but then begin to decrease at a certain point.  Let us
then find the interval over which the function f HxL is decreasing for each  p. To this end, we compute the derivative f ' HxL and

solve f ' HxL < 0 for x.

In[812]:= f'@xD
Out[812]= -

p Log@xD-1-p

x2
-
Log@xD-p

x2

In[813]:= Simplify@%D
Out[813]= -

Log@xD-1-p Hp + Log@xDL
x2

186 Mathematica for Rogawski's Calculus



In[814]:= Solve@f'@xD � 0, xD
Out[814]= 88x ® ã-p<<
Since (ln xL-1- p

> 0 for all x > 1, we see that f ' HxL < 0 if ln x > - p, or equivalently, x = ã- p.  Thus f HxL is decreasing on @2, ¥L
where a is the maximum of 2 and ã- p. 

To apply the Integral Test  we integral f over the interval @2, ¥L.  This is easier  than integrating over the interval @a, ¥L and

permissible since the integrals Ù2

¥
f HxL â x and Ùa

¥
f HxL â x either converge or diverge together.

In[815]:= Integrate@f@xD, 8x, 2, ¥<D
Out[815]= IfBRe@pD > 1,

Log@2D1-p

-1 + p
, IntegrateBLog@xD-p

x
, 8x, 2, ¥<, Assumptions ® Re@pD £ 1FF

The preceding output shows that Ù2

¥
f HxL â x is convergent for p > 1.  However, the case p £ 1 remains unsolved.  To evaluate the

integral in this situation we define its anti-derivative FHbL = Ù2

b
f HxL â x and find the limit of FHbL as b ® ¥.

In[816]:= Clear@F, bD
F@b_D = Integrate@f@xD, 8x, 2, b<D

Out[817]= IfBRe@bD ³ 1 ÈÈ Im@bD ¹ 0,
Log@2D1-p

- Log@bD1-p

-1 + p
,

IntegrateBLog@xD-p

x
, 8x, 2, b<, Assumptions ® ! HRe@bD ³ 1 ÈÈ Im@bD ¹ 0LFF

Since b is a real number and b > 2 , the solution to our integral is the first one, that is, FHbL =
Hln 2L1-p

-ln HbL1-p

1- p
, provided p ¹ 1. But

then for p < 1, we see that limb®¥ FHbL = ¥ since limb®¥ lnHbL1- p
= ¥.  For p > 1, we have limb®¥ FHbL =

Hln 2L1-p

1- p
, which we

already knew from the second previous Mathematica output.  The following tables might be helpful to convince you about this.

In[818]:= Table@Limit@F@bD, b ® InfinityD, 8p, -3, .9, .5<D
Out[818]= 8¥, ¥, ¥, ¥, ¥, ¥, ¥, ¥<
In[819]:= Table@Limit@F@bD, b ® InfinityD, 8p, 1.1, 9, .5<D
Out[819]= 810.3733, 2.0766, 1.3605, 1.12346, 1.02813, 0.997425, 1.0048, 1.03926,

1.09605, 1.1734, 1.27122, 1.39056, 1.53333, 1.70219, 1.90056, 2.13262<
For p = 1, we make this substitution inside the integral and evaluate it directly:

In[820]:= p = 1;

Integrate@f@xD, 8x, 2, ¥<D
Integrate::idiv :  Integral of

1

x Log@xD does not converge on 82, ¥<. �

Out[821]= à
2

¥ 1

x Log@xD  âx

Therefore, the infinite series Ún=2
¥ 1

nHln nLp  is convergent for p > 1 and divergent for p £ 1.

NOTE: To see how slow the growth of this series is for the value of p = 1, we consider the following table of partial sums. Recall

that f HnL is the nth term of the series and hence the nth partial sum is given by
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In[822]:= Clear@p, s, nD
s@n_D = Sum@f@kD, 8k, 2, n<D

Out[823]=

15 H-1 + nL LogA 1

15
LogA 14

9
EE-p

LogA 14

9
E

The following output shows that the sum of the first ten thousand terms is only about 3.01501088. 

In[824]:= p = 1;

N@s@10 000DD
Out[825]= -96 304.4

Here is a plot of the graph of the first ten thousand partial sums in steps of 1,000.

In[826]:= ListPlot@Table@8n, s@nD<, 8n, 1000, 10 000, 1000<DD

Out[826]=

4000 6000 8000 10 000

-60 000

-40 000

-20 000

� Exercises 

1.  Use the Integral Test to determine if the given series is convergent. If it converges, then find its sum.

a)  Ún=1
¥ n

n2+1
b)  Ún=2

¥ n

2n c)  Ún=1
¥ Hln nL3

n2
  

2. For what values of p does the series Ún=1
¥ 1

np ln n
 converge?

3.  Consider the series Ún=2
¥ Hln nLk

np .  

a) Fix a value of p (say, p = 2 or p = 1 � 2) and find all values of k for which the series converges.

b) Fix a value of k (say, k = 2 or k = -2) and find all values of p for which the series converges.

c) Generalize the results of a) and b) to all values of p and k.

4.  Let f  be  a positive valued function that decreases on @1, ¥Land let an = f HnL. It can be shown that 

 Ù1

¥
f HxL â x £ Ún=1

¥ an £ a1 + Ù1

¥
f HxL â x .

a) Use f HxL =
1

x1.1
 to verify this. 

b) Approximate Ún=1
¥ 1

n1.1
 using its nth partial sums with n = 10, 100, 1000, 10 000.

� 10.3.3.  Absolute and Conditional Convergence
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�

10.3.3.  Absolute and Conditional Convergence

Suppose an > 0 for all n. The infinite series 

  Ún=1
¥ H-1Ln

 an  

is called an alternating series.  If the series Ún=1
¥ H-1Ln

 an  is convergent but the series Ún=1
¥ an  is divergent, then the alternating

series is called conditionally convergent.  If Ún=1
¥ an  is convergent, then the alternating series Ún=1

¥ H-1Ln
 an  is called absolutely

convergent.   

Alternating Series Test: If an is decreasing and limn®¥ an = 0, then the series Ún=1
¥ H-1Ln

 an is convergent. 

Example 10.16.  Determine if the given series is conditionally or absolutely convergent. 

a)   Ún=1
¥ H-1Ln

n2+1
c)   Ún=2

¥ H-1Ln

n ln n
  

Solution:

a) We define an =
1

n2+1
 in Mathematica and check that an satisfies the conditions of the Alternating Series Test.

In[827]:= Clear@a, nD
a@n_D :=

1

n2 + 1

In[829]:= Limit@a@nD, n -> ¥ D
Out[829]= 0

In[830]:= f@x_D = a@xD;
f'@xD

Out[831]= -
2 x

I1 + x2M2

Thus, an  is decreasing since f ' HxL > 0, where f HnL = an.  Moreover, an  converges to 0. Hence, the series Ún=1
¥ H-1Ln

n2+1
   is conver-

gent by the Alternating Series Test.

To check absolute convergence, we use the Limit Comparison Test with bn =
1

n2
.

In[832]:= LimitB a@nD
1 � n2 , n ® InfinityF

Out[832]= 1

Since  the  series  Ún=1
¥ 1

n2
 is  convergent  and  the  previous  output  shows  limn®¥

an

bn
= 1,  we  conclude  that  the  series

Ún=1
¥ an = Ún=1

¥ 1

n2+1
 is also convergent.  Therefore, the alternating series Ún=1

¥ H-1Ln

n2+1
 is absolutely convergent.

b) We procced as in part a). 

In[833]:= Clear@a, nD
a@n_D :=

1

n Log@nD
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In[835]:= Limit@a@nD, n -> ¥ D
Out[835]= 0

In[836]:= f@x_D = a@xD;
f'@xD

Out[837]= -
1

x2 Log@xD2
-

1

x2 Log@xD
For the same reasons we conclude that an  is decreasing and converges to 0.  Hence, the series Ún=2

¥ H-1Ln

n ln n
   is convergent by the

Alternating Series Test.

To check absolute convergence, we apply the Intgeral Test to f HxL:
In[838]:= Clear@mD

LimitBà
2

m

f@xD âx, m ® InfinityF
Out[839]= ¥

From this we conclude that the series is conditionally convergent.

Example 10.17.  Show that the series 

  Ún=1
¥ H-1Ln

n2+1

  

is conditionally convergent.  Find a value of n for which the partial sum sn  approximates the series by an error less than 10-5.

Also find the corresponding value for sn.

Solution: We leave it for the reader to check that the series converges conditionally as in the preceding example.  For the second
part of the problem, we proceed by first defining the partial sums of the series.

In[840]:= Clear@s, a, nD
a@n_D :=

1

n2 + 1

s@n_D := SumAH-1Lk a@kD, 8k, 1, n<E
If S denotes the sum of the alternating series, it can be shown that È S - sn È < an+1 (refer to your calculus text for a proof of this

fact).  The following table of values gives some numerical evidence of this fact:

â
n=1

¥ H-1Ln

1 + n2

In[843]:= TableB:NBAbsBâ
n=1

¥ H-1Ln

n2 + 1

- s@mDFF, N@a@mDD>, 8m, 1, 10 <F
Out[843]= 880.266189, 0.707107<, 80.181024, 0.447214<, 80.135203, 0.316228<,

80.107332, 0.242536<, 80.088784, 0.196116<, 80.075615, 0.164399<, 80.0658064, 0.141421<,
80.0582284, 0.124035<, 80.0522031, 0.110432<, 80.0473006, 0.0995037<<
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In[844]:= Clear@S, nD
S = â

n=1

¥ H-1Ln

n2 + 1

Out[845]= â
n=1

¥ H-1Ln

1 + n2

The table below gives the values of an for large values of n.

In[846]:= TableANAaA10nE E, 8n, 1, 10 <E
Out[846]= 90.0995037, 0.0099995, 0.001, 0.0001, 0.00001, 1. ´10-6, 1. ´10-7, 1. ´10-8, 1. ´10-9, 1. ´10-10=
Thus n = 106 is a possible value. But solving an = 10-5 can give us a more accurate value.

In[847]:= NSolveAa@xD � 10-5, xE
Out[847]= 88x ® 100 000.<, 8x ® -100 000.<<
Thus, if n = 100 001 we have É S - sn É < 10-5.  We confirm this with Mathematica:

In[848]:= N@S - s@100 001DD
Out[848]= 4.99993 ´10-6

Can you find a smaller value of n for which É S - sn É < 10-5?

� Exercises 

1.  Determine if each of the following infinite series is absolutely convergent, conditionally convergent, or divergent. Justify your

conclusions! 

a)  Ún=1
¥ H-1Ln

 In2-1M
n2+1

b) Ún=1
¥ 20 n2-n-1

n3+n2+33
c) Ún=1

¥ H-2Ln

n!
d) Ún=1

¥ H-1Ln+1B n + 1 - n  ]

2.  Discovery Exercise: 

a) Determine the convergence or divergence of Ún=2
¥ 1

n ln Hln ln nL0.5
, Ún=2

¥ 1
n ln Hln ln nL , and Ún=2

¥ 1

n ln Hln ln nL2
.

b) Generalize your work in part a) by determining for which real numbers p the seriesÚn=2
¥ 1

n ln Hln ln nLp  converges.

� 10.3.4.  Ratio Test

 The Ratio Test:  Suppose an > 0 and let    

   r = limn®¥
an+1

an
.  

a) If r < 1, the series Ún=1
¥ an converges 

b) If r > 1, the series Ún=1
¥ an diverges.

c) If r = 1, no conclusion can be drawn about the convergence of the series Ún=1
¥ an.  In other words, if r = 1, then we must use

another test to determine the convergence. 

Example 10.18.  Use the Ratio Test to determine the convergence of the following series.
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a)   Ún=1
¥ nn

n!
c)   Új=2

¥ 1

j Hln jL3
c)  Ún=1

¥ 3 n3+40 n2+4

n5+200 n4+1

Solution: For each series we define an to be its nth term and evaluate limn®¥
an+1

an
.  

a) 

In[849]:= Clear@a, nD
a@n_D :=

nn

n!

In[851]:= Limit@a@n + 1D �a@nD, n -> ¥ D
Out[851]= ã

Since ã > 1, the series Ún=1
¥ nn

n!
 converges by the Ratio Test.

b)

In[852]:= Clear@a, jD
a@j_D :=

1

j HLog@jDL3

Limit@a@j + 1D �a@jD, j -> ¥ D
Out[854]= 1

This output means that we must use a different  test. However, this is an instance of Example 11.12 in this text with p = 3.

Hence, the series converges by the Integral Test.

c)

In[855]:= Clear@a, nD
a@n_D :=

3 n3 + 40 n2 + 1

n5 + 200 n4 + 1

In[857]:= Limit@a@n + 1D �a@nD, n -> ¥ D
Out[857]= 1

Again, this output means we are forced to use a different test.  Therefore, we shall use the Limit Comparison Test instead. To this

end, we define bn =
3

n2
:

In[858]:= Clear@b, nD
b@n_D :=

3

n2

In[860]:= LimitBa@nD
b@nD, n ® InfinityF

Out[860]= 1

Since the series Ún=1
¥ 1

n2
 is convergent, we conclude that the series Ún=1

¥ 3 n3+40 n2+4

n5+200 n4+1
 is also convergent.
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� Exercises 

1.  Determine the convergence or divergence of the given infinite series using any of the convergence tests discussed in this
section.

a) Ún=1
¥ 3 n+1

4 n+5
b) Ún=1

¥ n

2 n2+1
 c) Ún=1

¥ n+3

4 n3+5
  d) Ún=1

¥ nI 2
3

Mn
 e) Ún=1

¥ nI 3
2

Mn
  f) Ún=1

¥ nn

n!
g) Ún=1

¥ Hn!L2

H3 nL!
 h) Ún=0

¥ H-1Ln
 I1 +

1
n

Mn
 

2. The Ratio Test proved to be inconclusive for some of the series in the previous exercise. Can you conjecture for what type of
series the Ratio Test will fail in general? Use other tests to rework the problems in the first exercise where the Ratio Test failed.

3. Of the following four conditions, one guarantees that a series will diverge, two conditions guarantee that a series will converge,
and one has no guarantee (the series can either converge or diverge).  Identify each one and explain your reasoning.
limn® ¥ É an+1

an
É = 0

limn® ¥ É an+1

an
É =

1
2

limn® ¥ É an+1

an
É = 1

limn® ¥ É an+1

an
É = 2

4. Identify the two series that are the same:

a) Ún=1
¥ nI 3

4
Mn

b) Ún=0
¥ Hn + 1L I 3

4
Mn

c) Ún=1
¥ nI 3

4
Mn-1

� 10.3.5.  Root Test

 The Root Test:  Suppose an > 0 and let    

   r = limn®¥ HanL1�n.  

a) If r < 1, the series Ún=1
¥ anconverges 

b) If r > 1, the series Ún=1
¥ an diverges.

c) If r = 1, no conclusion can be drawn about the convergence of the series Ún=1
¥ an. 

      In other words, if r = 1, then we must use another test to determine the convergence. 

Example 10.19.  Use the Root Test  to determine the convergence of the following series:

a)   Ún=1
¥ I n

2 n+1
Mn

b)   Ún=1
¥ 1

n 3n+n2
c)  Ún=1

¥ 3 n+1

n2+n+1

Solution: For each series we define an to be its nth term and evaluate limn®¥ HanL1�n. 

a) 

In[861]:= Clear@a, nD
a@n_D :=

n

2 n + 1

n

In[863]:= LimitAHa@nDL1�n, n -> ¥ E
Out[863]=

1

2

Thus, the series Ún=1
¥ I n

2 n+1
Mn

 c onverges by Root Test.
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Thus, the series Ún=1
¥ I n

2 n+1
Mn

 c onverges by Root Test.

b)

In[864]:= Clear@a, nD
a@n_D :=

1

n 3n + n2

In[866]:= LimitAHa@nDL1�n, n -> ¥ E
Out[866]= LimitB 1

3n n + n2

1

n

, n ® ¥F

Even though the preceding Limit command is returned as unevaluated, the N command reveals that it is approximately 1/3. 

In[867]:= N@%D
Out[867]= 0.333333

To verify this  we use  the  Squeeze  Theorem (discussed  in your calculus  text)  with bn =
1

2 n 3n  and cn =
1

n 3n .   First  note that

bn £ an £ cn.  We can verify this using the following plot: 

In[868]:= PlotB:3-x

2 x
, a@xD, 3-x

x
>, 8x, 1, 10<, PlotStyle ® 8Green, Red, Blue<F

Out[868]=

4 6 8 10

0.01

0.02

0.03

0.04

We now define bn and cn as and evaluate limn®¥ HcnL1�n  and limn®¥ HbnL1�n.

In[869]:= Clear@b, c, nD
b@n_D :=

1

2 n 3n

c@n_D :=
1

n 3n

In[872]:= LimitAHb@nDL1�n, n ® InfinityE
LimitAHc@nDL1�n, n ® InfinityE

Out[872]=
1

3

Out[873]=
1

3

Thus we also have limn®¥ HanL1�n =
1
3

 and hence the series converges by the Root Test. 
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Thus we also have limn®¥ HanL1�n =
1
3

 and hence the series converges by the Root Test. 

c)

In[874]:= Clear@a, nD
a@n_D :=

3 n + 2

n2 - n + 1

In[876]:= LimitA Ha@nDL1�n, n -> ¥ E
Out[876]= 1

The Root Test fails. Let us try the Ratio Test:

In[877]:= LimitBa@n + 1D
a@nD , n ® InfinityF

Out[877]= 1

The Ratio Test fails as well. We can easily verify that the Integral Test is applicable. We will evaluate the integral    

In[878]:= à
1

¥

a@xD âx

Integrate::idiv :  Integral of
2

1 - x + x
2

+
3 x

1 - x + x
2

does not converge on 81, ¥<. �

Out[878]= à
1

¥ 2 + 3 x

1 - x + x2
 âx

To confirm the divergence of the improper integral, we proceed as follows.

In[879]:= Clear@F, bD
F@b_D := à

1

b

a@xD âx

In[881]:= Limit@ F@nD, n -> ¥ D
Out[881]= ¥

Thus the series is divergent. 

� Exercises 

1.  Determine the convergence or divergence of the series: 

a)  Ún=1
¥ I2 n

n

+1) n  b) Ún=0
¥ e-n c) Ún=1

¥ I -2 n
3 n+1

M3 n
 d) Ún=1

¥ I n
2 n+1

) n  

2. Construct two examples of infinite series, the first convergent and the second divergent, for which the Root Test generates
inconclusive information.  

3. Use the Root Test to test for convergence or divergence of the series:

a) 1

Hln 3L3
+

1

Hln 4L4
+

1

Hln 5L5
+ 1

Hln 6L6
+ ...

b) 1+ 2
3

+
3

32
+

4

33
+

5

34
+ 6

35
+...

Hint: Write a formula for the general nth term in each case.

Chapter 10 195



Hint: Write a formula for the general nth term in each case.

�  10.4.  Power Series

Students should read Sections 10.6-10.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

� 10.4.1.  Taylor Polynomials

The Taylor polynomial of a given function f  at a point x = a is given by  

TnHxL = f HaL + f ' HaL Hx - aL +
f '' HaL

2!
 Hx - aL2 +

f ''' HaL
3!

 Hx - aL3 + .... +
f HnLHaL

n!
 Hx - aLn

The Mathematica Series[f,{x, a, n}] generates the nth Taylor polynomial TnHxL plus a term of the form O@xDn+1.  To obtain the

Taylor polynomial without this term, we use the command Normal[Series[f,{x, a, n}]].

The nth remainder RnHxL of f HxL at x = a is defined by

RnHxL = f HxL - TnHxL.
Taylor's Theorem states that 

RnHxL =
1
n!

 Ùa

x
f Hn+1LHuL Hx - uLn â u

Here is a way to define the Taylor polynomial of f at x = a by defining TnHxL and the nth remainder RnHxL (using Taylor's Theo-

rem for Rn) without referring to Mathematica's built-in command Series. 

In[882]:= Clear@a, x, f, T, RD
T@x_, a_, n_D := â

k=0

n D@f@xD, 8x, k<D �. x ® a

k!
 Hx - aLk

R@x_, a_, n_D :=
1

n!
 à

a

x

D@f@uD, 8u, n + 1<D * Hx - uLn âu

Example 10.20.  Let f HxL = ex.  Find its 5th Taylor polynomial at x = 0.

Solution: We use the Series command to obtain the answer: 

In[885]:= Normal@Series@Ex, 8x, 0, 5<DD
Out[885]= 1 + x +

x2

2
+
x3

6
+
x4

24
+

x5

120

Using the polynomial T@x, a, nD we defined above we get 

In[886]:= Clear@fD
f@x_D := Ex

T@x, 0, 5D
Out[888]= 1 + x +

x2

2
+
x3

6
+
x4

24
+

x5

120
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In[889]:= R@x, 0, 5D
Out[889]=

1

120
I-120 + 120 ãx - 120 x - 60 x2 - 20 x3 - 5 x4 - x5M

Example 10.21.  Find the nth Taylor polynomial of f HxL at x = a for various values of a and n.  

 a) f HxL = x  b)  f HxL = cos x 

Solution:  a) We shall use the same function T[x,a,n]  defined in the previous example (make sure you evaluate this function
before you evaluate the table below).

In[890]:= Clear@a, x, fD
T@x_, a_, n_D := â

k=0

n D@f@xD, 8x, k<D �. x ® a

k!
 Hx - aLk

R@x_, a_, n_D :=
1

n!
 à

a

x

D@f@uD, 8u, n + 1<D * Hx - uLn âu

In[893]:= Clear@fD
f@x_D = x

TableFormATable@ T@x, a, nD , 8a, 1, 5<, 8n, 1, 3<D ,

TableHeadings ®99"at a=1", "at a=2", "at a=3", "at a=4", "at a=5"=, 9"n=1", "n=2", "n=3"==E
Out[894]= x

Out[895]//TableForm=

n=1 n=2 n=3

at a=1 1 +
1

2
H-1 + xL 1 +

1

2
H-1 + xL -

1

8
H-1 + xL2 1 +

1

2
H-1 + xL -

1

8
H-1 + xL2

+
1

16
H-1 + xL3

at a=2 2 +
-2+x

2 2
2 +

-2+x

2 2
-

H-2+xL2
16 2

2 +
-2+x

2 2
-

H-2+xL2
16 2

+
H-2+xL3
64 2

at a=3 3 +
-3+x

2 3
3 +

-3+x

2 3
-

H-3+xL2
24 3

3 +
-3+x

2 3
-

H-3+xL2
24 3

+
H-3+xL3
144 3

at a=4 2 +
1

4
H-4 + xL 2 +

1

4
H-4 + xL -

1

64
H-4 + xL2 2 +

1

4
H-4 + xL -

1

64
H-4 + xL2

+
1

512
H-4 + xL3

at a=5 5 +
-5+x

2 5
5 +

-5+x

2 5
-

H-5+xL2
40 5

5 +
-5+x

2 5
-

H-5+xL2
40 5

+
H-5+xL3
400 5

b) We proceed as in part a):
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In[896]:= Clear@fD
f@x_D = Cos@xD
TableFormATable@ T@x, a, nD , 8a, 0, 2 Pi, Pi �2<, 8n, 1, 4<D ,

TableHeadings ®99"at a=0", "at a=Π�2", "at a=Π", "at a=3Π�2", "at a=2Π"=, 9"n=1", "n=2", "n=3", "n=4"==E
Out[897]= Cos@xD
Out[898]//TableForm=

n=1 n=2 n=3 n=4

at a=0 1 1 -
x2

2
1 -

x2

2
1 -

x2

2
+

x4

24

at a=Π�2 Π

2
- x Π

2
- x Π

2
- x +

1

6
I-

Π

2
+ xM3 Π

2
- x +

1

6
I-

Π

2
+ xM3

at a=Π -1 -1 +
1

2
H-Π + xL2 -1 +

1

2
H-Π + xL2 -1 +

1

2
H-Π + xL2 -

1

24
H-Π + xL4

at a=3Π�2 -
3 Π

2
+ x -

3 Π

2
+ x -

3 Π

2
+ x -

1

6
I-

3 Π

2
+ xM3

-
3 Π

2
+ x -

1

6
I-

3 Π

2
+ xM3

at a=2Π 1 1 -
1

2
H-2 Π + xL2 1 -

1

2
H-2 Π + xL2 1 -

1

2
H-2 Π + xL2

+
1

24
H-2 Π + xL4

Example 10.22.  Let f HxL =
1

2 +3 x2
. 

a) Find the Taylor polynomials TnHxL of f  at x = 0 for n = 1, 2, ..., 6.

b) Draw the graphs of the function f  and its Taylor polynomials found in part a).

c) Over which interval does the nth Taylor polynomial gives a close approximation to f HxL if n = 4, n =10, and n = 20? 

Solution:

a) Here are the Taylor polynomials up to order n = 6.

In[899]:= Clear@fD
f@x_D =

1

2 + 3 x2

TableFormATable@ 8n, T@x, 0, nD< , 8n, 1, 6<D ,

TableHeadings ® 98<, 9"n", "Tn at a=0"==E
Out[900]=

1

2 + 3 x2

Out[901]//TableForm=

n Tn at a=0

1 1

2

2 1

2
-

3 x2

4

3 1

2
-

3 x2

4

4 1

2
-

3 x2

4
+

9 x4

8

5 1

2
-

3 x2

4
+

9 x4

8

6 1

2
-

3 x2

4
+

9 x4

8
-

27 x6

16

b)  We first use the Plot command to plot the graphs of f  and its Taylor polynomial at x = 0 for the desired values of n.  We then

use the Show command to plot both graphs on the same axes.
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In[902]:= Clear@plot1, plot2D
plot1 = Plot@f@xD, 8x, -3, 3<, PlotStyle ® RedD;
plot2 = Plot@Evaluate@Table@T@x, 0, nD, 8n, 1, 6<DD, 8x, -3, 3<D ;

Show@plot1, plot2D

Out[905]=

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

c) We use the same commands as in part b) except that we do not use the Table command. The first one is for the case n = 4.

In[906]:= Clear@plot1, plot2D
plot1 = Plot@f@xD, 8x, -3, 3<, PlotStyle ® RedD;
plot2 = Plot@Evaluate@T@x, 0, 4DD, 8x, -3, 3<D ;

Show@plot1, plot2D

Out[909]=

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

It seems that the two graphs are close to each other  if x is in the interval H-0.5, 0.5L. To see this close up, we recommend that

you change the range of values for x in both plots (plot1 and plot2) to the interval @-1, 1D. We can confirm this by plotting the 4th

remainder of f HxL at x = 0. 
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In[910]:= Plot@Evaluate@R@x, 0, 4DD, 8x, -1, 1<, PlotRange ® 8-1, 1<D

Out[910]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

We repeat the above with n = 10.

In[911]:= Clear@plot1, plot2D
plot1 = Plot@f@xD, 8x, -3, 3<, PlotStyle ® RedD;
plot2 = Plot@Evaluate@T@x, 0, 100DD, 8x, -3, 3<D ;

Show@plot1, plot2D

Out[914]=

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

The above graph clearly indicates the 10th Taylor polynomial gives a close approximation for f  in the interval @-.6, .6D. Again

plotting  Rn will confirm this. 

In[915]:= Plot@Evaluate@R@x, 0, 10DD, 8x, -1, 1<, PlotRange ® 8-1, 1<D

Out[915]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

If we continue in this manner, we see that the Taylor polynomial  Pn for large values of n gives a better approximation of f  in the

interval @-1, 1D.  In fact, for n = 20, we see that RnHxL is almost zero in the interval @-0.7, 0.7D, which is an improvement over the

previous interval @-0.6, 0.6D obtained for n = 10. 
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If we continue in this manner, we see that the Taylor polynomial  Pn for large values of n gives a better approximation of f  in the

interval @-1, 1D.  In fact, for n = 20, we see that RnHxL is almost zero in the interval @-0.7, 0.7D, which is an improvement over the

previous interval @-0.6, 0.6D obtained for n = 10. 

In[916]:= Plot@Evaluate@R@x, 0, 20DD, 8x, -1, 1<, PlotRange ® 8-1, 1<D

Out[916]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

� 10.4.2.  Convergence of Power Series

A series of the form 

Ún=0
¥ anHx - x0Ln = a0 + a1Hx - x0L + a2Hx - x0L2 + a3Hx - x0L3 + ....

is called a power series. 

The set of all x for which the series converges is called the interval of convergence.

If the series converges for x = x0 only, we say is radius of interval is R = 0. In this case its interval of convergence is 8x0<.
If the series converges for all real numbers x , we say its radius of convergence is R = ¥. In this case, its interval of convergence

is H-¥, ¥L. 
If the series converges for some x ¹ x0 and diverges for some y, then it can be shown that there exists R > 0 such that the power

series converges for all x for which È x - x0 È < R and diverges for all x for which È x - x0 È > R. The convergence at x = x0 - R

and x = x0 + R needs to be checked. 

When the radius of convergence R is a positive real number, there are four possiblities for the interval of convergence: 

Hx0 - R, x0 + RL or @x0 - R, x0 + RL or Hx0 - R, x0 + RD or @x0 - R, x0 + RD 
depending on the convergence at the end points of the intervals.

The radius of convergence R of the power series Ún=0
¥ anHx - x0Ln can be found by using the Ratio or Root Test.  Let 

 r = limn®¥ É an+1

an
É    or    r = limn® ¥ È an Èn

a) If r = 0, then R = ¥. 

b) If r = ¥, then  R = 0 .

c) If 0 < r < ¥, then R =
1
r
.

Example 10.23.  Find the radius and interval of convergence for the given power series.

a)   Ún=0
¥ n

2 n+1
xn b)   Ún=1

¥ Hx-3Ln

n 3n c)  Ún=0
¥ Hx+2Ln

n2+n+1
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a)   Ún=0
¥ n

2 n+1
xn b)   Ún=1

¥ Hx-3Ln

n 3n c)  Ún=0
¥ Hx+2Ln

n2+n+1
 

d)   Ún=0
¥ nn xn e)   Ún=0

¥ 1
n!

 Hx - 1Ln   

Solution:

a) Let us define smHxL to be the mth partial sum of the series and plot the graph of some of these partial sums. We will plot every

100th partial sum up to 10,000 terms.  

In[917]:= Clear@s, n, mD
s@x_, m_D := â

n=0

m n

2 n + 1
 xn

In[919]:= Plot@Evaluate@Table@s@x, mD, 8m, 1, 1000, 100<DD, 8x, -2, 2<D

Out[919]=

-2 -1 1 2

-2. ´ 1026

2. ´ 1026

4. ´ 1026

This clearly indicates that the partial sums diverge outside H-1, 1L. Here is the plot over the interval H-1, 1L.
In[920]:= Plot@Evaluate@Table@s@x, mD, 8m, 1, 1000, 100<DD, 8x, -1, 1<D

Out[920]=

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

We now use calculus. Here note that an =
n

2 n +1
 and x0 = 0. We first define an  in Mathematica  and find the radius of conver-

gence. We recall È a È (absolute value of a) is entered as Abs[a].

In[921]:= Clear@a, n, rD
a@n_D :=

n

2 n + 1
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In[923]:= r = LimitBAbsBa@n + 1D
a@nD F, n ® InfinityF

Out[923]= 1

Thus the radius of convergence is R =
1
r

=
1
1

= 1. The power series convrges on H-1, 1L. To check convergence at the endpoints

x = -1 and x = 1, we note that the power series becomes Ún=0
¥ n

2 n+1
 H-1Lnand Ún=0

¥ n
2 n+1

 H1Ln, both of which are divergent, since

their nth terms do not converge to 0. Here Mathematica confirms the divergence at the endpoints.

In[924]:= â
n=0

¥ n

2 n + 1
 H-1Ln

Sum::div :  Sum does not converge. �

Out[924]= â
n=0

¥ H-1Ln n

1 + 2 n

In[925]:= â
n=0

¥ n

2 n + 1
 H1Ln

Sum::div :  Sum does not converge. �

Out[925]= â
n=0

¥ n

1 + 2 n

Therefore, the interval of convergence is H-1, 1L.
b)  Ún=1

¥ Hx-3Ln

n 3n

In[926]:= Clear@a, r, nD
a@n_D :=

1

n 3n

In[928]:= r = LimitBa@n + 1D
a@nD , n ® InfinityF

Out[928]=
1

3

Thus the radius of convergence is R =
1
r

=
1

1�3 = 3. 

Since x0 = 3, the power series converges on Hx0 - R, x0 + RL = H3 - 3, 3 + 3L = H0, 6L. We need to check the endpoints x = 0 and

x = 6. We substitute these in the power series and evaluate  

In[929]:= â
n=1

¥ Hx - 3Ln

n 3n
�. x ® 80, 6<

Out[929]= 8-Log@2D, ¥<
Thus the interval of convergence is @0, 6L.
 c)  Ún=1

¥ Hx+2Ln

n2+n+1
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In[930]:= Clear@a, r, nD
a@n_D :=

1

n2 + n + 1

In[932]:= r = LimitBAbsBa@n + 1D
a@nD F, n ® ¥F

Out[932]= 1

Hence,  the radius of convergence is R =
1
1

= 1. Since x0 = -2, we see  that the power series  converges at least  on the open

interval H-2 - 1, -2 + 1L = H-3, -1L. To determine the actual interval of convergence we need to check the endpoints. As in part

c), we evaluate 

In[933]:= â
n=0

¥ Hx + 2Ln

n2 + n + 1
�. x ® 8-3, -1<

Out[933]= : 1

1 + H-1L1�3 -
1

2
H-1L2�3 PolyGammaB0, 1

2
H-1L1�3F - PolyGammaB0, 1

2
+
1

2
H-1L1�3F +

1

2
H-1L2�3 PolyGammaB0, -

1

2
H-1L2�3F - PolyGammaB0, 1

2
-
1

2
H-1L2�3F ,

¥ + DirectedInfinityAH-1L1�3E
1 + H-1L1�3 >

In[934]:= N@%D
Out[934]= 90.76131 - 1.96864 ´10-16

ä, H0.5 - 0.288675 äL HH0.5 + 0.866025 äL ¥ + ¥L=
Since this is not clear,  we examine the series by plugging in by hand x = -3 and x = -1. When x = -3 the series becomes

Ún=1
¥ H-3+2Ln

n2+n+1
= Ún=1

¥ H-1Ln

n2+n+1
,  which is an alternating series.  We leave it to the reader  to verify that the Alternating Series Test

applies in this case.  Thus, we have a convergent series.

Next, we substitute x = -1 to obtain the series Ún=1
¥ H-1+2Ln

n2+n+1
= Ún=1

¥ 1

n2+n+1
 to which we apply the Integral Test (verify that the

conditions of the Integral Test are satisfied):   

In[935]:= IntegrateB 1

x2 + x + 1
, 8x, 0, Infinity<F

Out[935]=
2 Π

3 3

Thus, the series converges in this case as well. Therefore, the interval of convergence for the power series is @-3, -1D.
  d)   Ún=0

¥ nn xn   

In[936]:= Clear@a, r, nD
a@n_D := nn

In[938]:= r = LimitBAbsBa@n + 1D
a@nD F, n ® ¥F

Out[938]= ¥

Thus, the radius of convergence is R = 0 and the series converges for x = 0 only.

e)   Ún=0
¥ 1

n!
 Hx - 1Ln
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e)   Ún=0
¥ 1

n!
 Hx - 1Ln

In[939]:= Clear@a, r, nD
a@n_D :=

1

n!

In[941]:= r = LimitBAbsBa@n + 1D
a@nD F, n ® ¥F

Out[941]= 0

Thus, the radius of convergence is R = ¥ and the series converges for all real x.  Hence, the interval of convergence is H-¥, ¥L.
� Exercises 

1.  Determine the interval of convergence for the following power series: 

a) Ún=1
¥ H-1Ln+1

 xn

4n  b) Ún=0
¥ H2 nL ! I x

2
) n  c) Ún=1

¥ n! xn

H2 nL!

2.   Determine the radius of convergence for the following power series: 

a) Ún=0
¥ H-1Ln

 
xn

n+1
 b) Ún=0

¥ H4 xLn  c) Ún=0
¥ H2 xLn

n!

3.  Give examples of power series that have an infinite radius of convergence, a radius of convergence containing only the center,
and a radius of convergence of one.

� 10.4.3.  Taylor Series

The Taylor series for f HxL at x = a is given by the power series

 Ún=0
¥ f HnLHaL

n!
 Hx - aLn = f HaL + f ' HaL Hx - aL +

f '' HaL
2

 Hx - aL2 +
f ''' HaL

6
 Hx - aL3 + .....

The Mathematica command Series[f,{x, a, n}] generates the power series of f  at x = a to the order Hx - aLn.  It is not possible to

write all the terms explicitly since there are infinitely many.

Example 10.24.  Let f HxL =
1+x

1+x2
. 

a) Find the first ten terms of the Taylor series of f  at x = 0.

b) Estimate the radius and interval of convergence of the Taylor series of f  at x = 0.   

Solution:

a) We use the Series command to obtain the Taylor series as follows:   

In[942]:= Clear@f, xD
f@x_D :=

1 - x

2 + x

In[944]:= Series@f@xD, 8x, 0, 10<D
Out[944]=

1

2
-
3 x

4
+
3 x2

8
-
3 x3

16
+
3 x4

32
-
3 x5

64
+
3 x6

128
-
3 x7

256
+
3 x8

512
-

3 x9

1024
+
3 x10

2048
+ O@xD11

This output gives the Taylor series to order n = 10.

b) To first gain intuition for the radius of convergence of the Taylor series, we define the nth Taylor polynomial of f HxL as a

function of n (note our use of the Normal command to truncate the remainder term from the Taylor series).
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b) To first gain intuition for the radius of convergence of the Taylor series, we define the nth Taylor polynomial of f HxL as a

function of n (note our use of the Normal command to truncate the remainder term from the Taylor series).

In[945]:= Clear@T, x, nD
T@x_, n_D := Normal@Series@f@xD, 8x, 0, n<DD

Here is a list of the first 20 of these polynomials. 

In[947]:= Table@T@x, nD, 8n, 0, 10<D
Out[947]= :1

2
,
1

2
-
3 x

4
,
1

2
-
3 x

4
+
3 x2

8
,
1

2
-
3 x

4
+
3 x2

8
-
3 x3

16
,
1

2
-
3 x

4
+
3 x2

8
-
3 x3

16
+
3 x4

32
,

1

2
-
3 x

4
+
3 x2

8
-
3 x3

16
+
3 x4

32
-
3 x5

64
,
1

2
-
3 x

4
+
3 x2

8
-
3 x3

16
+
3 x4

32
-
3 x5

64
+
3 x6

128
,

1

2
-
3 x

4
+
3 x2

8
-
3 x3

16
+
3 x4

32
-
3 x5

64
+
3 x6

128
-
3 x7

256
,
1

2
-
3 x

4
+
3 x2

8
-
3 x3

16
+
3 x4

32
-
3 x5

64
+
3 x6

128
-
3 x7

256
+
3 x8

512
,

1

2
-
3 x

4
+
3 x2

8
-
3 x3

16
+
3 x4

32
-
3 x5

64
+
3 x6

128
-
3 x7

256
+
3 x8

512
-

3 x9

1024
,

1

2
-
3 x

4
+
3 x2

8
-
3 x3

16
+
3 x4

32
-
3 x5

64
+
3 x6

128
-
3 x7

256
+
3 x8

512
-

3 x9

1024
+
3 x10

2048
>

Observe that each polynomial appears twice, i.e., T2 n = T2 n+1, since f  is an even function.  Next we plot the graphs of some of

these polynomials:

In[948]:= Clear@plot1D
plot1 = Plot@Evaluate@Table@T@x, nD, 8n, 1, 20<DD, 8x, -5, 3<, PlotRange ® 8-10, 10<D

Out[949]=
-4 -2 2

-10

-5

5

10

To compare the graph of these polynomials, we plot the graph of f  and use the Show command.  
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In[950]:= Clear@plot2D
plot2 = Plot@f@xD, 8x, -5, 3<, PlotRange ® 8-10, 10<, PlotStyle ® RedD

Out[951]=
-4 -2 2

-10

-5

5

10

In[952]:= Show@8plot1, plot2<, PlotRange ® 8-10, 10<D

Out[952]=
-4 -2 2

-10

-5

5

10

Observe that the graphs of the Taylor polynomials in the preceding plot seem to give a good approximation to f  only inside the

interval H-2, 2L.  This suggests that the radius of convergence is 2.  This becomes more evident as we plot the graph of Tn  for

large values of n as shown in the following plot, where n = 30, 35, 40, 45, 50.

In[953]:= Clear@plot3D
plot3 = Plot@Evaluate@Table@T@x, nD, 8n, 30, 50, 5<DD, 8x, -3, 3<D;
plot4 = Plot@f@xD, 8x, -5, 3<, PlotStyle ® 8Red, Thickness@0.002D<D;
Show@8plot3, plot4<, PlotRange ® 8-10, 10<D

Out[956]=
-4 -2 2

-10

-5

5

10

To prove that the radius of convergence is indeed R = 2, we first find a formula for the Taylor coefficients.  Based on the follow-

ing table, it is clear that a0 = 1 � 2 and an = H-1Ln
 3 � 2n+1 (prove this for all n).
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To prove that the radius of convergence is indeed R = 2, we first find a formula for the Taylor coefficients.  Based on the follow-

ing table, it is clear that a0 = 1 � 2 and an = H-1Ln
 3 � 2n+1 (prove this for all n).

In[957]:= a@n_D := D@f@xD, 8x, n<D �n! �. x ® 0

Table@a@nD, 8n, 0, 10<D
Out[958]= :1

2
, -

3

4
,
3

8
, -

3

16
,

3

32
, -

3

64
,

3

128
, -

3

256
,

3

512
, -

3

1024
,

3

2048
>

We now apply the Ratio Test on Ún=0
¥ an xn.

In[959]:= Clear@aD
a@n_D = H-1L^n *3 �2^Hn + 1L
r = LimitBAbsBa@n + 1D

a@nD F, n ® ¥F
Out[960]= 3 H-1Ln 2-1-n

Out[961]=
1

2

Hence, the radius of convergence is R = 1 � r = 2.

Next, we determine whether the endpoints should be included in the interval of convergence.  For this, we evaluate our Taylor
series at x = -2 and x = 2.

In[962]:= â
n=1

¥

a@nD H-2L^n
â
n=1

¥

a@nD H2L^n
Sum::div :  Sum does not converge. �

Out[962]= â
n=1

¥ 3

2
H-1L2 n

Sum::div :  Sum does not converge. �

Out[963]= â
n=1

¥ 3 H-1Ln

2

This shows that the Taylor series diverges at both endpoints.  Thus, the interval of convergence is H-2, 2L. 
Example 10.25.  Let f HxL = sin x. 

a) Find the Taylor series of f  at x = 0.

b) Find the radius and interval of convergence of the Taylor series.   

Solution:

a) We repeat the steps in the previous example.

In[964]:= Clear@fD
f@x_D := Sin@xD

In[966]:= Clear@TD
T@x_, n_D := Normal@Series@f@xD, 8x, 0, n<DD
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In[968]:= Table@T@x, nD, 8n, 0, 10<D
Out[968]= :0, x, x, x -

x3

6
, x -

x3

6
, x -

x3

6
+

x5

120
, x -

x3

6
+

x5

120
, x -

x3

6
+

x5

120
-

x7

5040
,

x -
x3

6
+

x5

120
-

x7

5040
, x -

x3

6
+

x5

120
-

x7

5040
+

x9

362 880
, x -

x3

6
+

x5

120
-

x7

5040
+

x9

362 880
>

Observe that all terms of the Taylor polynomials are odd powers of x.  Can you explain why?

Here is a plot of the graphs of the first ten of these polynomials and the function f .

In[969]:= Clear@plot1, pl0t2D
plot1 = Plot@Evaluate@Table@T@x, nD, 8n, 0, 10<DD, 8x, -3 Pi, 3 Pi<D;
plot2 = Plot@f@xD, 8x, -3 Pi, 3 Pi<, PlotStyle ® RedD;
Show@8plot1, plot2<, PlotRange ® 8-10, 10<D

Out[972]=
-5 5

-10

-5

5

10

b) Observe that the higher the order of the Taylor polynomial the better it approximates f  over a wider interval.  To see this more

clearly, we plot Tn for n = 20, 40, 60.

In[973]:= Clear@plot1, plot2D
plot1 = Plot@f@xD, 8x, -40, 40<, PlotStyle ® Red, PlotRange ® 8-5, 5<D;
plot2 = Plot@ Evaluate@T@x, 20DD , 8x, -40, 40 <, PlotStyle ® Blue, PlotRange ® 8-5, 5<D;
plot3 = Plot@ Evaluate@T@x, 40DD , 8x, -40, 40 <, PlotStyle ® Blue, PlotRange ® 8-5, 5<D;
plot4 = Plot@ Evaluate@T@x, 60DD , 8x, -40, 40 <, PlotStyle ® Blue, PlotRange ® 8-5, 5<D;
Show@8plot1, plot2<D

Out[978]=
-40 -20 20 40

-4

-2

2

4
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In[979]:= Show@8plot1, plot3<D

Out[979]=
-40 -20 20 40

-4

-2

2

4

In[980]:= Show@8plot1, plot4<D

Out[980]=
-40 -20 20 40

-4

-2

2

4

The preceding plots suggest that the radius of convergence for the Taylor series of sin x is R = ¥.  To prove this, we first find a

formula for the Taylor coefficients 8an<.  Again, based on the following table, it is clear that an = sinHΠ n � 2L � n! (prove this for all

n).

In[981]:= a@n_D := D@f@xD, 8x, n<D �n! �. x ® 0

Table@a@nD, 8n, 0, 10<D
Out[982]= :0, 1, 0, -

1

6
, 0,

1

120
, 0, -

1

5040
, 0,

1

362 880
, 0>

We now apply the Root Test on Ún=0
¥ an xn.

In[983]:= Clear@a, n, rD
a@n_D = Sin@Pi *n �2D �n!

Table@a@nD, 8n, 0, 10<D
r = Limit@Abs@a@nDD^H1 �nL, n ® ¥D

Out[984]=

SinA n Π

2
E

n!

Out[985]= :0, 1, 0, -
1

6
, 0,

1

120
, 0, -

1

5040
, 0,

1

362 880
, 0>

SeriesData::sdatn :  Order specification ___ in SeriesData@_, _, 8<, ___D is not a machine-size integer. �

Out[986]= 0

Hence, the radius of convergence is R = ¥.
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Hence, the radius of convergence is R = ¥.

� Exercises 

1. Determine the Taylor series for f HxL = e2 x centered about c = 0.

2. Determine the Taylor series for f HxL = ln x centered about the point c = 1.

3. Find the MacLaurin series for each of the following functions:
a) f HxL = sin 2 x b) gHxL = sinh x c) hHxL = Harc sin xL � x

4. Consider the function f HxL = : e-1�x2
if x ¹ 0

0 if x = 0
.  

a) Plot the graph of this function using Mathematica.
b) Use the limit definition of the derivative and L'Hopital's Rule to show that every higher-order derivative of f  at x = 0 vanishes.

c) Find the MacLaurin series for f .  Does the series converge to f ? 

5. Use Taylor series to determine the following definite integral, which cannot be integrated via elementary means: 

 Ù0

1 sin x
x

 â x. 

6. Determine the following limit using the theory of Taylor series.

  lim x® 0 1-cos x
x
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Chapter 11 Parametric Equations, Polar Curves, and Conic 
Sections

� 11.1.  Parametric Equations

Students should read Sections 11.1-11.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

� 11.1.1.  Plotting Parametric Equations

The Mathematica command for plotting a curve defined by parametric equations x = f HtL and y = gHtL for a £ t £ b is Parametric-

Plot[{f(t),g(t)},{t,a,b}].

Here are some examples:

Example 11.1.  Plot the curve described by the parametric equations x = cos t and y = sin t for 0 £ t £ 2 Π.

Solution:

In[987]:= ParametricPlot@8Cos@tD, Sin@tD<, 8t, 0, 2 Π<D

Out[987]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Recall that the above parametric equations represent the unit circle. However, Mathematica may produce a graph that, depending
on its default settings, looks visually like an ellipse due to different scalings of the x and y-axes.  In that case the plot option

AspectRatio can be used to specify the ratio of the height to the width for a plot.  For example, to stretch the plot above so that

the circle becomes elliptical where the height is twice as long as the width, we can set AspectRatio equal to 2.
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In[988]:= ParametricPlot@8Cos@tD, Sin@tD<, 8t, 0, 2 Π<, AspectRatio ® 2D

Out[988]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Example 11.2.  Plot the curve described by the parametric equations x = t2 - 4 and y = t � 2 for -2 £ t £ 3.

Solution:

In[989]:= ParametricPlot@8t^2 - 4, t �2<, 8t, -2, 3<D

Out[989]=

-4 -2 2 4

-1.0

-0.5

0.5

1.0

1.5

Example 11.3.  Plot the curve (prolate cycloid) described by the parametric equations x = 2 Θ - 4 sin Θ and y = 2 - 4 cos Θ for

0 £ t £ 2 Π.
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Example 11.3.  Plot the curve (prolate cycloid) described by the parametric equations x = 2 Θ - 4 sin Θ and y = 2 - 4 cos Θ for

0 £ t £ 2 Π.

Solution:

In[990]:= ParametricPlot@82 Θ - 4 Sin@ΘD, 2 - 4 Cos@ΘD<, 8Θ, -4 Pi, 4 Pi<,
PlotLabel -> "prolate cycloid"D

Out[990]=

-20 -10 10 20-2

2
4
6

prolate cycloid

NOTE: In the above input we have used the the command PlotLabel. In general, the command PlotLabel ®"text" prints the

title text for the given plot.

� 11.1.2.  Parametric Derivatives

Recall that for a curve described by parametric equations x = f HtL and y = gHtL, its derivative dy � dx can be expressed as a ratio

between the parametric derivatives dy � dt and dx � dt (application of the Chain Rule):

 
dy

dx
=

dy

dt

dx

dt

=
g' HtL
f ' HtL

Example 11.4.  Consider the following parametric equations (folium of Descartes):

x =
4 t

1+t3
 and y =

4 t2

1+t3

a) Plot the curve described by the parametric equations above.
b) Find all points of horizontal tangency to the curve.
c) Find the derivative at the farthest tip of the folium.

Solution:

 a) Here is a plot of the folium of Descartes:
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In[991]:= ParametricPlotB: 4 t

1 + t3
,

4 t2

1 + t3
>, 8t, 0, 20<, PlotRange ® All, AspectRatio ® 1,

PlotLabel -> "Folium of Descartes"F

Out[991]=

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Folium of Descartes

NOTE: The more complete graph of the folium of Descartes is shown below.  The dashed line in the plot indicates an asymptote.
Can you generate a Mathematica plot of it?  Can you find an equation of the asymptote (see Exercise 4)?  Hint: Beware of the
discontinuity at t = -1.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
Folium of Descartes

b) In order to find points of horizontal tangency, i.e., points where the slope of the tangent line is equal to zero, it suffices to solve
dy

dx
= 0, or equivalently, 

dy

dt
= 0 (assuming dx

dt
¹ 0).  Hence, we evaluate 
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b) In order to find points of horizontal tangency, i.e., points where the slope of the tangent line is equal to zero, it suffices to solve
dy

dx
= 0, or equivalently, 

dy

dt
= 0 (assuming dx

dt
¹ 0).  Hence, we evaluate 

In[992]:= SolveBDB 4 t2

1 + t3
, tF == 0, tF

Out[992]= 98t ® 0<, 9t ® -H-2L1�3=, 9t ® 21�3=, 9t ® H-1L2�3 21�3==
Since dx

dt
 does not vanish at  t = 0 and t = 21�3  (we ignore the imaginary solutions), we conclude  that  there  are  two points

corresponding to these values at which the tangent lines are horizontal.

� 11.1.3.  Arclength

The arc length of a curve described by parametric equations x = f HtL and y = gHtL, a £ t £ b, is given by

 L = Ùa

b I dx
dt

M2
+ J dy

dt
N2

 â t

Example 11.5.  Find the arc length of the curve x = e-t cos t,  y = e-t sin t for 0 £ t £ Π � 2.

Solution:

In[993]:= Clear@x, y, tD
x@t_D = E^H-tL *Cos@tD;
y@t_D = E^H-tL *Sin@tD;
à
0

Π�2,HHD@x@tD, tDL^2 + HD@y@tD, tDL^2L ât

Out[996]= 2 I1 - ã-Π�2M
In[997]:= N@%D
Out[997]= 1.12023

� Exercises 

1. Sketch the curve represented by the parametric equations.

a) x = t3 , y = t2 � 2 b) x = 2 HΘ - sin ΘL,  y = 1 - cos Θ c) x = 3 cos3 Θ, y = 3 sin3
 Θ

2. Find all points of horizontal and vertical tangency to the curve x = cos Θ + Θ sin Θ,  y = sin Θ - Θ cos Θ,  0 £ Θ £ 2 Π.

3. Consider parametric equations given by x = 3 cos Ht � 3L - cos t and y = 3 sin Ht � 3L - sin t.

a) Graph the curve represented by the parametric equations above.

b) Find the slope of the line tangent to the curve at the point where t = Π � 4.

c) Find the arc length of the curve from t = 0 to t = 3 Π � 2.

4. Find the asymptote corresponding to the folium of Descartes  (see Example 11.4) and plot the asymptote together with the
folium of Descartes.
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� 11.2.   Polar Coordinates and Curves

Students should read Sections 11.3-11.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

� 11.2.1.  Polar Coordinates

Conversion between  Cartesian  (rectangular)  coordinates  and  polar  coordinates  can  be  achieved  by the  following conversion
formulas:

r2 = x2 + y2

Θ = tan-1 y � x

x = r cos Θ

y = r sin Θ

Example 11.6.  Perform the following conversions:
a) Convert H3, 4L into polar coordinates.

b) Convert H7, Π � 3L into Cartesian coordinates.

Solution:

a) Using the first set of conversion formulas above we find that:

In[998]:= r = 32 + 42

Θ = N@ArcTan@4 �3DD
Out[998]= 5

Out[999]= 0.927295

b) This time we use the second set of conversion formulas:

In[1000]:= x = 7 *Cos@Pi �3D
y = 7 *Sin@Pi �3D

Out[1000]=
7

2

Out[1001]=
7 3

2

� 11.2.2.  Polar Curves

The Mathematica  command for plotting a curve  described  by a polar equation in the form r = f HΘL  for Α £ Θ £ Β  is Polar-

Plot[f(Θ),{Θ , Α, Β}].

Example 11.7.  Plot the graph of the limacon r = 3 - 4 cos Θ.

Solution:
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In[1002]:= PolarPlot@3 - 4 Cos@ΘD, 8Θ, -4 Pi, 4 Pi<,
AspectRatio -> AutomaticD

Out[1002]=
-7 -6 -5 -4 -3 -2 -1

-4

-2

2

4

Example 11.8.  Plot the graph of the six-leaf rose r = 2 cosH3 Θ � 2L.
Solution:

In[1003]:= PolarPlot@2 Cos@3 Θ �2D, 8Θ, -4 Pi, 4 Pi<,
PlotLabel -> "A Six-Leaf Rose", AspectRatio -> AutomaticD

Out[1003]=

-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

1.5

A Six-Leaf Rose

Try modifying the function to generate a 12-leaf rose.
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Try modifying the function to generate a 12-leaf rose.

� 11.2.2.  Calculus of Polar Curves

Recall that the derivative of a polar equation in the form r = f HΘL for Α £ Θ £ Β is given by

dy

dx
=

f ' HΘL sin Θ+ f HΘL cos Θ

f ' HΘL cos Θ- f HΘL sin Θ

Moreover, the area A of the region bounded by a polar equation in the form r = f HΘL between Α £ Θ £ Β is given 

A =
1
2

 ÙΑ

Β
f 2HΘL â Θ

Example 11.9.  Locate all horizontal and vertical tangents of the limacon r = 2 - sin Θ.

Solution: We first plot the limacon to anticipate our solution points:

In[1004]:= PolarPlot@1 + Cos@ΘD, 8Θ, -2 Pi, 2 Pi<D

Out[1004]=
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

From the plot above we should expect to find two horizontal tangents and three vertical tangents.

Next, we compute the derivative of the limacon:

In[1005]:= Clear@f, ΘD
f@Θ_D = 1 + Cos@ΘD

Out[1006]= 1 + Cos@ΘD
In[1007]:= dydx = Simplify@Hf'@ΘD *Sin@ΘD + f@ΘD *Cos@ΘDL � Hf'@ΘD *Cos@ΘD - f@ΘD *Sin@ΘDLD
Out[1007]= -CotB3 Θ

2
F

To obtain horizonal tangents, we solve dy � dx = 0 for Θ.
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To obtain horizonal tangents, we solve dy � dx = 0 for Θ.

In[1008]:= dydx � 0

Solve@dydx � 0, ΘD
Out[1008]= -CotB3 Θ

2
F � 0

Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[1009]= ::Θ ® -
Π

3
>, :Θ ®

Π

3
>>

Therefore, our two horizontal tangents are located at Θ = ± Π � 3.

As for vertical tangents, we solve for where the reciprocal of the derivative is zero, i.e., 1 � Hdy � dxL = 0 for Θ.

In[1010]:= 1 �dydx
Solve@1 �dydx � 0, ΘD

Out[1010]= -TanB3 Θ

2
F

Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[1011]= 88Θ ® 0<<
Since the solution above only gives us the principal solution Θ = 0 of -tanH3 Θ � 2L = 0, we need to additionally solve 3 Θ � 2 = ± Π

for Θ, which yields our two other solutions, Θ = ±2 Π � 3.

NOTE: What is the derivative at Θ = Π?

Example 11.10.  Find the area of the region contained inside the circle r = 3 sin Θ and outside the convex limacon r = 2 - sin Θ.

Solution: We first plot the two polar curves on the same set of axes.
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In[1012]:= PolarPlot@83 Sin@ΘD, 2 - Sin@ΘD<, 8Θ, 0, 2 Π<,
AspectRatio -> AutomaticD

Out[1012]=
-2 -1 1 2

-3

-2

-1

1

2

3

Next we find their points of intersection by equating them and solving for Θ :  

In[1013]:= Solve@3 Sin@ΘD == 2 - Sin@ΘD, ΘD
Solve::ifun :  Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. �

Out[1013]= ::Θ ®
Π

6
>>

Observe that Mathematica gives only the solution Θ = Π � 6 which lies in the first quadrant since trigonometric inverse functions

are involved.  We can see from the above graph that the other point of intersection must be at Θ = 5 Π � 6. Thus, the area of the

enclosed region is given by

In[1014]:= H1 �2L HIntegrate@H3 Sin@ΘDL^2, 8Θ, Pi �6, 5 Pi �6<D -

Integrate@H2 - Sin@ΘDL^2, 8Θ, Pi �6, 5 Pi �6<DL
Out[1014]= 3 3

In[1015]:= N@%D
Out[1015]= 5.19615
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In[1016]:= Integrate@H3 Sin@ΘDL^2, 8Θ, Pi �6, Pi �2<D -

Integrate@H2 - Sin@ΘDL^2, 8Θ, Pi �6, Pi �2<D
Out[1016]= -

3

8
J-5 3 + 4 ΠN +

3

8
J3 3 + 4 ΠN

In[1017]:= Simplify@%D
Out[1017]= 3 3

NOTE: Using even symmetry of our region, it would have been enough to integrate between Θ = Π � 6 and Θ = Π � 2 and double the

result.  

� Exercises 

1. Using Mathematica to perform the following conversions:

a) Convert J-1, 3 N into polar coordinates.

b) Convert H-5, 3 Π � 4L into Cartesian coordinates.

2. Plot the graph of each of the polar equations given below and find an interval for Θ over which each graph is traced only once.
a) r = 3 - 4 cos Θ    b) r = 2 + sin Θ   c) r = 3 cos H3 Θ � 2L  d) r = 5 sin 2 Θ

3. Generate the butterfly curve r = ãcos Θ - 2 cos H4 ΘL + sin5 HΘ � 12L.
4. Find all horizontal and vertical tangents of the lemniscate r2 = cosH2 ΘL.  Plot its graph to confirm your answers.

5. Consider the rose curve r = cos H2 ΘL for -2 Π £ Θ £ 2 Π.

a) Plot its graph.
b) Find the area of one petal of the curve.

6.  Graph and find the area of each of the following regions.
a) The common interior of r = 3 - 2 sin Θ and r = -3 + 2 sin Θ.

b) Inside r = 2 H1 + cos ΘL and outside r = 2 cos Θ.

c) Inner loop of r = 3 + 4 sin Θ.

7.  Find the length of the given curve on the specified interval.
a) r = 1 + sin Θ, 0 £ Θ £ 2 Π. b) r = 6 H1 + cos ΘL,  0 £ Θ £ 2 Π.

8. Consider the polar equations r = 4 sin Θ and r = 2 I 2 - sin2
ΘM.

a) Graph the polar equations on the same axes.
b) Find the points of intersection of the curves.
c) Find the circumference of each curve.

� 11.3.   Conic Sections

Students should read Section 11.5 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Conic sections refer to the three families of curves (ellipses, hyperbolas, parabolas) generated by intersecting a plane with a cone.
Recall the equations for describing each family of curves in standard position:

I. Ellipse

I x
a

M2
+ I y

b
M2

= 1

222 Mathematica for Rogawski's Calculus



I x
a

M2
+ I y

b
M2

= 1

II. Hyperbola

I x
a

M2
- I y

b
M2

= 1

III. Parabola

y =
1

4 c2
 x2

NOTE: These formulas assume that the "center" of the conic section is at the origin.  To translate the center to a different point,
say Hx0, y0L, we replace x and y by x - x0 and y - y0, respectively.

The most useful command for plotting conic sections is ContourPlot[eqn,{x,a,b},{y,c,d}].

Example 11.10.  Determine the family that each conic section below belongs to and then make a plot of each.

a) x2

9
+

y2

16
= 1

b) y =
9
4

 x2

c) x2

4
-

y2

9
= 1

Solution:

a) This conic is an ellipse.  To plot it, we evaluate

In[1018]:= ContourPlot@x^2 �9 + y^2 �16 � 1, 8x, -4, 4<, 8y, -4, 4<D

Out[1018]=

-4 -2 0 2 4

-4

-2

0

2

4

Observe that the length of semi-major and semi-minor axes are 4 and 3, respectively.  How would this change if we happen to
switch the coefficients 9 and 16?

b) This conic is a parabola.  Since the equation here is solved for y, we merely use the Plot command:
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In[1019]:= Plot@H9 �4L x^2, 8x, -2, 2<D

Out[1019]=

-2 -1 1 2

2

4

6

8

c) This conic is a hyperbola.  Here is its plot:

In[1020]:= ContourPlot@x^2 �4 - y^2 �9 � 1, 8x, -6, 6<, 8y, -6, 6<D

Out[1020]=

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Example 11.11.  Find an equation of an ellipse with center at H-1, 3L and having semi-major and semi-minor axes of lengths 5

and 1/2, respectively.

Solution: From the given data we see that Hx0, y0L = H-1, 3L, a = 5 , and b = 1 � 2.  The equation of our ellipse is therefore:

Hx+1L2

5
+ 4 Hy - 3L2

= 1

To plot it, we evaluate
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In[1021]:= ContourPlot@Hx + 1L^2 �5 + 4 Hy - 3L^2 � 1, 8x, -4, 2<, 8y, 2, 4<, AspectRatio ® 2 �3D

Out[1021]=

-4 -3 -2 -1 0 1 2
2.0

2.5

3.0

3.5

4.0

� Exercises 

1.  Plot each of the following conic sections.  Can you determine the family that each conic section belongs to before plotting?
Also, what are the values of a and b (or c) in each conic section?

a) x2

25
+

y2

4
= 1 b) 

y2

36
-

x2

16
= 1 c) y = 3 x2

2.  Plot the ellipse x2

10
+ 4 y2 = 1.  What are the lengths of the semi-major and semi-minor axes?

2.  Find an equation of an ellipse with center H1 � 2, -5L and having semi-major and semi-minor axes of lengths 3/4 and 7 ,

respectively. 

4.  Consider a polar curve of the form r =
d e

1+e cos Θ
, where d  and e are non-negative constants.

a) Plot this curve for d = 3, and e = 1 � 2.  Do you recognize this curve as a conic section?  Of which type?  Hint: Use the com-

mand PolarPlot. 

b) Repeat part a) but this time use e = 2 instead.  Do you recognize this curve as a conic section?  Of which type?

c) Repeat part a) but this time use e = 1 instead.  Do you recognize this curve as a conic section?  Of which type?

d) Describe how the graph changes as we vary the values d  and e.  What happens to the graph when e = 0?  NOTE: The value e

is called the eccentricity of the conic section.  

e) Assume 0 < e < 1.  Convert the polar equation r =
d e

1+e cos Θ
 to that in standard form for an ellipse,  I x-x0

a
M2

+ I y-y0

b
M2

= 1, and

determine formulas for its center, semi-major, and semi-minor axes.  Verify these formulas for the ellipse in part a).
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Chapter 12 Vector Geometry
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

� 12.1.  Vectors

Students should read Sections 12.1-12.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

A vector is an object that has magnitude and direction.  In physics, these vectors are denoted by arrows, where the magnitude of
the vector is represented by the length of the vector, and the way in which the arrow points indicates its direction.  In mathemat-
ics, these vectors are represented by points in two or three dimensions, where the vector is the arrow that starts at the origin and
ends at the point.  For example, the point (2, 1, 3) could be considered both as a point in 3-D space and as a vector from (0, 0, 0)
to (2, 1, 3). To distinguish a point from a vector, we will use the angled brackets X and \ instead of parentheses. Thus, the point (2,
1, 3) is denoted (2, 1, 3) as usual, but the vector from the origin to that point is denoted X 2, 1, 3\ .  

The length or magnitude of a vector v is denoted   v   , and is read as "norm v."  If  v = X a, b, c\ , then   v   = a2 + b2 + c2 .  In

two dimensions, if v = X a, b\ , then   v   = a2 + b2 . 

Vectors  and matrices,  in Mathematica,  are  simply lists.  A vector is a list of numbers within braces,  with commas between
numbers, while a matrix is a list of lists (vectors), with each vector list being a row of the matrix (for a complete description of
lists in Mathematica, see Section 1.2.3 of this text).  Of course, all rows must be the same size.  For example, consider the vector

a below:

In[1022]:= a = 81, 3 , 5<
Out[1022]= 81, 3, 5<
The ith component of the vector a is denoted by ai, or in Mathematica, by a[[i]].  For instance the second component of a, which

is 3, would be obtained by:

In[1023]:= a@@2DD
Out[1023]= 3

All of the usual vector algebra operations are available to us:

Dot Product

The Dot Product of two vectors u = Yu1, u2, u3] and v = Yv1, v2, v3] is defined by 

u × v = u1 v1 + u2 v2 + u3 v3.  For example:
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In[1024]:= a = 81, 3, 5<
b = 81, -2, 3<
a.b

Out[1024]= 81, 3, 5<
Out[1025]= 81, -2, 3<
Out[1026]= 10

or

In[1027]:= Dot@a, bD
Out[1027]= 10

NOTE: We use the ordinary period symbol on the keyboard for the dot product.

Cross Product

The cross product of two vectors u = Yu1, u2, u3] and v = Yv1, v2, v3], is defined as a vector perpendicular  to both u and v, and

calculated by the following "right-hand" rule:

u × v = Xu2v3 - u3v2, u3 v1 - u1 v3 , u1v2 - u2v1\
This calculation can be done in Mathematica in two ways.  The first is to use the Cross command:

In[1028]:= Cross@a, bD
Out[1028]= 819, 2, -5<
The second is by using the multiplication symbol "×".  This special symbol can be entered on the Basic Math Input Palette or

by pushing the escape key, followed by typing the word "cross" and hitting the escape key again:  [esc]cross[esc]

In[1029]:= a � b

Out[1029]= 819, 2, -5<
Recall that the cross product of 2 vectors, a and b creates a vector perpendicular  to the plane of the vectors a and b.  In your
Calculus text, the cross product is also defined as the determinant of a special matrix. We will look at this a little later.

Norm (Length) of a Vector

The norm or length of a vector can be calculated in Mathematica by the Norm command

In[1030]:= Clear@x, y, zD
In[1031]:= Norm@8x, y, z<D
Out[1031]= Abs@xD2

+ Abs@yD2
+ Abs@zD2

In[1032]:= Norm@aD
Out[1032]= 35

In[1033]:= Norm @2 aD
Out[1033]= 2 35

Vector Addition

The sum of two vectors u = Yu1, u2, u3] and v = Yv1, v2, v3] is defined to be u + v = u1 v1 + u2 v2 + u3 v3.
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The sum of two vectors u = Yu1, u2, u3] and v = Yv1, v2, v3] is defined to be u + v = u1 v1 + u2 v2 + u3 v3.

In[1034]:= 2 a - 3 b + 81, 1, 1<
Out[1034]= 80, 13, 2<
Example 12.1.  Let a = X1, 2, 3\.  Show that a

ÈÈaÈÈ is a unit vector.

Solution:

In[1035]:= Norm@a � Norm@aDD
Out[1035]= 1

Example 12.2.  Find the equation of a line in 3-space passing through P0 = (3,-1,4) in the direction of  v = X 2,7,1\ and graph it.

Solution: The line through P0 = Ix0, y0, z0M in the direction of v = Xa, b, c\ is described in vector or parametric form by:

Vector form:  rHtL = Yx0, y0, z0] + t Xa, b, c\
Parametric Form:  x = x0 + a t, y = y0 + b t, z = z0 + c t

Thus, the vector description of the line is

In[1036]:= Clear@r, tD;
r@t_D = 83, -1, 4< + t 82, 7, 1<

Out[1037]= 83 + 2 t, -1 + 7 t, 4 + t<
To graph this line we use the ParametricPlot3D command:

ParametricPlot3DA9 fx, fy, fz=, 8u, umin, umax<E
produces a three-dimensional space curve parametrized by a variable u which runs from
umin to umax. 

In[1038]:= ParametricPlot3D@r@tD, 8t, -3, 3<, ImageSize ® 8250<, ImagePadding ® 8815, 15<, 815, 15<<D

Out[1038]=

0
5

-20

-10

0

10

20

2
4
6

NOTE:  This plot command uses the option ImageSize  to specify the size of graphics output.  Settings include Tiny, Small,
Medium, Large, or {pt}, where pt is the number of points.

Example 12.3.  Give the description in vector form of the line that passes through the points P = H1, 0, 4L and Q = H3, 2, 1L, then

find the midpoint of the line segment PQ and plot this line segment.
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Example 12.3.  Give the description in vector form of the line that passes through the points P = H1, 0, 4L and Q = H3, 2, 1L, then

find the midpoint of the line segment PQ and plot this line segment.

Solution: The line through points P = Ha1, b1, c1L and Q = Ha2, b2, c2L has vector form rHtL = H1 - tL Xa1, b1, c1\ + t Xa2, b2, c2\.  In
this parametrization, rH0L = P and rH1L = Q.  Thus,

In[1039]:= r@t_D = H1 - tL 81, 0, 4< + t 83, 2, 1<
Out[1039]= 81 + 2 t, 2 t, 4 H1 - tL + t<
The midpoint of the line segment PQ is 

In[1040]:= rB1
2

F
Out[1040]= :2, 1,

5

2
>

The plot of the line segment is

In[1041]:= ParametricPlot3D@r@tD, 8t, -0.1, 1.1<, ImageSize ® 8250<, ImagePadding ® 8815, 15<, 815, 15<<D

Out[1041]=

1.0 1.5 2.0 2.5
3.0

0.0
0.5

1.0
1.5

2.0

1

2

3

4

Example 12.4.  Find the angle between the vectors v = X 3,6,2\ and w = X 6,3,6\ .

Solution:  Remember  that  the  angle  between  two vectors,  v  and  w,  is  given by Θ , which  is  defined  by Θ = cos-1J v.w
ÈÈvÈÈ ÈÈwÈÈ N  .

Therefore,

In[1042]:= v = 83, 6, 2<
w = 86, 3, 6<

Out[1042]= 83, 6, 2<
Out[1043]= 86, 3, 6<
In[1044]:= Θ = ArcCosB v.w

Norm@vD Norm@wD F
Out[1044]= ArcCosB16

21
F
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In[1045]:= N@%D
Out[1045]= 0.704547

Therefore, Θ = .7045 radians.

� Exercises 

1. Calculate the length of the vector v = X1, 3, 4\.
2. Calculate the linear combination: 5 X2, -2, 5\ + 6 X1, 3, 8\
3. Find a vector parametrization for the line that passes through P = H1, 2, -6L with direction vector v = X2, 1, 5\.
4. Determine whether the two given vectors are orthogonal (v ¦ w iff  v.w = 0):
a) X1, 1, 1\,  X1, -2, 3\ b) X1, 1, 1\,  X-3, 2, 1\
5. Find the angle between the vectors:
a) X1, 2\,  X5, 7\ b) X2, 4, 1\,  X1, -3, 5\

� 12.2.  Matrices and the Cross Product

Students should read Section 12.4 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

In order to understand the alternate  approach to the cross product alluded to above, we need to define the terms matrix and
determinant.

Matrices

A matrix is a rectangular array of numbers consisting of n rows and m columns (denoted n × m).  We are especially interested in
square matrices where m = n and in particular m = 2 or m = 3.  For example:  A 3 × 3 matrix would be

a11 a12 a13

a21 a22 a23

a31 a32 a33

but Mathematica would show this matrix as:

In[1046]:= A = Table@10 i + j, 8i, 3<, 8j, 3<D
Out[1046]= 8811, 12, 13<, 821, 22, 23<, 831, 32, 33<<
In[1047]:= B = Table@i + j, 8i, 2<, 8j, 2<D
Out[1047]= 882, 3<, 83, 4<<
To have Mathematica display a matrix in the traditional way, use the MatrixForm command:
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In[1048]:= MatrixForm@AD
MatrixForm@BD

Out[1048]//MatrixForm=

11 12 13

21 22 23

31 32 33

Out[1049]//MatrixForm=

2 3

3 4

Note that in the definition of the matrices A and B, Mathematica  treats them as lists and when we use the command Matrix-
Form, we can see the matrices presented in the traditional way.

Determinants

The determinant is a function, Det, which assigns to each square matrix a number which is defined for 2 × 2 and 3 × 3 matrices
as follows:

In[1050]:= Clear@a, bD;
F = 88a, b<, 8c, d<<
MatrixForm@FD

Out[1051]= 88a, b<, 8c, d<<
Out[1052]//MatrixForm=

a b

c d

In[1053]:= Det@FD
Out[1053]= -b c + a d

In[1054]:= G = 88a1, a2, a3<, 8b1, b2, b3<, 8c1, c2, c3<<
MatrixForm@GD

Out[1054]= 88a1, a2, a3<, 8b1, b2, b3<, 8c1, c2, c3<<
Out[1055]//MatrixForm=

a1 a2 a3

b1 b2 b3

c1 c2 c3

In[1056]:= Det@GD
Out[1056]= -a3 b2 c1 + a2 b3 c1 + a3 b1 c2 - a1 b3 c2 - a2 b1 c3 + a1 b2 c3

Using these definitions, we can now define the cross product of two vectors by the formula

Xb1, b2, b3\ ´ Xc1, c2, c3\ = Det

i j k

b1 b2 b3

c1 c2 c3

where i = X1, 0, 0\, j = X0, 1, 0\, and k = X0, 0, 1\.
Example 12.5.  Calculate the cross product of  v = X1, 3, 6\ and w = X-2, 8, 5\.
Solution:
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In[1057]:= Clear@i, j, kD
g = 8i, j, k<
v = 81, 3, 6<
w = 8-2, 8, 5<
A = 8g, v, w<

Out[1058]= 8i, j, k<
Out[1059]= 81, 3, 6<
Out[1060]= 8-2, 8, 5<
Out[1061]= 88i, j, k<, 81, 3, 6<, 8-2, 8, 5<<
In[1062]:= MatrixForm@AD
Out[1062]//MatrixForm=

i j k

1 3 6

-2 8 5

In[1063]:= v � w

Det@AD
Out[1063]= 8-33, -17, 14<
Out[1064]= -33 i - 17 j + 14 k

Observe that the two previous outputs are equivalent.

� Exercises 

1. Calculate the determinants of 

0 5 0

1 3 6

2 5 5

 and of 
3 5

6 2
.

2. Calculate the cross product of  v = X2, 0, 0\ and w = X-1, 0, 1\.  Do this using the Cross command as well as by the determi-

nant approach. 

3. Calculate the area of the parallelogram spanned by the vectors v  and w  above. (Hint: look up the formula for this in your
calculus textbook.)

4. Show that  v�w = -w �v  and that  v�v = 0.

� 12.3.  Planes in 3-Space

Students should read Section 12.5 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Note that a plane in 3-D space is defined as all points P Hx, y, zL such that the line segment P0 P  is perpendicular  to a given

vector n, called the normal vector, where the initial point of n is P0 = Hx0, y0, z0L.  In vector notation, this is described by the

equation n × P0 P  = 0 where  P0 P = Yx - x0,  y - y0, z - z0\.  Therefore,  the equation of the plane through P0 = (x0, y0, z0L with

nonzero normal vector n = Xa, b, c\ can be denoted by either of the following:

Vector form: n × Xx, y, z\ = d

Scalor form: a x + b y + c z = d
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Vector form: n × Xx, y, z\ = d

Scalor form: a x + b y + c z = d

Here, d = a x0 + b y0 + c z0 = n × Xx0, y0, z0\.
Example 12.6.  Find an equation of the plane determined by the points P = H1, 0, -1L, Q = H2, 2, 1L, and R = H4, 2, 5L.  Then plot

the graph of the plane.

Solution: The vectors a = PQ  and  b = PR  lie in the plane, so the cross product n = a ´ b is normal to the plane:

In[1065]:= Clear@a, b, nD
a = 82, 2, 1< - 81, 0, -1<
b = 84, 2, 5< - 81, 0, -1<
n = a � b

n . 8x, y, z< � d

Out[1066]= 81, 2, 2<
Out[1067]= 83, 2, 6<
Out[1068]= 88, 0, -4<
Out[1069]= 8 x - 4 z � d

To compute the value of d ,  we choose any point on the plane,  that is, we can choose either P,  Q,  or R,  and then compute

d = n × P, d = n × Q, or d = n × R.  Let us choose P = X1, 0, -1\.
In[1070]:= d = n . 81, 0, -1<
Out[1070]= 12

Therefore,  the plane we want has equation 8 x - 4 z = 12  and the graph is obtained by using the ContourPlot3D  command

which has the form:

ContourPlot3D@ f , 8x, xmin, xmax<, 8y, ymin, ymax<, 8z, zmin, zmax<D
which produces a three-dimensional contour plot of f as a function of x, y and z. 

or

ContourPlot3D@ f == g, 8x, xmin, xmax<, 8y, ymin, ymax<, 8z, zmin, zmax<D
which plots the contour surface for which f = g. 
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In[1071]:= ContourPlot3D@8 x - 4 z � 12, 8x, -2, 2<, 8y, -2, 2<, 8z, -2, 2<, ImageSize ® 8250<D

Out[1071]=

-2
-1

0

1

2

-2

-1

0

1
2

-2

-1

0

1

2

In order to see this plane more clearly from a different perspective, move your cursor over the plot.  Then drag the mouse while
pressing and holding the left mouse button to rotate the plot.

� Exercises 

1. Let PL be the plane with equation 7 x - 4 y + 2 z = 10.  Find an equation of the plane QL parallel to PL and passing through

Q = H2, 1, 3L and graph it.  

2. Find the equation of the plane through the points P = H1, 5, 5L, Q = H0, 1, 1L, and R = H2, 0, 1L and graph it.

3. Find the angle between the two planes:  x + 2 y + z = 3 and 4 x + y + 3 z = 2.  (Hint: The angle between two planes is the angle

between their normal vectors.) 

� 12.4.  A Survey of Quadric Surfaces

Students should read Section 12.6 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

A quadric surface is the three-dimensional equivalent of a conic section (i.e., ellipses, hyperbolas, and parabolas).   The basic
types of quadric surfaces are ellipsoids, hyperboloids (of one or two sheets), paraboloids (elliptic or hyperbolic), and cones.

� 12.4.1.  Ellipsoids

The standard ellipsoid is described by Hx � aL2 + Hy � bL2
+ Hz � cL2 = 1. To help us visualize it, we are often interested in the mesh

of curves called traces, obtained by intersecting our quadric surface with planes parallel to one of the coordinate planes. In the
plot below, you can see that mesh, and also see that the traces of an ellipsoid are themselves ellipses.

Example 12.7.  Graph the ellipsoid above, with a = 3, b = 4, and c = 5, and describe the traces of this ellipsoid. 

Solution: The correct Mathematica command to use is ContourPlot3D.  This is shown following:
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In[1072]:= ContourPlot3D@Hx �3L^2 + Hy �4L^2 + Hz �5L^2 � 1, 8x, -6, 6<,8y, -6, 6<, 8z, -6, 6<, AxesLabel ® 8x, y, z<, ImageSize ® 8250<D

Out[1072]=
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Again, note that the ellipsoid can be manually rotated to look at it from different perspectives. First place your screen cursor over
the plot.  Then drag the mouse while pressing down on the left mouse button to rotate the plot.  When you do this you will note
that, indeed, all of the traces are ellipses.

� 12.4.2.  Hyperboloids

The three-dimensional hyperbolas are called hyperboloids, and come in two types: the hyperboloid of one sheet, with standard

form Hx � aL2 + Hy � bL2
= Hz � cL2 + 1,  and  the  hyperboloid of  two sheets,  with  standard  form Hx � aL2 + Hy � bL2

= Hz � cL2 - 1.   A

limiting case of the hyperboloid is the elliptic cone, defined by the equation Hx � aL2 + Hy � bL2
= Hz � cL2.

Example 12.8.  Describe the traces of the two hyperboloids: Hx � 3L2
 +Hy � 4L2

= Hz � 5L2
+ 1 and Hx � 3L2

 +Hy � 4L2
= Hz � 5L2

- 1.

Solution: First we graph the hyperboloids:
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In[1073]:= ContourPlot3D@Hx �3L^2 + Hy �4L^2 � Hz �5L^2 + 1, 8x, -6, 6<,8y, -6, 6<, 8z, -6, 6<, AxesLabel ® 8x, y, z<, ImageSize ® 8250<D

Out[1073]=
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In this case, the traces parallel with the xy-axis are all ellipses, and the traces parallel wth the xz- and yz-axes are hyperbolas.

In[1074]:= ContourPlot3D@Hx �3L^2 + Hy �4L^2 == Hz �5L^2 - 1, 8x, -30, 30<,8y, -30, 30<, 8z, -30, 30<, AxesLabel ® 8x, y, z<, ImageSize ® 8250<D

Out[1074]=
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When we look at this plot, we see that the traces are the same as for the previous hyperboloid of one sheet.

Example 12.9.  Graph the cone with a = 3, b = 4, and c = 5, and define its relationship to the hyperboloid of one sheet.

Solution: We get the graph by using the ContourPlot3D Command: 
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In[1075]:= ContourPlot3D@Hx �3L^2 + Hy �4L^2 == Hz �5L^2, 8x, -30, 30<,8y, -30, 30<, 8z, -30, 30<, AxesLabel ® 8x, y, z<, ImageSize ® 8250<D

Out[1075]=

-20

0

20
x

-20

0

20y

-20

0

20

z

When we compare this plot with that of the hyperboloid of one sheet (see previous example) we can see clearly that this cone can
be thought of as a limiting case of the hyperboloid of one sheet in which we pinch the waist down to a point.

� 12.4.3.  Paraboloids

The final family of quadric  surfaces  that we want to consider are the paraboloids, of which there are two types: elliptic and

hyperbolic.  Their  standard  equations  are  z = Hx � aL2 + Hy � bL2  (elliptic  paraboloid)  and  z = Hx � aL2 - Hy � bL2  (hyperbolic

paraboloid).

Example 12.10.  Graph the two types of paraboloids for a = 3 and b = 4 and describe their traces.

Solution: Here is the graph of the elliptic paraboloid:

In[1076]:= ContourPlot3D@Hx �3L^2 + Hy �4L^2 == z, 8x, -30, 30<,8y, -30, 30<, 8z, -30, 30<, AxesLabel ® 8x, y, z<, ImageSize ® 8250<D

Out[1076]=
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Observe that the traces in the direction of the xz- and yz-axes are both parabolas while those in the xy-direction are ellipses, which
can be seen by dragging the plot in the appropriate directions.  Similarly, for the hyperbolic paraboloid:
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Observe that the traces in the direction of the xz- and yz-axes are both parabolas while those in the xy-direction are ellipses, which
can be seen by dragging the plot in the appropriate directions.  Similarly, for the hyperbolic paraboloid:

In[1077]:= ContourPlot3D@Hx �3L^2 - Hy �4L^2 == z, 8x, -30, 30<,8y, -30, 30<, 8z, -30, 30<, AxesLabel ® 8x, y, z<, ImageSize ® 8250<D

Out[1077]=
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Again, by dragging the plot above, we see that the traces in the yz-direction are parabolas while those in the xz-direction are
hyperbolas.

� 12.4.4.  Quadratic Cylinders

The last group of quadric surfaces we will look at are the quadratic cylinders. These are surfaces formed from a two-dimensional
curve (in the xy-plane) along with all vertical lines passing through the curve:

Example 12.11.  Graph a selection of quadratic cylinders.

Solution:

a)  A circular cylinder of radius r:  x2 + y2 = r2.  For the graph we will use r = 3.
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In[1078]:= ContourPlot3D@x^2 + y^2 � 3^2, 8x, -5, 5<, 8y, -5, 5<,8z, -30, 30<, AxesLabel ® 8x, y, z<, ImageSize ® 8250<D

Out[1078]=
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b)  An elliptic with equation Hx � aL2 + Hy � bL2
= 1. We will use a = 3 and b = 6.

In[1079]:= ContourPlot3D@Hx �3L^2 + Hy �6L^2 � 1, 8x, -5, 5<,8y, -8, 8<, 8z, -20, 20<, AxesLabel ® 8x, y, z<, ImageSize ® 8250<D

Out[1079]=
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c) A hyperbolic cylinder with equation Hx � aL2 - Hy � bL2
= 1.  We will use a = 3 and b = 6.
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In[1080]:= ContourPlot3D@Hx �3L^2 - Hy �6L^2 � 1, 8x, -10, 10<,8y, -10, 10<, 8z, -20, 20<, AxesLabel ® 8x, y, z<, ImageSize ® 8250<D

Out[1080]=
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d) A parabolic cylinder with equation y = a x2 with a = 3.

In[1081]:= ContourPlot3D@y � 3 x^2, 8x, -3, 3<, 8y, -1, 8<,8z, -10, 10<, AxesLabel ® 8x, y, z<, ImageSize ® 8250<D

Out[1081]=
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� Exercises 

1.  State whether the given equation defines an ellipsoid, hyperboloid, or paraboloid, and of which type.  Then confirm your
answer by graphing the quadric surface.

 a)  Hx � 5L2
+ Hy � 7L2

+ Hz � 9L2
= 1

 b)  Hx � 5L2
- Hy � 7L2

+ Hz � 9L2
= 1

 c)  x2 + 5 y2 - 6 z2 = 1

 d)  z = Hx � 5L2
+ Hy � 7L2

 e)  z = Hx � 5L2
- Hy � 7L2

2. State the type of  the quadric surface and graph it, and then describe the trace obtained by intersecting it with the given plane.

a)  Hx � 5L2
+ y2 + Hz � 9L2

= 1,  z = 1 � 4

b)  y = 2 x2,    z = 25

c)  Hx � 5L2
- Hy � 7L2

+ Hz � 9L2
= 1,  y = 4
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2. State the type of  the quadric surface and graph it, and then describe the trace obtained by intersecting it with the given plane.

a)  Hx � 5L2
+ y2 + Hz � 9L2

= 1,  z = 1 � 4

b)  y = 2 x2,    z = 25

c)  Hx � 5L2
- Hy � 7L2

+ Hz � 9L2
= 1,  y = 4

� 12.5.  Cylindrical and Spherical Coordinates

Students should read Section 12.7 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

� 12.5.1.  Cylindrical Coordinates

In cylindrical coordinates, the point P = Hx, y, zL is expressed as Hr, Θ, zL where r and Θ are the polar coordinates of x and y.  The

formulas for converting from Hx, y, zL to Hr, Θ, zL are:

Cylindrical to Rectangular Rectangular to Cylindrical

x = r cos Θ r = x2 + y2

y = r sin Θ tan Θ = y � x

z = z z = z

The  commands in Mathematica  to do these  conversions must first  be loaded into Mathematica  from the  "Vector  Analysis"
external package:

In[1082]:= << VectorAnalysis`

Example 12.12.  Convert Hr, Θ, zL = H2, 3 Π � 4, 5L to rectangular coordinates.

Solution: We use the CoordinatesToCartesian command to convert from cylindrical to rectangular coordinates:

In[1083]:= CoordinatesToCartesian@82, 3 Pi �4, 5<, CylindricalD
Out[1083]= :- 2 , 2 , 5>
In[1084]:= N@%D
Out[1084]= 8-1.41421, 1.41421, 5.<
Example 12.13.  Convert Hx, y, zL = H2, 3, 5L to cyclindrical coordinates.

Solution: We use the CoordinatesFromCartesian command to convert from rectangular to cylindrical coordinates:

In[1085]:= CoordinatesFromCartesian@82, 3, 5<, CylindricalD
Out[1085]= : 13 , ArcTanB3

2
F, 5>

In[1086]:= N@%D
Out[1086]= 83.60555, 0.982794, 5.<
Of course, one very strong point for Mathematica  is its graphing ability.  It will easily graph functions described in cylindrical

coordinates. The command to do this is RevolutionPlot3D. 
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RevolutionPlot3D@ fz, 8t, tmin, tmax<, 8Θ, Θmin, Θmax<D
takes the azimuthal angle Θ to vary between Θmin and Θmax.

Example 12.14.  Graph the cylindrical coordinate function z =
2 r2 sin H5 ΘL

1+r2
.

Solution:

In[1087]:= Clear@r, ΘD;
RevolutionPlot3DB2 r2 Sin@5 ΘD

1 + r2
, 8r, 0, 5<, 8Θ, 0, 2 Π<, ImageSize ® 8250<F

Out[1088]=
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� 12.5.2.  Spherical Coordinates

A point P = Hx, y, zL is described in spherical coordinates by a triple HΡ, Θ, ΦL where Ρ is the distance of P from the origin, Θ is the

polar angle of the projection Hx, y, 0L, and Φ is the angle between the z-axis and the ray from the origin through P. The formulas

for converting between rectangular and spherical coordinates are:

Spherical to Rectangular Rectangular to Spherical

x = Ρ cos Θ sin Φ Ρ = x2 + y2 + z2

y = Ρ sin Θ sin Φ tan Θ = y � x

z = Ρ cos Φ cos Φ = z � Ρ

These conversions are done in Mathematica using the same commands as with cylindrical coordinates, but with the word spheri-
cal replacing cylindrical.

Example 12.15.  Convert HΡ, Θ, ΦL = H2, 3 Π � 4, Π � 5L to rectangular coordinates.

Solution:

In[1089]:= CoordinatesToCartesian@82, 3 Pi �4, Π �5<, SphericalD
Out[1089]= :1 + 5

2 2
, 2

5

8
-

5

8
, - 2 >

In[1090]:= N@%D
Out[1090]= 81.14412, 0.831254, -1.41421<
Example 12.16.  Convert Hx, y, zL = H2, 3, 5L to spherical coordinates.
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Example 12.16.  Convert Hx, y, zL = H2, 3, 5L to spherical coordinates.

Solution:

In[1091]:= CoordinatesFromCartesian@82, 3, 5<, SphericalD
Out[1091]= : 38 , ArcCosB 5

38
F, ArcTanB3

2
F>

In[1092]:= N@%D
Out[1092]= 86.16441, 0.624754, 0.982794<
Again, the main use here of Mathematica is its graphing ability.  It will easily graph functions described in spherical coordinates.

The command to do this is the SphericalPlot3D command. 

SphericalPlot3D@r, 8Θ, Θmin, Θmax<, 8Φ, Φmin, Φmax<D
generates a 3 D plot with a spherical radius r as a function of spherical coordinates Θ and Φ.

Example 12.17.  Graph the spherical coordinate function Ρ = 1 + sin H6 ΦL � 6.

Solution:

In[1093]:= SphericalPlot3D@ Ρ = 1 + Sin@6 ΦD �6, 8Θ, 0, Pi<, 8Φ, 0, 2 Pi<, ImageSize ® 8250<D

Out[1093]=
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� Exercises 

1. Convert from cylindrical to rectangular:
a)  H2, Π � 3, -4L b)  H1, Π � 2, 3L
2. Convert from rectangular to cylindrical:

a)   H2, 2, 5L b)   J4, 3 , 8N
3. Plot the surface z2 + r2 = 25 Θ and describe it.

4.  Convert from spherical to rectangular:
a)  H2, Π � 5, Π � 3L b)   H4, Π � 6, 5 Π � 6L
5. Convert from rectangular to spherical:

a)   J 2 , 2, 3N b)   J4, 3 � 2, 8 N
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5. Convert from rectangular to spherical:

a)   J 2 , 2, 3N b)   J4, 3 � 2, 8 N
6. Plot the surface Ρ sin Φ = 5 and describe it.
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Chapter 13 Calculus of Vector-Valued Functions
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

� 13.1.  Vector-Valued Functions

Students should read Section 13.1 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

A vector-valued function is a vector where the components of the vector are themselves functions of a common parameter (or

variable).  For example, r  is a vector-valued function if rHtL = XxHtL, yHtL, zHtL\.   If we think of t as the time variable,  the rHtL
describes the motion of a particle through three-dimensional space over time.  What we want to do is to understand what path is
taken.  We do this through graphing in three dimensions. Also, sometimes it is helpful to consider the projections of these curves
onto the coordinate planes.  For example, the projection of rHtL on the xy-plane is XxHtL, yHtL, 0\.
Example 13.1. Trace the paths of each of the following vector functions and describe its projections onto the xy-, xz-, and yz-
planes:
a)  rHtL = Yt, t2, 2 t]
b)  rHtL = Ycos3 t, sin3

 t, sin 2 t] 
Solution:  We use the ParametricPlot3D command to trace the path of each curve and to see its projection.

a) First we look at the plot of rHtL = Yt, t2, 2 t]:
In[1094]:= ParametricPlot3DA9t, t2, 2 t=, 8t, -3, 3<, PlotStyle ® Red, ImageSize ® 8250<E

Out[1094]=
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This curve looks very much like a parabola in 3-D space.  To see the projections, we look first at: 
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In[1095]:= ParametricPlot3DA9t, t2, 0=, 8t, -3, 3<,
PlotRange ® 8-1, 1<, PlotStyle ® Orange, ImageSize ® 8250<E

Out[1095]=
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This is clearly a parabola in the xy-plane.

In[1096]:= ParametricPlot3D@8t, 0, 2 t<, 8t, -3, 3<, Ticks ® 8Automatic, 8-1, 0, 1<, Automatic<,
PlotStyle ® Orange, ImageSize ® 8250<, ImagePadding ® 8815, 15<, 815, 15<<D

Out[1096]=
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And this clearly a line in the xz-plane.  
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In[1097]:= ParametricPlot3DA90, t2, 2 t=, 8t, -3, 3<,
Ticks ® 88-1, 0, 1<, Automatic, Automatic<, PlotStyle ® Orange, ImageSize ® 8250<E

Out[1097]=
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This last plot is also clearly a parabola, but in the yz-plane.

b)  Next we look at rHtL = Ycos3 t , sin3 t, sin 2 t]:
In[1098]:= ParametricPlot3DA9Cos@tD3, Sin@ tD3, Sin@2 tD=,8t, -2 Π, 2 Π<, PlotStyle ® Orange, ImageSize ® 8250<E

Out[1098]=
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Note that since both sine and cosine are periodic with period 2 Π, it is not necessary to extend the domain beyond -2 Π or +2 Π.

The projection in the xy-plane is:
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In[1099]:= ParametricPlot3DA9Cos@tD3, Sin@ tD3, 0=, 8t, -2 Π, 2 Π<, PlotPoints ® 100, ImageSize ® 8250<E

Out[1099]=
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The projection in the xz-plane is:

In[1100]:= ParametricPlot3DA9Cos@tD3, 0, Sin@2 tD=, 8t, -2 Π, 2 Π<, ImageSize ® 8250<E

Out[1100]=

-1.0
-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5
1.0

-1.0

-0.5

0.0

0.5

1.0

Lastly, the projection in the yz-plane is:
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In[1101]:= ParametricPlot3DA90, Sin@ tD3, Sin@2 tD=, 8t, -2 Π, 2 Π<, ImageSize ® 8250<E

Out[1101]=
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Note that the last two projections are almost exactly alike.  This is to be expected because the sine and cosine functions have the
same graph, but Π � 2 radians apart. 

� Exercises 

1. Graph rHtL and its three projections onto the coordinate planes for:

a)  rHtL = XcosH 2 tL, cos t, sin t\
b)  rHtL = Yt + 15, e0.08 t  cos t, e0.08 t  sin t]
c)  rHtL = Yt, t, 25 t � I1 + t2M]
2. Which of the following curves have the same projection onto the xz-plane?  Graph the three projections to check your answer.
a)  r1HtL = Yt, et, t2]
b)  r2HtL = Yet, t, t2]
c)  r3HtL = Yt, cos t, t2]

� 13.2.  Calculus of Vector-Valued Functions

Students should read Section 13.2 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Since vector-valued functions are differentiated  and integrated component by component, Mathematica  will handle this easily
since it treats vectors as lists and automatically performs the indicated operation on each element of the list.

The derivative of a vector valued function rHtL = XxHtL, yHtL, zHtL\ is defined to be

r ' HtL = Xx ' HtL, y ' HtL, z ' HtL\,
while the integral of rHtL is

Ù rHtL â t = YÙ xHtL â t, Ù yHtL â t, Ù zHtL â t].
Similarly, the limit is defined by

limt®a rHtL = Xlimt®a xHtL, limt®a yHtL, limt®a zHtL\.
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limt®a rHtL = Xlimt®a xHtL, limt®a yHtL, limt®a zHtL\.
Example 13.2.  Differentiate and integrate each of the following vector functions:
a) rHtL = Yt, t2, 2 t]
b) sHtL = Ycos3 t , sin3 t, sin 2 t]
Solution:

(a)

In[1102]:= Clear@r, s, tD
In[1103]:= r@t_D := 9t, t2, 2 t=

s@t_D := 9Cos@tD3, Sin@tD3, Sin@2 tD=
In[1105]:= ¶t r@tD
Out[1105]= 81, 2 t, 2<
In[1106]:= à r@tD ât

Out[1106]= :t2
2
,
t3

3
, t2>

(b)

In[1107]:= ¶t s@tD
Out[1107]= 9-3 Cos@tD2 Sin@tD, 3 Cos@tD Sin@tD2, 2 Cos@2 tD=
In[1108]:= à s@tD ât

Out[1108]= :3 Sin@tD
4

+
1

12
Sin@3 tD, -

3 Cos@tD
4

+
1

12
Cos@3 tD, -

1

2
Cos@2 tD>

Limits are handled the same way both in the calculus of vector-valued functions and in Mathematica:

Example 13.3.  Evaluate limit
h®0

 rHt+hL-rHtL
h

  for rHtL = Yt, t2, 2 t].
Solution:

Since rHtL has been defined in the previous example, we merely evaluate

In[1109]:= LimitBr@t + hD - r@tD
h

, h ® 0F
Out[1109]= 81, 2 t, 2<
As we would expect, this limit gives us the same answer for r ' HtL as in the previous example. 

Example 13.4.  Evaluate limit
t®3

 Zt2, 4 t, 1

t3
^.

Solution:
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In[1110]:= LimitB:t2, 4 t,
1

t3
>, t ® 2F

Out[1110]= :4, 8,
1

8
>

Derivatives of Dot and Cross Products

Using the formulas of the derivative of the dot and cross products for vector-valued functions is simple in Mathematica. As a
reminder, the formulas are:

d
dt

 HrHtL × sHtLL = rHtL × s ' HtL + r ' HtL × sHtL and d
dt

 HrHtL ´ sHtLL = rHtL ´ s ' HtL + r ' HtL ´ sHtL
Example 13.5.  Evaluate d

dt
 HrHtL × sHtLL and d

dt
 HrHtL ´ sHtLL for rHtL = Yt, t2, 2 t] and sHtL = Ycos3 t , sin3 t, sin 2 t].

Solution:

In[1111]:= ¶tHr@tD.s@tDL
Out[1111]= Cos@tD3

+ 4 t Cos@2 tD - 3 t Cos@tD2 Sin@tD + 3 t2 Cos@tD Sin@tD2
+ 2 t Sin@tD3

+ 2 Sin@2 tD
In[1112]:= ¶tHr@tD�s@tDL
Out[1112]= 92 t2 Cos@2 tD - 6 t Cos@tD Sin@tD2

- 2 Sin@tD3
+ 2 t Sin@2 tD,

2 Cos@tD3
- 2 t Cos@2 tD - 6 t Cos@tD2 Sin@tD - Sin@2 tD,

-2 t Cos@tD3
+ 3 t2 Cos@tD2 Sin@tD + 3 t Cos@tD Sin@tD2

+ Sin@tD3=
Tangent Lines

Example 13.6.  Find the vector parametrization of the tangent line to rHtL = Y1 - t2, 5 t, t3] at the point t = 1 and plot it along with

rHtL.
Solution: Recall that the tangent line at t0 has vector parametrization LHtL = rHt0L + t r ' Ht0L:
In[1113]:= r@t_D = 91 - t2, 5 t, t3=

r'@tD
L@t_D = r@1D + t *r'@1D

Out[1113]= 91 - t2, 5 t, t3=
Out[1114]= 9-2 t, 5, 3 t2=
Out[1115]= 8-2 t, 5 + 5 t, 1 + 3 t<
Here is a plot of the curve and the tangent line.
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In[1116]:= ParametricPlot3D@8r@tD, L@tD<, 8t, -2, 4<, ImageSize ® SmallD

Out[1116]=
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NOTE: Recall that the plot can be rotated to better view it from different perspectives.

� Exercises 

1. Evaluate the limits

a)  limt®Π Xsin 2 t, cos t, tan 4 t\ b)  limt®0 Y 1
t+1

, et-1
t

, 4 t]
2. Compute the derivative and integral of
a)  rHtL = Xtan t, 4 t - 2, sin t\ b)  rHtL = Yet, e2 t]
3. Find a parametrization of the tangent line at the point indicated and plot both the vector-valued curve and the tangent line on
the same set of axes.

4. Evaluate d
dt

 rHgHtLL for rHtL = X4 sin 2 t, 2 cos 2 t\ and gHtL = t2.

� 13.3.  Arc Length

Students should read Section 13.3 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

The arc length of a path rHtL = Xx HtL, y HtL, z HtL\ for a £ t £ b is given by

L = Ùa

b ÈÈ r ' HtL ÈÈ â t = Ùa

b Hx ' HtLL2
+ Hy ' HtLL2

+ Hz ' HtLL2
 â t 

and like the one-dimensional version is difficult to evaluate by hand.  Thus Mathematica is the perfect tool for calculating this.

Example 13.7.  Compute the arc length of rHtL = Y1 - t2, 5 t, 2 t3]  over the interval 1 £ t £ 2.

Solution:

252 Mathematica for Rogawski's Calculus



In[1117]:= r@t_D := 91 - t2, 5 t, 2 t3=
L = à

1

2

Norm@r'@tDD ât

Out[1118]=
1

54
+

ä

54
H-1L3�4

9 130 - 18 1234 - H8 - 8 äL -
7

ä + 4 14
EllipticEBä ArcSinhB 3 + 3 ä

ä - 4 14

F, ä - 4 14

ä + 4 14
F -

H1 + äL -
2

ä + 4 14
EllipticEBä ArcSinhB 3 + 3 ä

ä - 4 14

F, ä - 4 14

ä + 4 14
F +

H8 - 8 äL -
7

ä + 4 14
EllipticEBä ArcSinhB 6 + 6 ä

ä - 4 14

F, ä - 4 14

ä + 4 14
F +

H1 + äL -
2

ä + 4 14
EllipticEBä ArcSinhB 6 + 6 ä

ä - 4 14

F, ä - 4 14

ä + 4 14
F +

H8 - 8 äL -
7

ä + 4 14
EllipticFBä ArcSinhB 3 + 3 ä

ä - 4 14

F, ä - 4 14

ä + 4 14
F -

H224 + 224 äL -
2

ä + 4 14
EllipticFBä ArcSinhB 3 + 3 ä

ä - 4 14

F, ä - 4 14

ä + 4 14
F -

H8 - 8 äL -
7

ä + 4 14
EllipticFBä ArcSinhB 6 + 6 ä

ä - 4 14

F, ä - 4 14

ä + 4 14
F +

H224 + 224 äL -
2

ä + 4 14
EllipticFBä ArcSinhB 6 + 6 ä

ä - 4 14

F, ä - 4 14

ä + 4 14
F

Note that the above output indicates that Mathematica cannot find an antiderivative for the integrand, and thus we need to find

another technique to evaluate this integral.  Hence, we next try the numerical integrate command, NIntegrate, which does give
us our result:

In[1119]:= L = NIntegrate@Norm@r'@tDD, 8t, 1, 2<D
Out[1119]= 15.285

Speed

The vector r ' HtL is also known as the velocity vector as it points in the (instantaneous) direction of motion described by rHtL.  Its
length or norm, °r ' HtL´, gives the speed at time t. 

Example 13.8.  Compute the speed of rHtL = Y1 - t2, 5 t, 2 t3] when t = 1, 1.5, and 2.

Solution: 

The following output gives a list of speeds of r ' HtL at the three given times using the Norm command, which calculates the norm

of a vector:
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The following output gives a list of speeds of r ' HtL at the three given times using the Norm command, which calculates the norm

of a vector:

In[1120]:= r@t_D := 91 - t2, 5 t, 2 t3=
Speed = 8Norm@r'@1DD, Norm@r'@1.5DD, Norm@r'@2DD<

Out[1121]= : 65 , 14.7054, 617 >
In[1122]:= N@%D
Out[1122]= 88.06226, 14.7054, 24.8395<
Observe that the speed is increasing as we move along the path of rHtL  from t = 1 to t = 2.  This can be seen graphically by

plotting the speed:

In[1123]:= Norm@r'@tDD
Plot@Norm@r'@tDD, 8t, 1, 2<D

Out[1123]= 25 + 4 Abs@tD2
+ 36 Abs@tD4

Out[1124]=

1.2 1.4 1.6 1.8 2.0

15

20

25

NOTE: Observe how the Norm command inserts absolute values around each vector component in the formula for °r ' HtL´, which

seems redundant since each component is squared.  This is done because in Mathematica  vector components are allowed to be
complex-valued, in which case absolute values are needed to refer to their magnitudes. 

� Exercises 

1. Compute the length of curve over the given interval:
a)  rHtL = X2 sin t, 6 t, 2 cos t\,   -6 £ t £ 6

b)  rHtL = Y12 t, 8 t3�2, 3 t2],   0 £ t £ 1

2. Find the speed of a particle moving along the curve rHtL at the given value of t.

a)  rHtL = Yet-2, 15 t, 5 � t],    t = 1

b)  rHtL = Xsin 2 t, cos 4 t, sin 6 t\,   t = Π � 2 

3. Compute sHtL = Ù0

t ÈÈ r ' HuL ÈÈ â u for rHtL = Yt2, 2 t2, t3] and interpret Mathematica's result.  

4. For rHtL = Z4 t, 1 - 3 t, 24  t^, compute s HtL as in the previous exercise.  Then use s HtL to find an arc length parametrization of

rHtL, i.e., find jHsL = t where j is the inverse of s HtL, and check to see that rHj HsLL has unit speed, i.e.,   r ' Hj HsLL    = 1.  Lastly, plot

rHtL and rHj HsLL and compare them.

5. Consider the helix rHtL = Xa sin t, a cos t, c t\. 
a) Find a formula for the arc length of one revolution of rHtL.
b) Suppose a helix has radius 10, height 5, and makes three revolutions.  What is its arc length?
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5. Consider the helix rHtL = Xa sin t, a cos t, c t\. 
a) Find a formula for the arc length of one revolution of rHtL.
b) Suppose a helix has radius 10, height 5, and makes three revolutions.  What is its arc length?

6. The Cornu spiral is defined by rHtL = XxHtL, yHtL\, where xHtL = Ù0

t
sinJ u2

2
N â u and yHtL = Ù0

t
cosJ u2

2
N â u.

a) Plot the Cornu spiral over various intervals for t.
b) Find a formula for its arc length along the interval -a £ t £ a, where a is a positive real number.

c) What is its arc length in the limit as a ® ¥?

� 13.4.  Curvature

Students should read Section 13.4 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Vector tools previously studied including arc length enables one to study the idea of curvature, which serves as a measure of how
a curve bends, i.e., the rate of change in direction of a curve.  In arriving at a definition of curvature, consider a path in vector
form and parametrized by

rHtL = Xx HtL, y HtL, z HtL\
The parametrization is classified as regular if r ' HtL ¹ 0 for all  values of t and for which r HtL is defined.  Assume then that rHtL is
regular and define the unit tangent vector in the direction of r ' HtL, denoted T HtL, as follows:

THtL =
r' HtL

ÈÈr' HtLÈÈ .

This unit tangent vector T at any point enables us to determine the direction of the curve at that point, so one may define the
curvature Κ (Greek letter kappa) at a point as

Κ = ÈÈ dT
ds

ÈÈ =
ÈÈT' HtLÈÈ
ÈÈr' HtLÈÈ ,

which represents the magnitude of the rate of change in the unit tangent vector with respect to arc length. One denotes the vector
dT � ds  as  the curvature  vector.  Its scalar  length therefore  measures curvature.   For example,  a straight line has Κ = 0 (zero

curvature) as one would expect.  For a circle of radius Ρ, we have Κ = 1 � Ρ (reciprocal of Ρ).  This makes sense since a larger

circle should have smaller curvature.  In general, if we were to secure a circle, called the osculating circle, that best fits a curve at
a specific point on the curve, then curvature of the curve at such a point should agree with the curvature of the osculating circle,
i.e., 

Κ =
1
Ρ

.

Moreover, the radius Ρ  of this circle is called the radius of curvature. Note that the equations linking Κ and Ρ illustrate their
inverse relationship: 

Κ =
1
Ρ

 and Ρ =
1
Κ
.

Example 13.9.  Compute the curvature Κ for a circle of radius Ρ defined by 

rHtL = XΡ cos t, Ρ sin t\.
Solution: We first compute the unit tangent vector T using the formula THtL =

r' HtL
ÈÈr' HtLÈÈ :

In[1125]:= Clear@r, T, t, ΡD
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In[1126]:= r@t_D = 8Ρ Cos@tD, Ρ Sin@tD<
r'@tD
T@t_D = r'@tD �Simplify@Norm@r'@tDDD

Out[1126]= 8Ρ Cos@tD, Ρ Sin@tD<
Out[1127]= 8-Ρ Sin@tD, Ρ Cos@tD<

Out[1128]= :-
Ρ Sin@tD

Abs@Ρ Cos@tDD2
+ Abs@Ρ Sin@tDD2

,
Ρ Cos@tD

Abs@Ρ Cos@tDD2
+ Abs@Ρ Sin@tDD2

>

Observe that in this output Mathematica is not able to reduce the expression inside the radical, which simplifies to Ρ as a result of

the fundamental trigonometric identity cos2 x + sin2
 x = 1.  This is due to the Norm command, which employs absolute values.

To remedy this, we use the formula °r ' HtL´ = r ' HtL × r ' HtL  instead of the Norm command.

In[1129]:= T@t_D = r'@tD �Sqrt@Simplify@r'@tD.r'@tDDD
Out[1129]= :-

Ρ Sin@tD
Ρ2

,
Ρ Cos@tD

Ρ2

>

We then compute the curvature using the formula Κ =
ÈÈT' HtLÈÈ
ÈÈr' HtLÈÈ :

In[1130]:= Κ = Sqrt@Simplify@T'@tD.T'@tDD �Simplify@r'@tD.r'@tDDD
Out[1130]=

1

Ρ2

Since the radius Ρ is assumed to be positive, we conclude that Κ =
1

Ρ2
= ¢ 1

Ρ
¦ =

1
Ρ

 as expected.

Example 13.10.  Compute the curvature Κ for the curve defined by f HxL = x2 at the point H3, 9L.
Solution: Observe that the graph of a function y = f HxL can be parametrized by x = t and y = f HtL and hence rHtL = Xt, f HtL\. In
this case the formula for curvature reduces to 

In[1131]:= Clear@r, t, fD
r@t_D = 8t, f@tD<

Out[1132]= 8t, f@tD<

In[1133]:= T@t_D =
r'@tD

Sqrt@r'@tD.r'@tDD
Κ = Sqrt@Simplify@T'@tD.T'@tDD �Simplify@r'@tD.r'@tDDD

Out[1133]= : 1

1 + f¢@tD2

,
f¢@tD

1 + f¢@tD2

>

Out[1134]=
f¢¢@tD2

I1 + f¢@tD2M3

which is the same as Κ =
È f '' HxLÈ

I1+H f ' HxLL2M3�2
. With f HxL = x2, we get
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In[1135]:= f@t_D = t2

Κ

Out[1135]= t2

Out[1136]= 2
1

I1 + 4 t2M3

At x = t = 3, the curvature becomes

In[1137]:= Κ �. t ® 3

Out[1137]=
2

37 37

Here is a plot of the curvature along with the function.

In[1138]:= Plot@8f@tD, Κ<, 8t, 0, 3<D

Out[1138]=

0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

Example 13.10.  Compute the curvature Κ and the radius of curvature Ρ for the curve defined by 

rHtL = Y1 - t, t2 + 1, 2
3

 t3 + 1] at t = 1 � 2.

Solution: Again we begin by computing the unit tangent vector T: 

In[1139]:= Clear@r, T, t, ΚD
In[1140]:= r@t_D = 81 - t, t^2 + 1, H2 �3L t^3 + 1<

r'@tD
T@t_D = r'@tD �Sqrt@Simplify@r'@tD.r'@tDDD

Out[1140]= :1 - t, 1 + t2, 1 +
2 t3

3
>

Out[1141]= 9-1, 2 t, 2 t2=

Out[1142]= :-
1

I1 + 2 t2M2

,
2 t

I1 + 2 t2M2

,
2 t2

I1 + 2 t2M2

>

We then compute the curvature using the same formula as in the previous example and evaluate it at t = 1 � 2:

Chapter 13 257



We then compute the curvature using the same formula as in the previous example and evaluate it at t = 1 � 2:

In[1143]:= Κ = Sqrt@Simplify@T'@tD.T'@tDD �Simplify@r'@tD.r'@tDDD
Κ �. t ® 1 �2

Out[1143]= 2
1

I1 + 2 t2M4

Out[1144]=
8

9

Hence the curvature Κ = 8 � 9 at t = 1 � 2 and the corresponding radius of curvature is Ρ = 1 � Κ = 9 � 8.

Curvature Formula (Cross Product)

There is an alternative formula for calculating the curvature of space curves that involves the cross product and eliminates the
need to compute the unit tangent vector function:

Κ =
ÈÈ r'' HtL ´ r' HtL ÈÈ

ÈÈ r' HtL ÈÈ3 =
ÈÈ aHtL ´ vHtL ÈÈ

ÈÈ vHtL ÈÈ3 . 

Example 13.11.  Compute the curvature ΚHtL and the radius of curvature for the helix defined by rHtL = Xcos t, sin t, t\ for any real

number t.

Solution: We first find the derivative of the unit tangent vector with respect to t. 

In[1145]:= Clear@r, T, t, ΚD
r@t_D = 8Cos@tD, Sin@tD, t<
r'@tD
r''@tD

Out[1146]= 8Cos@tD, Sin@tD, t<
Out[1147]= 8-Sin@tD, Cos@tD, 1<
Out[1148]= 8-Cos@tD, -Sin@tD, 0<
In[1149]:= Κ@t_D =

Sqrt@Simplify@Cross@r''@tD, r'@tDD.Cross@r''@tD, r'@tDDDD � Sqrt@Simplify@r'@tD.r'@tDDD3

Out[1149]=
1

2

It follows that Κ =
1
2

 and Ρ = 2 for all values of t.  Hence, our helix is a curve of constant curvature.

� Exercises

1. Find r ' HtL and THtL and evaluate TH2L:
a) rHtL = H3 + 2 tL i + H2 - 5 tL j + 9 t k

b) vHtL = Xsin t, cos t, 1\
2. Use Mathematica  to find the curvature function kHxL  for y = cos x. Also plot ΚHxL  for 0 £ x £ 1. Where does the curvature

assume its maximum value?

3. Determine the unit normal vectors to rHtL = @t i + sin t jD at t =
Π

4
 and t =

3 Π

4
.

4. Determine the curvature of the vector-valued function rHtL = H3 + 2 tL i + 6 t j + H5 - tL k.   
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4. Determine the curvature of the vector-valued function rHtL = H3 + 2 tL i + 6 t j + H5 - tL k.   

5. Find a formula for the curvature of the general helix rHtL = a cos t i + a sin t j + c t k.   

� 13.5.  Motion in Three Space

Students should read Section 13.5 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Recall that the velocity vector is the rate of the change of the position vector with respect to time while the acceleration vector
represents the rate of change of the velocity vector with respect to time.  Moreover, speed is defined to be the absolute value of
the velocity vector. In short, we have the following:

vHtL = r ' HtL, sHtL = °vHtL´ and aHtL = v ' HtL = r '' HtL.
One can secure the velocity vector and the position function if the acceleration vector is known via integration.  More specifically:

vHtL = Ù0

t
aHuL â u + v0 where v0 represents the initial velocity vector and rHtL = Ù0

t
vHuL â u + v0 t + r0 where r0 is the initial position.

Example  13.12.   Find  the  velocity  vector,  the  speed,  and  the  acceleration  vector  for  the  vector-valued  function
rHtL = t3 i + H1 - tL j + 4 t2 k at time t = 1.

Solution: 

In[1150]:= Clear@r, v, s, aD
r@t_D = 8t^3, 1 - t, 4 t^2<
v@t_D = r'@tD
s@t_D = Sqrt@v@tD.v@tDD
a@t_D = r''@tD
v@1D
s@1D
a@1D

Out[1151]= 9t3, 1 - t, 4 t2=
Out[1152]= 93 t2, -1, 8 t=
Out[1153]= 1 + 64 t2 + 9 t4

Out[1154]= 86 t, 0, 8<
Out[1155]= 83, -1, 8<
Out[1156]= 74

Out[1157]= 86, 0, 8<
Thus, vH1L = r ' H1L = 3 i - j + 8 k, sH1L = 74 , and aH1L = 6 i + 8 k. 

Example 13.13.  Find rHtL and vHtL if a HtL = t i +4 j subject to the initial conditions vH0L = 3 i - 2 j and rH0L = 0.

Solution: We first solve for vHtL by integrating aHtL:
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In[1158]:= Clear@r, v, aD
a@t_D = 8t, 4<
v@t_D = Integrate@a@uD, 8u, 0, t<D + 8v01, v02<

Out[1159]= 8t, 4<

Out[1160]= :t2
2

+ v01, 4 t + v02>
Here, the constant vector of integration v0 = Xv01, v02\ = X3, -2\ equals the initial velocity:

In[1161]:= Solve@v@0D � 83, -2<, 8v01, v02<D
Out[1161]= 88v01 ® 3, v02 ® -2<<
Thus, vHtL =

t2

2
 i + 4 t j + H3 i - 2 jL.

In[1162]:= v@t_D = v@tD �. 8v01 ® 3, v02 ® -2<
Out[1162]= :3 +

t2

2
, -2 + 4 t>

Next, we solve for rHtL by integrating vHtL:
In[1163]:= r@t_D = Integrate@v@uD, 8u, 0, t<D + 8r01, r02<
Out[1163]= :r01 + 3 t +

t3

6
, r02 - 2 t + 2 t2>

Again, the constant vector of integration r0 = Xr01, r02\ = X0, 0\ equals the initial position:

In[1164]:= Solve@r@0D � 80, 0<, 8r01, r02<D
Out[1164]= 88r01 ® 0, r02 ® 0<<
Hence, rHtL = J t3

6
+ 3 tN i + I2 t2 - 2 tM j.

Components of Acceleration

There are two components of acceleration: tangential and normal.  More precisely, the acceleration vector a can be decomposed

as  a = aT  T + aN  N,  where  aT =
d2 s

dt2
=

a × v
ÈÈ v ÈÈ  is  the  tangential  component  and  aN = ΚI ds

dt
M2

=
ÈÈ a ´ v ÈÈ

ÈÈ v ÈÈ  is  the  normal  component.

Moreover, one has aT
2 + aN

2 = °a´2 so that aN = ÈÈ a ÈÈ2 -aT
2  and aT = ÈÈ a ÈÈ2 -aN

2 .

Example 13.14.  Determine the tangential and normal components of acceleration for the vector function r HtL = Yt3, t2, t].
Solution: 

In[1165]:= Clear@r, v, sD
r@t_D = 8t^3, t^2, t<
r'@tD
r''@tD

Out[1166]= 9t3, t2, t=
Out[1167]= 93 t2, 2 t, 1=
Out[1168]= 86 t, 2, 0<
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In[1169]:= speed = Simplify@Sqrt@r'@tD.r'@tDDD
Out[1169]= 1 + 4 t2 + 9 t4

The result in the last output represents the speed at time t.  In order to secure the tangential component of the acceleration, we

differentiate the previous output: 

In[1170]:= at = D@speed, tD
Out[1170]=

8 t + 36 t3

2 1 + 4 t2 + 9 t4

The normal component of the acceleration is

In[1171]:= an = r''@tD.r''@tD - at2

Out[1171]= 4 + 36 t2 -

I8 t + 36 t3M2

4 I1 + 4 t2 + 9 t4M
In[1172]:= Simplify@anD
Out[1172]= 2

1 + 9 t2 + 9 t4

1 + 4 t2 + 9 t4

NOTE:  The components of acceleration  can also be found through the formulas aT =
a × v
ÈÈ v ÈÈ  and aN =

ÈÈ a ´ v ÈÈ
ÈÈ v ÈÈ ,  confirmed using

Mathematica as follows:

In[1173]:= at = r''@tD.r'@tD �Sqrt@r'@tD.r'@tDD
an = Sqrt@Cross@r''@tD, r'@tDD.Cross@r''@tD, r'@tDDD �Sqrt@r'@tD.r'@tDD

Out[1173]=
4 t + 18 t3

1 + 4 t2 + 9 t4

Out[1174]=
4 + 36 t2 + 36 t4

1 + 4 t2 + 9 t4

� Exercises 

1. Calculate the velocity and acceleration vectors and the speed at the time indicated:
a) rHtL = t2 i + H1 - tL j + I5 t2M k, t = 2.

b) rHtL = cos t i + sin t j + tan H2 tL k, t =
Π

6
.

2. Sketch the path rHtL = I1 - t2M i + H1 - tL j for -3 £ t £ 3 and compute the velocity and acceleration vectors at t = 0, t = 1, and
t = 2.

3. Find vHtL given aHtL and the initial velocity v0.

a) aHtL = t i + 3 j, vH0L =
1
2

 i + 2 j. 

b) aHtL = e2 t  i + 0 j + Ht + 2L k, vH0L = i - 3 j + 2 k.

4. Find rHtL and vHtL given aHtL together with the initial velocity and position at rest:

a) aHtL = e3 t  i + 4 t j + Ht - 2L k, vH0L = 0 i + 0 j + k, rH0L = 0 i + 3 j + 4 k.

b) aHtL = 0 i + 0 j + sin t k, vH0L = i + j, rH0L = i.
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4. Find rHtL and vHtL given aHtL together with the initial velocity and position at rest:

a) aHtL = e3 t  i + 4 t j + Ht - 2L k, vH0L = 0 i + 0 j + k, rH0L = 0 i + 3 j + 4 k.

b) aHtL = 0 i + 0 j + sin t k, vH0L = i + j, rH0L = i.

5. Find the decomposition of aHtL into its tangential and normal components at the indicated point:

a) rHtL = H3 - 4 tL i + Ht + 1L j + t2 k at t = 1.

b) rHtL = t i + e-t  j + t e-t  k at t = 0.

6. Show that the tangential and normal components of acceleration of the helix given by rHtL = Hcos tL i + Hsin tL j + t k are equal to

0 and 1, respectively.
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Chapter 14  Differentiation in Several Variables
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

� 14.1.  Functions of Two or More Variables

Students should read Section 14.1 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

� 14.1.1.  Plotting Level Curves using ContourPlot

We begin with plotting level curves f Hx, yL = c of a function of two variables. The command to plot level curves is  Contour-

Plot[f,{x,a,b},{y,c,d}].

Most of the options for ContourPlot are the same as those for Plot.  In the following example we consider the option Contours. 

Example 14.1.  Plot the level curves of f Hx, yL = x2 + x y - y2 .

Solution:  Let us first plot the level curves using the default settings of Mathematica. 

In[1175]:= Clear@x, y, fD
f@x_, y_D := x2 + x y - y2

In[1177]:= ContourPlot@f@x, yD, 8x, -5, 5<, 8y, -5, 5<, ImageSize ® 8250<D

Out[1177]=

-4 -2 0 2 4

-4

-2

0

2

4

To get the level curves on the xy-plane without the shading, the colors, and the frame, but with the coordinate axes, we use the

following options of ContourPlot.  
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In[1178]:= ContourPlot@f@x, yD, 8x, -5, 5<, 8y, -5, 5<, Frame ® False,

Axes ® True, ContourShading ® False, ImageSize ® 8250<D

Out[1178]=
-4 -2 2 4

-4

-2

2

4

Contours  is an option of ContourPlot that can be used in two different ways: Contour®n displays n equally spaced contour

curves while Contour®list plots level curves f Hx, yL = c where c is an element of the list list. 

To plot 15 level curves, we evaluate

In[1179]:= ContourPlot@f@x, yD, 8x, -1, 1<, 8y, -1, 1<, Contours ® 15, ImageSize ® 8250< D

Out[1179]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Here is an example when list = 8-10, -5, -2, -1, 0, 1, 2, 5, 10<. 
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In[1180]:= ContourPlot@f@x, yD, 8x, -5, 5<, 8y, -5, 5<,
Contours ® 8-10, -5, -2, -1, 0, 1, 2, 5, 10<, ImageSize ® 8250<D

Out[1180]=

-4 -2 0 2 4

-4

-2

0

2

4

� 14.1.2.  Plotting Surfaces using Plot3D

Plot3D  is the three-dimensional analog of the Plot  command. Given an expression in two variables  and the domain for the

variables, Plot3D produces a surface plot. 

The basic syntax to plot the graph of a function of two variables is Plot3D[ f,{x, a, b},{y, c, d}], where f is a function of x and y

with  a £ x £ b and c £ y £ d.

The command to plot the graphs of two or more functions on the same coordinate axes is Plot3D[{f, g, h, .... }, {x, a, b}, {y, c,
d}], where f, g, h, ...  are the functions to be plotted. 

We will begin with the default settings of plotting a graph of a function of two variables.

Example 14.2.  Plot f Hx, yL = sinHx - cos yL.
Solution:

In[1181]:= Plot3D@Sin@x - Cos@yDD, 8x, -3, 3<, 8y, -3, 3<, ImageSize ® 8250<D

Out[1181]=

-2

0

2

-2

0

2

-1.0

-0.5

0.0

0.5

1.0

Example 14.3.  Plot the graphs of f Hx, yL = 3 x + 4 y - 3 and g Hx, yL = 10 sinHxyL on the same axes.

Solution:  We will use red color for the graph of f  and blue for that of g. This is given using the option PlotStyle.
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Solution:  We will use red color for the graph of f  and blue for that of g. This is given using the option PlotStyle.

In[1182]:= Plot3D@83 x + 4 y - 3, 10 Sin@x yD<, 8x, -3, 3<,8y, -3, 3<, PlotStyle ® 8Red, Blue<, ImageSize ® 8250<D

Out[1182]=

-2

0

2

-2

0

2

-20
-10

0

10

NOTE: One of the most significant improvements of Mathematica 6 over the previous editions is its graphics capability.  Plot3D
has many options.  Evaluate the command Options[Plot3D] to see the many options you have to plot a nice graph. 

We will discuss some of these options below.

ViewPoint

In Mathematica 6.0, we can rotate the graph of a function of two variables by simply clicking on the graph and dragging the
mouse around to see the graph form any point of view.

The option ViewPoint specifies the point in space from which the observer looks at a graphics object. The syntax for choosing a

view point of a surface is Plot3D[f[x, y], {x, a, b}, {y, c, d}, ViewPoint®{A,  B, C} ]. The default value for {A, B, C}  is {1.3,-
2.4,2.0}. This may be changed by entering values directly.  

To view a graph from directly in front 80, -2, 0<; in front and up 80, -2, 2<; in front and down 80, -2, -2<; left hand corner

8 -2, -2, 0<;  directly above  80, 0, 2<. 
Plot3D[ f[x, y], {x, a, b}, {y, c, d}, ViewPoint ® view ]  produces a plot viewed from view. The possible values of view  are

Above (along positive z-axis), Below (along negative z-axis), Front (along negative y-axis), Back (along  positive y-axis), Left

(along pnegative x-axis), and Right (along positive x-axis).

Example 14.4.  Plot f Hx, yL = cos x sin y using ViewPoint option to view the graph from various view points.

Solution: We leave it to the reader to navigate all of the above choices. We will consider a few of them. 

In[1183]:= Clear@fD
f@x_, y_D = Cos@xD Sin@yD

Out[1184]= Cos@xD Sin@yD
Here is a plot of the graph using the default setting for ViewPoint: 
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In[1185]:= Plot3D@ f@x, yD, 8x, -2 Pi, 2 Pi<, 8y, -2 Pi, 2 Pi< , PlotRange ® All,

ImageSize ® 8250< D

Out[1185]=

-5

0

5
-5

0

5

-1.0

-0.5

0.0

0.5

1.0

View from directly in front:

In[1186]:= Plot3D@ f@x, yD, 8x, -2 Pi, 2 Pi<, 8y, -2 Pi, 2 Pi<, ViewPoint ® Front ,

PlotRange ® All , ImageSize ® 8250<D

Out[1186]=

-5
0

5

-5 0 5
-1.0

-0.5

0.0

0.5

1.0

View from in front and up:

In[1187]:= Plot3D@ f@x, yD, 8x, -2 Pi, 2 Pi<, 8y, -2 Pi, 2 Pi<, ViewPoint ® 80, -2, 2<,

PlotRange ® All, ImageSize ® 8250<D

Out[1187]=

-5 0 5

-5

0

5
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-0.5

0.0

0.5

1.0

View from in front and down:
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In[1188]:= Plot3D@ f@x, yD, 8x, -2 Pi, 2 Pi<, 8y, -2 Pi, 2 Pi<, ViewPoint ® 80, -2, -2<,

PlotRange ® All, ImageSize ® 8250<D

Out[1188]=

-5 0 5

-5

0

5

-1.0

-0.5

0.0
0.5
1.0

View from directly above:

In[1189]:= Plot3D@ f@x, yD, 8x, -2 Pi, 2 Pi<, 8y, -2 Pi, 2 Pi<, ViewPoint ® Above,

PlotRange ® All, Ticks ® 8Automatic, Automatic, 8-1, 0, 1<<,

ImageSize ® 8250<D

Out[1189]=

-1
0

1

-5 0 5

-5

0

5

View from the right:

In[1190]:= Plot3D@ f@x, yD, 8x, -2 Pi, 2 Pi<, 8y, -2 Pi, 2 Pi<, ViewPoint ® Right,

PlotRange ® All, ImageSize ® 8250<D

Out[1190]=

-5
0

5

-5 0 5-1.0

-0.5

0.0

0.5

1.0

NOTE:  As we pointed out earlier,  we can also select  different  viewpoints by clicking on the graph and dragging the mouse
around until we get the desired viewpoint.
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NOTE:  As we pointed out earlier,  we can also select  different  viewpoints by clicking on the graph and dragging the mouse
around until we get the desired viewpoint.

Mesh, MeshStyle, MeshShading 

The option Mesh specifies the type of mesh that should be drawn.

The option MeshStyle specifies the style in which a mesh should be drawn. 

The option MeshShading is an option for specifying a list of colors to be used between mesh divisions.

We illustrate some uses of these options in the example below. 

Example 14.5.  Plot f Hx, yL = cos x sin y using various options involving Mesh. 

Solution: 

In[1191]:= Clear@fD
f@x_, y_D = Cos@xD Sin@yD

Out[1192]= Cos@xD Sin@yD
To plot a graph without a mesh we use the setting Mesh®None.

In[1193]:= Plot3D@ f@x, yD, 8x, -2 Pi, 2 Pi<, 8y, -2 Pi, 2 Pi< , Mesh ® None,

ImageSize ® 8250< D

Out[1193]=

-5

0

5
-5

0

5

-1.0

-0.5

0.0

0.5

1.0

Mesh®n plots a surface with only n ´ n meshes. 
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In[1194]:= Plot3D@ f@x, yD, 8x, -2 Pi, 2 Pi<, 8y, -2 Pi, 2 Pi< , Mesh ® 8 ,

ImageSize ® 8250<D

Out[1194]=
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We can choose the color of the mesh using MeshStyle. 

In[1195]:= Plot3D@ f@x, yD, 8x, -2 Pi, 2 Pi<, 8y, -2 Pi, 2 Pi< , MeshStyle ®8Red, Black<, ImageSize ® 8250< D

Out[1195]=
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0

5
-5

0

5

-1.0

-0.5

0.0

0.5

1.0

Here is another use of MeshStyle:

In[1196]:= Plot3D@ f@x, yD, 8x, -2 Pi, 2 Pi<, 8y, -2 Pi, 2 Pi< , MeshStyle ®8Dashing@0.01D, None<, ImageSize ® 8250< D

Out[1196]=

-5

0

5
-5

0

5

-1.0

-0.5

0.0

0.5

1.0

To display a plot with selected colors between meshes we use MeshShading:
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To display a plot with selected colors between meshes we use MeshShading:

In[1197]:= Plot3D@f@x, yD, 8x, -2 Pi, 2 Pi<, 8y, -2 Pi, 2 Pi<,
MeshShading ® 88Blue, Red, White<, 8Purple, Green, Black<<, ImageSize ® 8250< D

Out[1197]=

-5

0

5
-5

0

5

-1.0

-0.5

0.0

0.5

1.0

Here is a "neat example" in Mathematica 6.0:

In[1198]:= Plot3D@Hx^2 - y^2L � Hx^2 + y^2L^2, 8x, -1.5, 1.5<, 8y, -1.5, 1.5<,
BoxRatios ® Automatic, PlotPoints ® 25, MeshFunctions ® 8ð3 &<,
MeshStyle ® Purple, MeshShading ® 8None, Green, None, Yellow<, ImageSize ® 8250<D

Out[1198]=

-1
0

1

-1

0

1

-2

0

2

BoxRatios

The option BoxRatios specifies the ratio of the lengths of the sides of the box. This is analogous to specifying the AspectRatio
of a two-dimensional plot.  For Plot3D the default setting is BoxRatios®Automatic. 

Example 14.6.  Plot f Hx, yL = e1-x2-y2
 using the BoxRatio option.

Solution:

In[1199]:= Clear@fD
f@x_, y_D = E1-x2- y2

Out[1200]= ã1-x2-y2
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In[1201]:= Plot3D@ f@x, yD, 8x, -2, 2<, 8y, -2, 2<, ImageSize ® 8250<D

Out[1201]=
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0

1

2
-2

-1

0

1

2

0

1

2

In[1202]:= Plot3D@ f@x, yD, 8x, -2, 2<, 8y, -2, 2<, BoxRatios ® 81, 1, 0.62`<,

ImageSize ® 8250<D

Out[1202]=
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1

2

AxesLabel

The option AxesLabel  is a command used to label the axes in plotting.

Example 14.7.  Plot f Hx, yL = 9 - x2 - y2  using the AxesLabel option.

Solution:

In[1203]:= Clear@fD
f@x_, y_D = 9 - x2 - y2

Out[1204]= 9 - x2 - y2
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In[1205]:= Plot3D@f@x, yD, 8x, -3, 3<, 8y, -3, 3<, AxesLabel ® 8"x ", "y ", "z "<,

ImageSize ® 8250<, ImagePadding ® 8815, 15<, 815, 15<<D

Out[1205]=

-2

0

2
x -2

0

2

y

0

1

2

3

z

NOTE: To label a graph, use the PlotLabel option as shown following:

In[1206]:= Plot3D@f@x, yD, 8x, -3, 3<, 8y, -3, 3<, AxesLabel ® 8"x ", "y ", "z "<,

PlotLabel ® "Upper hemisphere", BoxRatios ® Automatic, ImageSize ® 8250<,

ImagePadding ® 8815, 15<, 815, 25<<D

Out[1206]=

Upper hemisphere

-2

0

2
x -2

0

2

y

0

1

2

3

z

ColorFunction

The option ColorFunction specifies a function to apply to the values of the function being plotted to determine the color to use

for a particular  region on the xy-plane.  It is an option for Plot3D,  ListPlot3D,  DensityPlot,  and ContourPlot.   The default

setting for ColorFunction is ColorFunction®Automatic.  ColorFunction®Hue yields a range of colors.

Example 14.8.  Plot f Hx, yL = sinIx2 + y2M + e1- x 2-y2
 in various colors using the ColorFunction option.  

Solution:

In[1207]:= Clear@f, x, yD
f@x_, y_D = SinAx2 + y2E + E1-x2- y2

Out[1208]= ã1-x2-y2 + SinAx2 + y2E
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In[1209]:= Plot3D@f@x, yD, 8x, -Pi, Pi<, 8y, -Pi, Pi<, ColorFunction ® Hue,

ImageSize ® 8250<D

Out[1209]=

-2

0

2

-2

0

2

-1

0

1

2

Here are other ways to use ColorFunction.

In[1210]:= Plot3D@f@x, yD, 8x, -Pi, Pi<, 8y, -Pi, Pi<, ColorFunction ® "Rainbow",

ImageSize ® 8250< D

Out[1210]=

-2

0

2

-2

0

2

-1

0

1

2

In[1211]:= Plot3D@f@x, yD, 8x, -Pi, Pi<, 8y, -Pi, Pi<, ColorFunction ®

"BlueGreenYellow", ImageSize ® 8250<D

Out[1211]=

-2

0

2

-2

0

2

-1

0

1

2

NOTE: We can use PlotStyle option to select color for graphs. The plot below uses this option. 
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In[1212]:= Plot3D@f@x, yD, 8x, -Pi, Pi<, 8y, -Pi, Pi<, PlotStyle ® Yellow,

ImageSize ® 8250< D

Out[1212]=

-2

0

2

-2

0

2

-1

0

1

2

RegionFunction

The option RegionFunction specifies the region to include in the plot drawn.

Example 14.9.  Plot f Hx, yL = : 10 sin H3 x - yL, if x2 + y2 < 4;

x2 + y2 - 5, otherwise
.   

Solution:  We will use the command RegionFunction  to specify the domain x2 + y2 < 4 as follows.  Note that we have used

Show to display the graphs.  

In[1213]:= Clear@plot1, plot2D
plot1 = Plot3D@10 Sin@3 x - yD, 8x, -4, 4<, 8y, -4, 4<, PlotStyle ® Blue,

RegionFunction ® Function@8x, y, z<, x^2 + y^2 < 4DD;

plot2 = Plot3DA x2 + y2 - 5, 8x, -4, 4<, 8y, -4, 4<, PlotStyle ® Red,

RegionFunction ® Function@8x, y, z<, x^2 + y^2 ³ 4DE;

Show@plot1, plot2, ImageSize ® 8250<D

Out[1216]=
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If we want to focus on a particular part of a surface defined by a function, we can use the option RegionFunction. The following
example shows this point.  
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Example 14.10.  Plot the graph of f Hx, yL = x2 - 3 x y - 2 y2  and show the portion of the surface direclty above the unit circle

centered at the origin.

Solution: We will use the option ViewPoint.

In[1217]:= Clear@plot1, plot2, f, x, yD
f@x_, y_D = x2 - 3 x y - 2 y2

plot1 = Plot3D@f@x, yD, 8x, -4, 4<, 8y, -4, 4<, PlotStyle ® Blue,

RegionFunction ® Function@8x, y, z<, x^2 + y^2 < 1 DD;

plot2 = Plot3D@f@x, yD , 8x, -4, 4<, 8y, -4, 4<, PlotStyle ® Red,

RegionFunction ® Function@8x, y, z<, x^2 + y^2 > 1 DD;

Show@plot1, plot2 , ViewPoint ® Front, ImageSize ® 8250< D
Out[1218]= x2 - 3 x y - 2 y2

Out[1221]=

-4
-2 0 2 4

-4 -2 0 2 4

-2

-1

0

1

�  14.1.3.  Plotting Parametric Surfaces using ParametricPlot3D

ParametricPlot3D is a direct analog of ParametricPlot.  Depending on the input, ParametricPlot3D  produces a space curve or

a surface. ParametricPlot3D[{f, g, h}, {t, a, b }] produces a three-dimensional space curve parametrized by the variable t which

runs from  a to b. ParametricPlot3D[{f, g, h}, {t, a, b },{u, c, d}] produces a two-dimensional surface parametrized by t and u.

Options are given to ParametricPlot3D the same way as for  Plot3D. Most of the options are the same.

Example 14.11.  Plot the curve that is parametrized by x = sin t, y = cos t and z = t � 3 with 0 £ t £ 2 Π.  

Solution:
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In[1222]:= ParametricPlot3DB:Sin@tD, Cos@tD,
t

3
>, 8t, 0, 2 Π<, ImageSize ® 8250<,

ImagePadding ® 8815, 15<, 815, 15<<F

Out[1222]=

-1.0
-0.5

0.0
0.5

1.0

-1.0

-0.5

0.0

0.5
1.0

0.0

0.5

1.0

1.5

2.0

Example 14.12.   Plot  the  surface  that  is  parametrized  by  x = u cos u H4 + cos Hu + vLL,  y = u sin u H4 + cos Hu + vLL,  and

z = u sin Hu + vL.
Solution:

In[1223]:= ParametricPlot3D@8u Cos@uD H4 + Cos@u + vDL, u Sin@uD H4 + Cos@u + vDL, u Sin@u + vD<,8u, 0, 4 Π<, 8v, 0, 2 Π<, ImageSize ® 8250<D

Out[1223]=

0

50

-40

-20
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20

40
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0
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�  14.1.4.  Plotting Level Surfaces using ContourPlot3D

ContourPlot3D  is  the  command used  to  plot  level  surfaces  of  functions  of  three  variables.   Its  syntax is  ContourPlot3-
D[f,{x,a,b}, {y,c,d},{z,e,f}].  Most of the Options for ContourPlot3D  are the same as those of Plot3D.  Below we will consider

the option Contours of ContourPlot3D. 

 Example 14.13.  Plot level surfaces of f Hx, y, zL = x2 + y2 + z2.
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In[1224]:= Clear@x, y, z, fD
f@x_, y_, z_D = x2 + y2 + z2

ContourPlot3D@f@x, y, zD, 8x, -3, 3<, 8y, -3, 3<, 8z, -3, 3<, ImageSize ® 8250<D
Out[1225]= x2 + y2 + z2

Out[1226]=
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0

2

-2

0

2

The following displays five (5) equally spaced contour surfaces of f . 

In[1227]:= ContourPlot3D@f@x, y, zD, 8x, -3, 3<, 8y, -3, 3<, 8z, -3, 3<,
Contours ® 5, ImageSize ® 8250<D

Out[1227]=
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0
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0

2

The following  displays three level surfaces f Hx, y, zL = c, where c = 1, 4, 9. 
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In[1228]:= ContourPlot3D@f@x, y, zD, 8x, -3, 3<, 8y, -3, 3<, 8z, -3, 3<,
Contours ® 81, 4, 9<, ImageSize ® 8250<D

Out[1228]=
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0

2

-2

0
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Notice that we only see one sphere. The other two are enclosed in the sphere of radius 3 corresponding to c = 9.  One way to

remedy this is to plot the level surfaces one by one. For this we use the GraphicsArray command. First let us define the level
surfaces as function of c 

In[1229]:= Clear@c, plotD
plot@c_D := ContourPlot3D@f@x, y, zD, 8x, -3, 3<, 8y, -3, 3<, 8z, -3, 3<,
Contours ® 8c<D

Here are the three level surfaces corresponding to c = 1, 4, 9. 

In[1231]:= Show@GraphicsArray@8plot@1D, plot@4D, plot@9D<DD

Out[1231]=
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� Exercises 

1. Plot the level curves and the graphs of each of the following functions:
a)  f Hx, yL = x y5 - x5 y for -10 £ x £ 10, -10 £ y £ 10.

b)  f Hx, yL =
x2+2 y

1+x2+y2
 for -10 £ x £ 10, -10 £ y £ 10.

c)  f Hx, yL = Hsin y L ecos x for -2 Π £ x £ 2 Π, -2 Π £ y £ 2 Π.

d)  f Hx, yL = sinHx + sinHyLL for -4 Π £ x £ 4 Π, -4 Π £ y £ 4 Π.
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2. Use at least two nondefault options to plot the following functions:
a)  f Hx, yL = sin Hx - 2 yL e1�Hy-xL for  -2 Π £ x £ 2 Π, -2 Π £ y £ 2 Π .  

b)  f Hx, yL = 4 - 3 È x È -2 È y È for -10 £ x £ 10, -10 £ y £ 10.

c)  f Hx, yL = tanh-1Hx � yL for -5 £ x £ 5, -5 £ y £ 5. 

3. Plot f Hx, yL = : x2 + y2 - 4 if x2 + y2 < 4

4 - x2 + 3 y2 otherwise
  .   

4. Plot the portion of the helicoid (spiral ramp) that is defined by:
x = u cos v,  y = u sin v, z = v for 0 £ u £ 3 and  -2 Π £ v £ 2 Π.

5. Use ContourPlot3D to plot the level surfaces of the function f Hx, y, zL = 9 - x2 - y2 - z2.

� 14.2.  Limits and Continuity

Students should read Section 14.2 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

� 14.2.1.  Limits

If f Hx, yL is a function of x and y, and if the domain of f  contains a circle around the point Ha, bL, we say that the limit of f  at

Ha, bL is L if and only if f Hx, yL can be arbitrarily close to L for all Hx, yL arbitrarily close Ha, bL.  
More precisely, for a given Ε > 0 there exists a ∆ > 0 such that for every Hx, yL is in the domain of f ,

0 < Hx - aL2 + Hy - bL2
< ∆ �   f Hx, yL - L¤ < Ε.

If this is the case we write

   limHx,yL®Ha,bL f Hx, yL = L.

The Limit command of Mathematica is restricted to functions of one variable. However, we can use it twice to find the limit of
function of two variables provided the limit exists.

Example 14.14.  Find limHx,yL®H3,4L Ix2 + y2M.
Solution: We can easliy determine that the limit exists. We can find the limit by evaluating

In[1232]:= LimitALimitAx2 + y2, x ® 3E, y ® 4E
Out[1232]= 25

The plot following confirms this. 
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In[1233]:= Clear@plot1, plot2D
plot1 = Plot3DAx2 + y2, 8x, 1, 4<, 8y, 3, 5<E;
plot2 = Graphics3D@8Red, PointSize@.025D, Point@83, 4, 25<D<D;
Show@plot1, plot2, ImageSize ® 8250<, ImagePadding ® 8815, 15<, 815, 15<<D

Out[1236]=
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Example 14.15.   Find limHx,yL®H4,1L 3 x+y2

x-4 y
.

Solution: We will evaluate the limit in two different orders. The limit in which we use limit with x first and then with y is 

In[1237]:= Clear@f, x, yD
f@x_, y_D =

3 x + y2

x - 4 y

Out[1238]=
3 x + y2

x - 4 y

The limit in which we use limit with x first and then with y is 

In[1239]:= Limit@Limit@f@x, yD, x ® 4D, y ® 1D
Out[1239]= -¥

The limit in which we use limit with y first and then with x is 

In[1240]:= Limit@Limit@f@x, yD, y ® 1D, x ® 4D
Out[1240]= ¥

Here is the plot of the graph near the point H4, 1L. Observe that the graph of the function is in green and the point H4, 1, 0L is in

red. For a better comaprison, we have colored the xy-plane light blue. You may need to rotate the graph to see the point H4, 1, 0L
on the xy-plane and see how the graph behaves when Hx, yL is close to H4, 1L.
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In[1241]:= Clear@plot1, plot2D
plot1 = Plot3D@8f@x, yD, 0<, 8x, 3, 5<,8y, 0, 2<, PlotStyle ® 8Green, LightBlue<, PlotPoints ® 100D;
plot2 = Graphics3D@8Red, PointSize@.025D, Point@84, 1, 0<D<D;
Show@plot1, plot2, ImageSize ® 8250<,
ImagePadding ® 8815, 15<, 815, 15<<D

Out[1244]=
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Here is the animation with x as the animation parameter.

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

In[1245]:= Animate@Plot@f@x, yD, 8y, 0, 3<, PlotRange ® 8-20, 20<D, 8x, 3, 5<D
Out[1245]=

Example 14.16.  Find limHx,yL®H0,0L sin x sin y

x y
.

Solution: We will evaluate the limit in two different orders. 

In[1246]:= Clear@f, x, yD
f@x_, y_D =

Sin@x yD
x y

Out[1247]=
Sin@x yD

x y

In[1248]:= Limit@Limit@f@x, yD, x ® 0D, y ® 0D
Out[1248]= 1

In[1249]:= Limit@Limit@f@x, yD, y ® 0D, x ® 0D
Out[1249]= 1

Here is the plot of the graph and the point H0, 0, 1L.   
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In[1250]:= Clear@plot1, plot2D
plot1 = Plot3D@f@x, yD, 8x, -1, 1<, 8y, -1, 1<, PlotStyle ® GreenD;
plot2 = Graphics3D@8Red, PointSize@.02D, Point@80, 0, 1<D<D;
Show@plot1, plot2, ImageSize ® 8250<D

Out[1253]=
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If we rotate this graph to a suitable position, we notice that the limit exists.  Here are animations with x  and y  as animation

parameters, respectively.

In[1254]:= Animate@Plot@f@x, yD, 8x, -2, 2<, PlotRange ® 80, 1<D, 8y, -2, 2<D
Out[1254]=

In[1255]:= Animate@Plot@f@x, yD, 8y, -2, 2<, PlotRange ® 80, 1<D, 8x, -2, 2<D
Out[1255]=

Example 14.17.  Find limHx,yL®H0,0L x ln y.

Solution:

In[1256]:= Clear@f, x, yD
f@x_, y_D = x Log@yD

Out[1257]= x Log@yD
In[1258]:= Limit@Limit@f@x, yD, x ® 0D, y ® 0D
Out[1258]= 0

In[1259]:= Limit@Limit@f@x, yD, y ® 0D, x ® 0D
Out[1259]= Indeterminate
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In[1260]:= Clear@plot1, plot2D
plot1 = Plot3D@8f@x, yD, 0<, 8x, -1, 1<, 8y, -1, 1<, PlotStyle ® 8 Green, LightBlue<D;
plot2 = Graphics3D@8Red, PointSize@.025D, Point@80, 0, 0<D<D;
Show@plot1, plot2, ImageSize ® 8250<,
ImagePadding ® 8815, 15<, 815, 15<<D

Out[1263]=
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Here is the animation with x as the animation parameter.

In[1264]:= Animate@Plot@f@x, yD, 8y, -2, 2<, PlotRange ® 8-10, 10<D, 8x, -2, 2<D
Out[1264]=

Example 14.18.  Consider the function f Hx, yL =
x y2

x2+y4
. Show that limHx,yL®H0,0L f Hx, yL does not exist. 

Solution:

In[1265]:= Clear@f, x, yD
f@x_, y_D =

x y2

x2 + y4

Out[1266]=
x y2

x2 + y4

In[1267]:= Limit@Limit@f@x, yD, x ® 0D, y ® 0D
Out[1267]= 0

In[1268]:= Limit@Limit@f@x, yD, y ® 0D, x ® 0D
Out[1268]= 0

In[1269]:= Limit@Limit@f@x, yD, y ® m xD, x ® 0D
Out[1269]= 0

However, note that the limit along the curve y = x  is  

In[1270]:= LimitBLimitBf@x, yD, y ® x F, x ® 0F
Out[1270]=

1

2

Hence, the limit does not exist.  Here is the plot of the function:
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Hence, the limit does not exist.  Here is the plot of the function:

In[1271]:= Plot3D@f@x, yD, 8x, -1, 1<, 8y, -1, 1<, ImageSize ® 8250<D

Out[1271]=

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

� 14.2.2  Continiuty

Recall that a function f  of two variables x and y is continuous at the point Ha, bL if and only if limiHx,yL®Ha,bL f Hx, yL = f Ha, bL.

Example 14.19.  Let f Hx, yL = : 1 - x2 - y2, if x2 + y2 < 1

0, if x2 + y2 ³ 1
.  Is f  continuous?

Solution: Clearly f  is continuous at all points inside and outside the circle of radius 1.  To check continuity on the unit circle, we

let x = r cos t and y = r sin t. We then let r ® 1.

In[1272]:= Clear@x, y, r, s, t, fD
f@x_, y_D = 1 - x2 + y2

Out[1273]= 1 - x2 + y2

In[1274]:= x = r Cos@tD
y = r Sin@tD

Out[1274]= r Cos@tD
Out[1275]= r Sin@tD
In[1276]:= Simplify@f@x, yDD
Out[1276]= 1 - r2

In[1277]:= Limit@f@x, yD, r ® 1D
Out[1277]= 0

The command below evaluates f on the circle.

In[1278]:= Simplify@f@x, yD �. r ® 1D
Out[1278]= 0

Thus, the limit and the value of f  are equal at all points on the unit circle. Hence, f  is continuous everywhere.  Here is the graph.
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In[1279]:= Clear@plot1, plot2D
plot1 = Plot3D@f@x, yD, 8x, -5, 5<, 8y, -5, 5<, PlotStyle ® Red,

RegionFunction ® Function@8x, y, z<, x^2 + y^2 < 1D, Mesh ® NoneD;

plot2 = Plot3D@ 0, 8x, -5, 5<, 8y, -5, 5<, PlotStyle ® LightBlue,

RegionFunction ® Function@8x, y, z<, x^2 + y^2 ³ 1D, Mesh ® NoneD;

Show@plot1, plot2, ImageSize ® 8250<D

Out[1282]=

-5

0

5
-5

0

5

0.0

0.5

1.0

� Exercises 

1. Find each of the follwoing limits, if it exists.

a)  limHx,yL®H1,-1L I2 x2 y + x y2M b) limHx,yL®H1,1L 3 x2+y2

x2-y

c)   limHx,yL®H0,0L tan x sin y

x y
 d)  limHx,yL®H0,0L sin x ln y

2. Consider the function f Hx, yL =
x2 +y2

x2+y4
. Show that limHx,yL®H0,0L f Hx, yL does not exist. 

3. Let f Hx, yL = : x2 - y2, if x + y < 0

2 x + y, if x + y ³ 0
.

Is f  continuous?

4. Let f Hx, yL =
x y

x2+y2
. The domain of f  is the whole plane without the origin. Is it possible to define f H0, 0L so that f  is continu-

ous everywhere? Plot the graph of f  to support your conclusions. 

5. The domain of f Hx, yL =
x y

x+y
  is the whole plane without the line y = -x.   Is it possible to define f H0, 0L so that f  is continu-

ous everywhere? Plot the graph of f  to support your conclusions. 

� 14.3.  Partial Derivatives

Students should read Section 14.3 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.
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Recall that the Mathematica command for the partial derivative of a function f with respect to x is D[f, x], and D[f,{x,n}] gives

the nth partial  derivative of  f  with respect  to x.  The  multiple (mixed) partial  derivative of f  with respect  to x1, x2, x3, ... is

obtained by D@f, x1, x2, x3, ...D.  We can access this command from  BasicMathInput. The symbols are ¶� � and ¶�,� � .

Example 14.20.  Find the first partial derivatives of x3 + y2 with respect to x and y .

Solution:  We give two methods of input.

Method 1: We can type all the inputs and the command as follows: 

In[1283]:= Clear@x, yD
D@x^3 + y^2, xD

Out[1284]= 3 x2

In[1285]:= D@x^3 + y^2, yD
Out[1285]= 2 y

Method 2:  We can use the BasicInput palette to enter the inputs.

In[1286]:= ¶x Ix3 + y2M
Out[1286]= 3 x2

In[1287]:= ¶y Ix3 + y2M
Out[1287]= 2 y

Example 14.21.  Find the four second partial derivatives of x3 sinHyL + ex y.  

Solution: Let z = x3 sin y + ex y.  We again demonstrate two methods of input.

Method 1:

We can find zxx by 

In[1288]:= Clear@x, yD
D@x^3 *Sin@yD + E^Hx * yL, 8x, 2<D

Out[1289]= ãx y y2 + 6 x Sin@yD
We can find zyy by 

In[1290]:= D@x^3 *Sin@yD + E^Hx * yL, 8y, 2<D
Out[1290]= ãx y x2 - x3 Sin@yD
We can find zxy by 

In[1291]:= D@x^3 *Sin@yD + E^Hx * yL, x, yD
Out[1291]= ãx y + ãx y x y + 3 x2 Cos@yD
  zyx  is given by  

In[1292]:= D@x^3 *Sin@yD + E^Hx * yL, y, xD
Out[1292]= ãx y + ãx y x y + 3 x2 Cos@yD
NOTE: Clairaut's Theorem states that if the mixed partial derivatives fx y  and fy x  are continuous at a point Hx, yL, then they are

equal: fx y = fy x.  The last two outputs confirm Clairaut's Theorem for this particular example. 
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NOTE: Clairaut's Theorem states that if the mixed partial derivatives fx y  and fy x  are continuous at a point Hx, yL, then they are

equal: fx y = fy x.  The last two outputs confirm Clairaut's Theorem for this particular example. 

Method 2: Here is the input using the palette symbol ¶�,� �:

In[1293]:= Clear@x, yD
¶x,xIx3 *Sin@yD + ãx*yM
¶y,yIx3 *Sin@yD + ãx*yM
¶x,yIx3 *Sin@yD + ãx*yM
¶y,xIx3 *Sin@yD + ãx*yM

Out[1294]= ãx y y2 + 6 x Sin@yD
Out[1295]= ãx y x2 - x3 Sin@yD
Out[1296]= ãx y + ãx y x y + 3 x2 Cos@yD
Out[1297]= ãx y + ãx y x y + 3 x2 Cos@yD
Example 14.22.  Evaluate the first partial derivatives of x y + y z2 + x z at H-1, 2, 3L.
Solution: Recall that Expr �. 9x1 ® a1, x2 ® a2, x3 ® a3, ... = is the command for substituting x1 by a1, x2 by a2, x3 by a3, .... , in

Expr.

In[1298]:= Clear[x,y,z]
D[x*y + y*z^2 + x*z,x]/.{x-> -1, y->2, z->3} 

Out[1299]= 5

In[1300]:= D@x * y + y *z^2 + x *z, yD �. 8x -> -1, y -> 2, z -> 3<
Out[1300]= 8

In[1301]:= D@x * y + y *z^2 + x *z, zD �. 8x -> -1, y -> 2, z -> 3<
Out[1301]= 11

Example 14.23.  Let f Hx, y, zL = y ex + x e-y ln z. Find   fx x x, fx y z, fx z z, fz x z , and fz z x.

Solution:  First we define f Hx, y, zL in Mathematica. We can use the ¶�,� � notation. Since the palette gives only two boxes for

the variables, we need to add one more box. This can be done by using CTRL +, (comma), i.e., hold the CONTROL key and

press the COMMA button.  Note also that the command D[f[x,y,z],x,y,z] gives fxyz. We demonstrate both methods.

In[1302]:= Clear@x, y, z, fD
f@x_, y_, z_D := y * ãx + x *Log@zD * ã-y

In[1304]:= ¶x,x,x f@x, y, zD
Out[1304]= ãx y

In[1305]:= ¶x,y,z f@x, y, zD
Out[1305]= -

ã-y

z
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In[1306]:= ¶x,z,z f@x, y, zD
Out[1306]= -

ã-y

z2

In[1307]:= D@f@x, y, zD, z, x, zD
Out[1307]= -

ã-y

z2

In[1308]:= D@f@x, y, zD, z, z, xD
Out[1308]= -

ã-y

z2

Example 14.24.  Let f  Hx, yL = x y
x2-y2

x2+y2
 if Hx, yL ¹ H0, 0L and f H0, 0L = 0. 

a) Find fxHx, yL and fyHx, yL for Hx, yL ¹ H0, 0L.
b) Use the limit definition to find fxH0, 0L and fyH0, 0L.
c) Find fx y Hx, yL and fy xHx, yL for Hx, yL ¹ H0, 0L.
d) Use the limit definition to find fx yH0, 0L and fy xH0, 0L.
Solution: We will first define f  using the If command.

In[1309]:= Clear@x, y, f, fx, fy, fxy, fyxD
f@x_, y_D = IfB8x, y< ¹ 80, 0<, x y

x2 - y2

x2 + y2
, 0F

Out[1310]= IfB8x, y< ¹ 80, 0<, x y Ix2 - y2M
x2 + y2

, 0F

a)  Let fx and fy denote the partial derivatives with respect to x and y, respectively. Then 

In[1311]:= fx@x_, y_D = D@f@x, yD, xD
fy@x_, y_D = D@f@x, yD, yD

Out[1311]= IfB8x, y< ¹ 80, 0<, -

2 x Ix2 - y2M
Ix2 + y2M2

+
2 x

x2 + y2
Hx yL +

y Ix2 - y2M
x2 + y2

, 0F

Out[1312]= IfB8x, y< ¹ 80, 0<, -

2 y Ix2 - y2M
Ix2 + y2M2

-
2 y

x2 + y2
Hx yL +

x Ix2 - y2M
x2 + y2

, 0F

If we use the FullSimplify command to simplify the preceding output, we get

In[1313]:= FullSimplify@fx@x, yDD
FullSimplify@fy@x, yDD

Out[1313]= ∂ y Ix4+4 x2 y2-y4M
Ix2+y2M2 x ¹ 0 ÈÈ y ¹ 0

Out[1314]= ∂ x5-4 x3 y2-x y4

Ix2+y2M2 x ¹ 0 ÈÈ y ¹ 0

Thus fxHx, yL =
yIx4+4 x3 y2-y4M

Ix2+y2M2
 and  fyHx, yL =

xIx4-4 x2 y2-y4M
Ix2+y2M2

 if Hx, yL ¹ H0, 0L.

b) We use the limit definition fxH0, 0L = limh®0
f H0+h,0L- f H0,0L

h
and fyH0, 0L = limk®0

f H0,0+kL- f H0,0L
k

  to find the partial derivatives at

H0, 0L.
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b) We use the limit definition fxH0, 0L = limh®0
f H0+h,0L- f H0,0L

h
and fyH0, 0L = limk®0

f H0,0+kL- f H0,0L
k

  to find the partial derivatives at

H0, 0L.
In[1315]:= Clear@h, kD

LimitBf@0 + h, 0D - f@0, 0D
h

, h ® 0F
Out[1316]= 0

In[1317]:= LimitBf@0, 0 + kD - f@0, 0D
k

, k ® 0F
Out[1317]= 0

Hence fxH0, 0L = 0 and fyH0, 0L = 0.

c) To find the mixed second partial derivatives, we use fx and fy from the outputs in part a).  Note that the FullSimplify  com-
mand is used to to get a simplified form of the mixed partial derivatives. 

In[1318]:= fxy@x_, y_D = FullSimplify@D@fx@x, yD, yDD
fyx@x_, y_D = FullSimplify@D@fy@x, yD, xDD

Out[1318]= ∂ Hx-yL Hx+yL Ix4+10 x2 y2+y4M
Ix2+y2M3 x ¹ 0 ÈÈ y ¹ 0

Out[1319]= ∂ Hx-yL Hx+yL Ix4+10 x2 y2+y4M
Ix2+y2M3 x ¹ 0 ÈÈ y ¹ 0

Thus fx y =
Hx-yL Hx+yL Ix4+10 x2 y2+y4M

Ix2+y2M3
 and fy x =

Hx-yL Hx+yL Ix4+10 x2 y2+y4M
Ix2+y2M3

 for Hx, yL ¹ H0, 0L. Note that these two functions are equal for

Hx, yL ¹ H0, 0L in conformity with Clairaut's Theorem, since both are continuous when Hx, yL ¹ H0, 0L.
d) We use the limit definition of a partial derivative to compute fxyH0, 0L and fyxH0, 0L.  Recall that we have defined fx as fx[x,y]

and fy as fy[x,y]. 

Then fxyH0, 0L is given by 

In[1320]:= LimitBfx@0 , 0 + kD - fx@0, 0D
k

, k ® 0F
Out[1320]= -1

and fyxH0, 0L is given by 

In[1321]:= LimitBfy@0 + h, 0D - fy@0, 0D
h

, h ® 0F
Out[1321]= 1

Thus,  fxyH0, 0L = -1and  fyxH0, 0L = 1.   Note  that  this  implies  that  the  mixed  partial  derivatives  are  not  continuous  at

Hx, yL = H0, 0L.  To see this graphically, first consider the following graph of f , which confirms that f  has partial derivatives

everywhere. 
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In[1322]:= Plot3D@f@x, yD, 8x, -3, 3<, 8y, -3, 3<, ImageSize ® 8250<D

Out[1322]=

-2

0

2

-2

0

2

-2

0

2

Here are the graphs of fx and fy which now show why the second mixed partials at the origin are not equal.

In[1323]:= Clear@plot1, plot2D
plot1 = Plot3D@fx@x, yD, 8x, -3, 3<, 8y, -3, 3<,

PlotStyle ® Red, AxesLabel ® 8"Graph of z=fx", None, None<D ;

plot2 = Plot3DAfy@x, yD, 8x, -3, 3<, 8y, -3, 3<, PlotStyle ® Blue,

AxesLabel ® 9"Graph of z=fy", None, None=E ;

Show@GraphicsArray@8plot1, plot2<D, ImageSize ® 8420<D

Out[1326]=

-2

0

2
Graph of z= fx -2

0

2
-2

0

2

-2

0

2
Graph of z= fy -2

0

2
-2

0

2

In addition, the graphs of fxy  and fyx  show the mixed partials are not continuous at the origin. This is the main reason why the

inequalities of the mixed partials at the origin does not contradict Clairaut's Theorem.
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In[1327]:= Clear@plot1, plot2D
plot1 = Plot3DAfxy@x, yD, 8x, -3, 3<, 8y, -3, 3<,

PlotStyle ® Red, AxesLabel ® 9"Graph of z=fxy", None, None=E;
plot2 = Plot3DAfyx@x, yD, 8x, -3, 3<, 8y, -3, 3<, PlotStyle ® Blue,

AxesLabel ® 9"Graph of z=fyx", None, None=E;
Show@GraphicsArray@8plot1, plot2<D, ImageSize ® 8420<D

Out[1330]=

-2

0

2
Graph of z= fxy -2

0

2
-1

0

1

-2

0

2
Graph of z= fyx -2

0

2
-1

0

1

� Exercises

1. Let f Hx, yL =
Hx-yL2

x2+y2
.  Find:  

a) fx (1,0) b) fyH1, 0L c) fxy d) fyx e)  fxxy

2. Find the first partial derivatives of z = x3 y2 with respect to x and y. 

3. Find the four second partial derivatives of x2 cosHyL + tanHx eyL.
4. Evaluate the first partial derivatives of f Hx, y, zL = e-z xy + yz2 + xz at H-1, 2, 3L.
5. Let f Hx, y, zL =

x4 y3

z2+sin x
 Find fxxx, fxyz, fxzz, fzxz , and fzzx.

6. Let f  Hx, yL =
x y2

x2+y4
 if Hx, yL ¹ H0, 0L and f H0, 0L = 0. 

a)  Find fxHx, yL and fyHx, yL for Hx, yL ¹ H0, 0L.
b)  Use the limit definition to find fxH0, 0L and fyH0, 0L.
c)  Find fxy Hx, yL and fyxHx, yL for Hx, yL ¹ H0, 0L.
d)  Use the limit definition to find fxyH0, 0L and fyxH0, 0L.

� 14.4.  Tangent Planes

Students should read Section 14.4 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Let z = f Hx, yL be a function of two variables.  The equation of the tangent plane at the point Ha, b, f Ha, bLL is given by 

 z = fxHa, bL Hx - aL + fyHa, bL Hy - bL + f Ha, bL
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 z = fxHa, bL Hx - aL + fyHa, bL Hy - bL + f Ha, bL
Example 14.25.  Let f  Hx, yL = x2 + y2.

a) Find the equation of the tangent plane to the graph of f  at the point H2, 1, 3L.
b) Plot the graph of f  and its tangent plane at H2, 1, 3L.
Solution: Here a = 2, b = 1.

a)

In[1331]:= Clear@f, x, y, zD
f@x_, y_D = x2 + y2

Out[1332]= x2 + y2

Thus, the equation the of the tangent plane is

In[1333]:= A = ¶x f@x, yD �. 8x ® 2, y ® 1<;
B = ¶y f@x, yD �. 8x ® 2, y ® 1<;
z = A Hx - 2L + B Hy - 1L + f@2, 1D;
Simplify@zD

Out[1336]= -5 + 4 x + 2 y

b) Here is a plot of the graph of f:

In[1337]:= plot1 = Plot3D@8f@x, yD, z<, 8x, -10, 10<, 8y, -10, 10<, PlotStyle ® 8Blue, Green<D;
plot2 = ListPointPlot3D@8 82, 1, 3<<, PlotStyle ® 8Red, PointSize@LargeD< D;
Show@plot1, plot2, ImageSize ® 8250<, ImagePadding ® 8815, 15<, 815, 15<<D

Out[1339]=

-10

-5

0

5

10 -10

-5

0

5

10

0

100

200

Example 14.26.  Let f  Hx, yL = x2 y - 6 x y2 + 3 y.  Find the points where  the tangent plane to the graph of f  is parallel to the

xy-plane.

Solution:  For the tangent plane to be parallel to the xy-plane, we must have fx = 0 and fy = 0. 

In[1340]:= Clear@f, x, y D
f@x_, y_D = x2  y - 6 x y2 + 3 y

Out[1341]= 3 y + x2 y - 6 x y2

A tangent plane is parallel to the xy-plane at  
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In[1342]:= Solve@8 D@f@x, yD, xD � 0, D@f@x, yD, yD � 0<D
Out[1342]= ::y ® -

1

3
, x ® -1>, :y ® 0, x ® -ä 3 >, :y ® 0, x ® ä 3 >, :y ®

1

3
, x ® 1>>

Rotate the following graph to see the points of tangencies.

In[1343]:= Plot3D@8f@x, yD, f@-1, -1 �3D, f@1, 1 �3D<, 8x, -1, 1<,8y, -1, 1<, PlotStyle ® 8LightBlue, Green, Red<, PlotRange ® All,

ImageSize ® 8250<, ImagePadding ® 8815, 15<, 815, 15<<D

Out[1343]=

-1.0

-0.5

0.0

0.5

1.0 -1.0

-0.5

0.0

0.5

1.0

-10
-5
0
5

10

� Exercises 

1. Let  f Hx, yL = x3  y + x y2 - 3 x + 4.

a) Find a set of parametric equations of the normal line and an equation of the tangent plane to the surface at the point (1, 2).
b) Graph the surface, the normal line, and the tangent plane found in a).

2. Let f  Hx, yL = x2 + y2.

a) Find the equation of the tangent plane to the graph of f  at the point H2, 1, 5L.
b) Plot the graph of f  and its tangent plane at H2, 1, 5L.
3. Let f  Hx, yL = e-y�x.

a) Find the equation of the tangent plane to the graph of f  at the point H1, 0, 1L.
b) Plot the graph of f  and its tangent plane at H1, 0, 1L.
4. Let f  Hx, yL = cos Hx yL.  Find the points where  the tangent plane to the graph of f  is parallel to the xy-plane.

� 14.5.  Gradient and Directional Derivatives

Students should read Section 14.5 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Recall that the notation for a vector such as u = 2 i + 5 j - 6 k in Mathematica is {2,5,-6}.  The command for the dot product of

two vectors u and v is obtained by typing u.v.

The gradient of f , denoted by Ñ f , at Ha, bL can be obtained by evaluating Ñ f Ha, bL = Y¶x f Ha, bL, ¶y f Ha, bL]. 
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The directional derivative of f  at Ha, bL in the direction of a unit vector u is given by Du f = Ñ f Ha, bL × u.

Example 14.27.  Find the gradient and directional derivative of f Hx, yL = x2 sin 2 y at the point  I1, Π

2
, 0M   in the direction of

v = Y 3
5

, -
4
5

].
Solution:   

In[1344]:= Clear@f, vD
f@x_, y_D := x2 *Sin@2 yD
v = :3

5
,

-4

5
>

Out[1346]= :3
5
, -

4

5
>

The gradient of f  at I1, Π

2
M  is 

In[1347]:= Ñf = 8¶x f@x, yD, ¶y f@x, yD< �. :x -> 1, y ->
Π

2
>

Out[1347]= 80, -2<
Since v is a unit vector, the directional derivative is given by 

In[1348]:= direcderiv = v.Ñf

Out[1348]=
8

5

Example 14.28.  Find the gradient and directional derivative of  f Hx, y, zL = x y + y z + x z at the point  (1, 1, 1)  in the direction

of v = 2 i + j - k.

 Solution:

In[1349]:= Clear@x, y, zD
w = x *y + y *z + x *z

v = 82, 1, -1<
Out[1350]= x y + x z + y z

Out[1351]= 82, 1, -1<
We normalize v:

In[1352]:= unitvector = v �Norm@vD
Out[1352]= : 2

3
,

1

6
, -

1

6
>

The gradient of w = f Hx, y, zL at H1, 1, 1L is 

In[1353]:= Ñw = 8D@w, xD, D@w, yD, D@w, zD< �. 8x -> 1, y -> 1, z -> 1<
Out[1353]= 82, 2, 2<
Hence, the directional derivative is given by 

Chapter 14 295



In[1354]:= direcderiv = unitvector.Ñw

Out[1354]= 2
2

3

Example 14.29.  Plot the gradient vector field and the level curves of the function f Hx, yL = x2 sin 2 y.

Solution:

In[1355]:= Clear@f, fx, fy, x, yD
f@x_, y_D = x2 - 3 x y + y - y2

fx = D@f@x, yD, xD
fy = D@f@x, yD, yD

Out[1356]= x2 + y - 3 x y - y2

Out[1357]= 2 x - 3 y

Out[1358]= 1 - 3 x - 2 y

Thus, the gradient vector field is Ñ f Hx, yL = X 2 x - 3 y, 1 - 3 x - 2 y\.  To plot this vector field, we need to download the pack-

age VectorFieldPlots, which is done by evaluating

In[1359]:= Needs@"VectorFieldPlots`"D
Here is a plot of some level curves and the gradient field.  

In[1360]:= Clear@plot1, plot2D
plot1 = ContourPlot@f@x, yD, 8x, -5, 5<, 8y, -4, 4<,

Axes ® True, Frame ® False, Contours ® 15, ColorFunction ® HueD ;

plot2 = VectorFieldPlot@8fx, fy<, 8x, -5, 5<, 8y, -4, 4<, Axes ® True, Frame ® FalseD;
Show@plot1, plot2, ImageSize ® 8250<D

Out[1363]=
-4 -2 2 4

-4

-2

2

4
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Example 14.30.  Let the temperature T  at a point Hx, yL on a metal plate be given by T Hx, yL =
x

x2+y2
. 

a) Plot the graph of the temperature. 
b) Find the rate of change of temperature at H3, 4L, in the direction of v = i - 2 j.

c) Find the unit vector in the direction of which the temperature increases most rapidly at H3, 4L.
d) Find the maximum rate of increase in the temperature at H3, 4L. 
Solution: 
a)  Here is the graph of T.

In[1364]:= T@x_, y_D =
x

x2 + y2

Out[1364]=
x

x2 + y2

In[1365]:= graphofT =

Plot3D@T@x, yD, 8x, -5, 5<, 8y, -5, 5<, BoxRatios ® 81, 1, 1<, ImageSize ® SmallD

Out[1365]=

-5

0

5

-5

0

5

-0.5

0.0

0.5

b)  Let  u =
v

°v´ .   Then  u  is  a  unit  vector  and  the  rate  of  change  in  temperature  at  H3, 4L  in  the  direction  of  v  is  given by

Du T H3, 4L = Ñ f H3, 4L × u.

In[1366]:= ÑT = 8D@T@x, yD, xD, D@T@x, yD, yD<
v = 81, -2<
u =

v

v.v

u.ÑT �. 8x -> 3, y -> 4< �� N

Out[1366]= :-
2 x2

Ix2 + y2M2
+

1

x2 + y2
, -

2 x y

Ix2 + y2M2
>

Out[1367]= 81, -2<

Out[1368]= : 1

5
, -

2

5
>

Out[1369]= 0.0393548

Thus, the rate of change at H3, 4L in the direction v is 0.0393548.  NOTE: The command //N in the last line of the previous input

converts the output to decimal form. 
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Thus, the rate of change at H3, 4L in the direction v is 0.0393548.  NOTE: The command //N in the last line of the previous input

converts the output to decimal form. 

c) The unit vector in the direction of which the temperature increases most rapidly at H3, 4L is given by 

In[1370]:=
ÑT

Norm@ÑTD �. 8x -> 3, y -> 4<
Out[1370]= : 7

25
, -

24

25
>

d) The maximum rate of increase in the temperature at (3,4) is the norm of the gradient at this point. This can be obtained by: 

In[1371]:= Norm@ÑTD �. 8x -> 3, y -> 4<
Out[1371]=

1

25

� Exercises 

1. Find the gradient and directional derivative of f Hx, yL = sin-1Hx yL at the point  I1, 1, Π

2
M   in the direction of v = X1, -1\. 

2. Let  T Hx, yL = ex y -y2
.

a) Find Ñ T Hx, yL.
b) Find the directional derivative of  T  Hx, yL at the point H3, 5L in the dierection of u = 1 � 2 i + 3 � 2 j.

c) Find the direction of greatest increase in T  from the point H3, 5L.
3. Plot the gradient vector field and the level curves of the function a f  H x , y L = cos x sin 2

 y.

4.  Find the  gradient  and  directional  derivative  of   f  Hx, y, zL = x y e y z + sin Hx zL  at  the  point H1, 1, 0L   in  the  direction of

v = i - j - k.

� 14.6.  The Chain Rule

Students should read Section 14.6 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Example 14.31.  Let x = t2 + s , y = t + s2 and z = x sin y.  Find the first partial derivatives of z with respect to s and t.

Solution:  

In[1372]:= Clear@x, y, z, s, tD
x = t2 + s

y = t + s2

z = x Sin@yD
Out[1373]= s + t2

Out[1374]= s2 + t

Out[1375]= Is + t2M SinAs2 + tE
In[1376]:= D@z, sD
Out[1376]= 2 s Is + t2M CosAs2 + tE + SinAs2 + tE
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In[1377]:= D@z, tD
Out[1377]= Is + t2M CosAs2 + tE + 2 t SinAs2 + tE
Example 14.32.  Find the partial derivatives of z with respect to x and y assuming that the equation x2 z - y z2 = x y defines z as

a function of x and y.

Solution: 

In[1378]:= Clear@x, y, z, r, t, sD
eq = x2 z@x, yD - y z@x, yD2 � x y

Solve@D@eq, xD, D@z@x, yD, xDD
Solve@D@eq, yD, D@z@x, yD, yDD

Out[1379]= x2 z@x, yD - y z@x, yD2 � x y

Out[1380]= ::zH1,0L@x, yD ®
-y + 2 x z@x, yD
-x2 + 2 y z@x, yD >>

Out[1381]= ::zH0,1L@x, yD ®
x + z@x, yD2

x2 - 2 y z@x, yD >>

Example 14.33.  Let f Hx, y, zL = FHrL, where r = x2 + y2 + z2  and F is a twice differentiable function of one variable. 

a) Show that Ñ f = F ' HrL 1
r

 Hx i + y j + z kL.
b) Find the Laplacian of f .

Solution: 
a) 

In[1382]:= Clear@x, y, z, r, f, FD
f@x_, y_, z_D = F@rD
r = x2 + y2 + z2

Out[1383]= F@rD
Out[1384]= x2 + y2 + z2

Here is the gradient of f :

In[1385]:= gradf = 8D@f@x, y, zD, xD, D@f@x, y, zD, yD, D@f@x, y, zD, zD<
Out[1385]= :x F

¢B x2 + y2 + z2 F
x2 + y2 + z2

,
y F¢B x2 + y2 + z2 F

x2 + y2 + z2
,
z F¢B x2 + y2 + z2 F

x2 + y2 + z2
>

With r = x2 + y2 + z2  the preceding output becomes

Ñ f Hx, y, zL = Z x F ' HrL
r

,
y F ' HrL

r
, z F ' HrL

r
^ = F ' HrL 

1
r

 X x , y , z \,
which proves part a).

b) Recall that the Laplacian of f , denoted by D f , is defined by D f = fxx + fyy + fzz. 
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In[1386]:= D@f@x, y, zD, 8x, 2<D + D@f@x, y, zD, 8y, 2<D + D@f@x, y, zD, 8z, 2<D
Out[1386]= -

x2 F¢B x2 + y2 + z2 F
Ix2 + y2 + z2M3�2 -

y2 F¢B x2 + y2 + z2 F
Ix2 + y2 + z2M3�2 -

z2 F¢B x2 + y2 + z2 F
Ix2 + y2 + z2M3�2 +

3 F¢B x2 + y2 + z2 F
x2 + y2 + z2

+

x2 F¢¢B x2 + y2 + z2 F
x2 + y2 + z2

+

y2 F¢¢B x2 + y2 + z2 F
x2 + y2 + z2

+

z2 F¢¢B x2 + y2 + z2 F
x2 + y2 + z2

We simplify this to get

In[1387]:= Simplify@%D
Out[1387]=

2 F¢B x2 + y2 + z2 F
x2 + y2 + z2

+ F¢¢B x2 + y2 + z2 F

which is the same as 2
r

 F '@rD + F ''@rD.

� Exercises 

1. Let x = u2 + sin v, y = u ev�u, and z = y3 ln x .  Find the first partial derivatives of z with respect to u and v.

2. Find the partial derivatives of z with respect to x and y assuming that the equation x2 z - y z2 = x y defines z as a function of x 

and y.

3. Find an equation of the tangent plane to the surface x z + 2 x2 y + y2 z3 = 11 at H2, 1, 1L.

� 14.7.  Optimization

Students should read Section 14.7 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Second Derivative Test: Suppose fxHa, bL = 0 and fyHa, bL = 0.  Define 

DHx, yL = fx x fy y - I fx yM2

The function D is called the discriminant function. 

i)   If DHa, , bL > 0 and fx xHa, bL > 0, then f Ha, bL is a local minimum value.

ii)   If DHa, , bL > 0 and fx xHa, bL < 0, then f Ha, bL is a local maximum value.

iii)  If DHa, , bL < 0, then Ha, b, f Ha, bLL is a saddle point on the graph of f .

iv)  If DHa, bL = 0, then no conclusion can be drawn about the the point Ha, bL.
Example 14.34.  Let f Hx, yL = x4 - 4 x y + 2 y2. 

a)  Find all critical points of f .

b)  Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.

Solution: Since D is used in Mathematica as the command for derivative, we will use disc for the discriminant function D.
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In[1388]:= Clear@f, x, yD
f@x_, y_D = x4 - 4 x y + 2 y2

Out[1389]= x4 - 4 x y + 2 y2

a) The critical points are given by

In[1390]:= cp = Solve@8D@f@x, yD, xD � 0, D@f@x, yD, yD � 0<D
Out[1390]= 88y ® -1, x ® -1<, 8y ® 0, x ® 0<, 8y ® 1, x ® 1<<
b)

In[1391]:= Clear@fxx, discD
fxx@x_, y_D = D@f@x, yD, 8x, 2<D
disc@x_, y_D = D@f@x, yD, 8x, 2<D *D@f@x, yD, 8y, 2<D - HD@D@f@x, yD, xD, yDL2

Out[1392]= 12 x2

Out[1393]= -16 + 48 x2

In[1394]:= TableFormATable@8 cp@@k, 2, 2DD, cp@@k, 1, 2DD , disc@cp@@k, 2, 2DD, cp@@k, 1, 2DDD,
fxx@cp@@k, 2, 2DD, cp@@k, 1, 2DDD, f@cp@@k, 2, 2DD, cp@@k, 1, 2DDD<, 8k, 1, Length@cpD<D,

TableHeadings ® 98<, 9"x ", "y ", " DHx,yL ", " fxx ", "fHx,yL"==E
Out[1394]//TableForm=

x y DHx,yL fxx fHx,yL
-1 -1 32 12 -1

0 0 -16 0 0

1 1 32 12 -1

By the second derivative test we conclude that f  has a local minimum value of -1 at H-1, -1L and H1, 1L, and a saddle point at

H0, 0L.  
Here is the graph of f  and the relevant points.

In[1395]:= Clear@plot1, plot2D
plot1 = Plot3D@f@x, yD, 8x, -2, 2<, 8y, -2, 2<, PlotStyle ® LightBlue, PlotRange ® 10D;
plot2 = Graphics3D@8PointSize@LargeD, Red,

Point@Table@8 cp@@k, 2, 2DD, cp@@k, 1, 2DD , f@cp@@k, 2, 2DD, cp@@k, 1, 2DDD<,8k, 1, Length@cpD<DD<, PlotRange ® 10D;
Show@plot1, plot2, ImageSize ® 8250<D

Out[1398]=

-2

-1

0

1

2 -2

-1

0

1

2

-10

-5

0

5

10

Example 14.35.  Let f Hx, yL = x3 + y4 - 6 x - 2 y2. 

a)  Find all critical points of f .

b)  Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.
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Example 14.35.  Let f Hx, yL = x3 + y4 - 6 x - 2 y2. 

a)  Find all critical points of f .

b)  Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.

Solution: Again, we will use disc to denote the discriminant function D since the letter D is used in Mathematica for the deriva-

tive command. 

In[1399]:= Clear@f, x, yD
f@x_, y_D = x3 + y4 - 6 x - 2 y2

Out[1400]= -6 x + x3 - 2 y2 + y4

a) The critical points are given by

In[1401]:= cp = Solve@8D@f@x, yD, xD � 0, D@f@x, yD, yD � 0<D
Out[1401]= ::y ® -1, x ® - 2 >, :y ® -1, x ® 2 >, :y ® 0, x ® - 2 >,

:y ® 0, x ® 2 >, :y ® 1, x ® - 2 >, :y ® 1, x ® 2 >>
b)

In[1402]:= Clear@fxx, discD
fxx@x_, y_D = D@f@x, yD, 8x, 2<D
disc@x_, y_D = D@f@x, yD, 8x, 2<D *D@f@x, yD, 8y, 2<D - HD@D@f@x, yD, xD, yDL2

Out[1403]= 6 x

Out[1404]= 6 x I-4 + 12 y2M
In[1405]:= TableFormATable@8 cp@@k, 2, 2DD, cp@@k, 1, 2DD , disc@cp@@k, 2, 2DD, cp@@k, 1, 2DDD,

fxx@cp@@k, 2, 2DD, cp@@k, 1, 2DDD, f@cp@@k, 2, 2DD, cp@@k, 1, 2DDD<, 8k, 1, Length@cpD<D,
TableHeadings ® 98<, 9"x ", "y ", " DHx,yL ", " fxx ", "fHx,yL"==E

Out[1405]//TableForm=

x y DHx,yL fxx fHx,yL
- 2 -1 -48 2 -6 2 -1 + 4 2

2 -1 48 2 6 2 -1 - 4 2

- 2 0 24 2 -6 2 4 2

2 0 -24 2 6 2 -4 2

- 2 1 -48 2 -6 2 -1 + 4 2

2 1 48 2 6 2 -1 - 4 2

By the second derivative test we conclude that  f  has local maximum value of 4 2  at J- 2 , 0N, local minimum value of

-1 - 4 2  at J 2 , -1N and J 2 , 1N, and saddle points at J- 2 , -1N, J 2 , 0N, and  J- 2 , 1N.  
Here is the graph of f  and the relevant points.
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In[1406]:= Clear@plot1, plot2D
plot1 =

Plot3D@f@x, yD, 8x, -2.5, 2.5<, 8y, -2.5, 2.5<, PlotStyle ® LightBlue, PlotRange ® 10D;
plot2 = Graphics3D@8PointSize@LargeD, Red, Point@Table@8 cp@@k, 2, 2DD, cp@@k, 1, 2DD ,

f@cp@@k, 2, 2DD, cp@@k, 1, 2DDD<, 8k, 1, Length@cpD<DD<, PlotRange ® 10D;
Show@plot1, plot2, ImageSize ® 8250<D

Out[1409]=

-2

0

2
-2

0

2

-10

-5

0

5

10

Example 14.36.   Let f Hx, yL = 2 x2 - 3 x y - x + y + y2  and let R  be the rectangle in the xy-plane whose vertices are at (0,0),

(2,0), (2,2), and  (0,2). 
a) Find all relative extreme values of f  inside R.

b) Find the maximum and minimum values of f  on R.

Solution:

In[1410]:= Clear@f, x, y, discD
f@x_, y_D = 2 x2 - 3 x * y - x + y + y2 + 5

Out[1411]= 5 - x + 2 x2 + y - 3 x y + y2

In[1412]:= Solve@8¶x f@x, yD == 0, ¶y f@x, yD == 0<, 8x, y<D
Out[1412]= 88x ® 1, y ® 1<<
In[1413]:= disc@x_, y_D = ¶x,xf@x, yD * ¶y,yf@x, yD - H¶x,yf@x, yDL2

Out[1413]= -1

In[1414]:= ¶x,xf@x, yD �. 8x -> 1, y -> 1<
disc@x, yD �. 8x -> 1, y -> 1<

Out[1414]= 4

Out[1415]= -1

Thus, H1, 1L is the local minimum point of f inside R and its local minimum value is f H1, 1L = 5. Next we find the extreme values

of f on the boundary of the rectangle. This is done by considering f as a function of one variable corresponding to each side of R.
Let f1 = f Hx, 0L, f2 = f Hx, 2L, for x between 0 and 2, and f3 = f H0, yL and f4 = f H2, yL, for y between 0 and 2.   We now proceed

as follows:
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In[1416]:= Clear@f1, f2, f3, f4D
f1 = f@x, 0D
f2 = f@x, 2D
f3 = f@0, yD
f4 = f@2, yD

Out[1417]= 5 - x + 2 x2

Out[1418]= 11 - 7 x + 2 x2

Out[1419]= 5 + y + y2

Out[1420]= 11 - 5 y + y2

In[1421]:= Solve@D@f1, xD == 0 D
Out[1421]= ::x ®

1

4
>>

In[1422]:= Solve@D@f2, xD == 0 D
Out[1422]= ::x ®

7

4
>>

In[1423]:= Solve@D@f3, yD == 0 D
Out[1423]= ::y ® -

1

2
>>

In[1424]:= Solve@D@f4, yD == 0 D
Out[1424]= ::y ®

5

2
>>

Thus, points on the boundary of R that are critical points of f  are I 1
4

, 0M and I 7
4

, 2M.  Observe that the points H0, -1 � 2L and

I2, 5
2

M are outside the rectangle R. The four vertices of R at (0,0), (2,0), (0,2) and (2,2) are also critical points.  Can you explain

why?  We now evaluate f at each of these points and at H1, 1L (the relative minimum point found earlier) using the substitution

command and compare the results.

In[1425]:= f@x, yD �. ::x ->
1

4
, y -> 0>, :x ->

7

4
, y -> 2>,

8x -> 0, y -> 0<, 8x -> 2, y -> 0<,8x -> 0, y -> 2<, 8x -> 2, y -> 2<, 8x -> 1, y -> 1<>
Out[1425]= :39

8
,
39

8
, 5, 11, 11, 5, 5>

Thus, the minimum value of f is 39 � 8, which occurs at H1 � 4, 0L and also at H7 � 4, 2L.  The maximum value of f is 6, which is

attained at H2, 0L and also at H0, 2L.  Here is the graph of f  over the rectangle R. 
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In[1426]:= Clear@plot1, plot2, plot3D
plot1 = Plot3D@8f@x, yD, 0<, 8x, 0, 2<, 8y, 0, 2<, PlotStyle ® 8Green, Blue<, PlotRange ® AllD;
plot2 = Graphics3D@8PointSize@LargeD, Red ,

Point@8 81 �4, 0, f@1 �4, 0D<, 87 �4, 2, f@7 �4, 2D< <D<, PlotRange ® All D;
plot3 = Graphics3D@8PointSize@LargeD, Black , Point@8 82, 0, f@2, 0D<, 80, 2, f@2, 0D<<D<,

PlotRange ® All D;
Show@plot1, plot2 , plot3, ImageSize ® 8250<, ImagePadding ® 8815, 15<, 815, 15<<D

Out[1430]=

0.0

0.5

1.0

1.5

2.0 0.0

0.5

1.0

1.5

2.0

0

5

10

� Exercises 

1. Let f Hx, yL = x4 - 4 x y + 2 y2. 

a) Find all critical points of f .

b) Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.
c) Plot the graph of f  and the local extreme points and saddle points, if any.

2. Let f Hx, yL = Hx + yL lnIx2 + y2M, for Hx, yL ¹ H0, 0L. 
a) Find all critical points of f .

b) Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.
c) Plot the graph of f  and the local extreme points and saddle points, if any.

3. Let f Hx, yL = 2 x2 - 3 x y - x + y + y2  and let R be the rectangle in the xy-plane whose vertices are at H0, 0L, H2, 0L, H2, 2L, and

H0, 2L. 
a) Find all relative extreme values of f  inside R.

b) Find the maximum and minimum values of f  on  R.

c) Plot the graph of f  and the local extreme points and saddle points, if any.

� 14.8.  Lagrange Multipliers

Students should read Section 14.8 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Example 14.37.   Let f Hx, yL = x y and gHx, yL = x2 + y2 - 4.

a) Plot the level curves of f  and g as well as their gradient vectors. 

b) Find the maximum and minimum values of f  subject to the constraint gHx, yL = 0.

Solution: 
a) We will define f  and g  and compute their gradients. Recall that we need to evaluate the command Needs["`VectorField-

Plots`"] before we plot the gradient fields. 
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Solution: 
a) We will define f  and g  and compute their gradients. Recall that we need to evaluate the command Needs["`VectorField-

Plots`"] before we plot the gradient fields. 

In[1431]:= Clear@f, g, fx, fy, gx, gy, x, yD
f@x_, y_D = 2 x + 3 y

g@x_, y_D = x2 + y2 - 4

fx = D@f@x, yD, xD
fy = D@f@x, yD, yD
gx = D@g@x, yD, xD
gy = D@g@x, yD, yD

Out[1432]= 2 x + 3 y

Out[1433]= -4 + x2 + y2

Out[1434]= 2

Out[1435]= 3

Out[1436]= 2 x

Out[1437]= 2 y

In[1438]:= Needs@"VectorFieldPlots`"D
In[1439]:= Clear@plot1, plot2, plot3, plot4D

plot1 = ContourPlotAx2 + y2 - 4, 8x, -2, 2<, 8y, -2, 2<,
Frame ® False, Axes ® True, ContourShading ® False, PlotRange ® AllE;

plot2 = ContourPlot@2 x + 3 y, 8x, -2, 2<, 8y, -2, 2<, Frame ® False,

Axes ® True, ContourShading ® False, PlotRange ® AllD;
plot3 = VectorFieldPlot@8fx, fy<, 8x, -2, 2<, 8y, -2, 2<,

Axes ® True, Frame ® False, ColorFunction ® HueD;
plot4 = VectorFieldPlot@8gx, gy<, 8x, -2, 2<, 8y, -2, 2<,

Axes ® True, Frame ® False, ColorFunction ® HueD;
Show@plot1, plot2, plot3, plot4, ImageSize ® 8250<D

Out[1444]=
-2 -1 1 2

-2

-1

1

2

b) Let us use l for Λ. To solve Ñ f = l Ñ g we compute
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In[1445]:= Solve@8fx � l gx, fy � l gy, g@x, yD � 0< D
Out[1445]= ::l ® -

13

4
, x ® -

4

13
, y ® -

6

13
>, :l ®

13

4
, x ®

4

13
, y ®

6

13
>>

Thus, J-
4

13
, -

6

13
N and J 4

13
, 6

13
N are the critical points. We evaluate f  at these points to determine the absolute maximum

and the absolute minimum of f  on the graph of gHx, yL = 0.

In[1446]:= fB -
4

13

, -
6

13

F
fB 4

13

,
6

13

F
Out[1446]= -2 13

Out[1447]= 2 13

Hence,  f  attains  its  absolute  minimum value  of  -2 13  at  J-
4

13
, -

6

13
N  and  absolute  maximum value  of  -2 13  at

J 4

13
, 6

13
N.

Here is a combined plot of the gradients of f  (in black) and g (in red) at the critical points.  

In[1448]:= Clear@plot1, plot2, plot3, plot4, plot5, plot6D
plot1 = ContourPlot@g@x, yD, 8x, -3, 3<, 8y, -3, 3<,

Contours ® 80<, Frame ® False, Axes ® True, ContourShading ® FalseD;
plot2 = ListPlotB:: -

4

13

, -
6

13

>, : 4

13

,
6

13

>>F;
In[1451]:= plot3 = GraphicsB

ArrowB:: -
4

13

, -
6

13

>, : -
4

13

, -
6

13

> + 8fx, fy< �. :x ->
-4

13

, y ->
-6

13

> >FF;
In[1452]:= plot4 =

GraphicsBArrowB: : 4

13

,
6

13

> , : 4

13

,
6

13

> + 8fx, fy< �. :x ->
4

13

, y ->
6

13

> >FF;
In[1453]:= plot5 = GraphicsB:Red,

ArrowB:: -
4

13

, -
6

13

> , : -
4

13

, -
6

13

> + 8gx, gy< �. :x ->
-4

13

, y ->
-6

13

> >F>F;
In[1454]:= plot6 = GraphicsB

:Red, ArrowB: : 4

13

,
6

13

> , : 4

13

,
6

13

> + 8gx, gy< �. :x ->
4

13

, y ->
6

13

> >F>F;
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In[1455]:= Show@plot1, plot2, plot3, plot4, plot5, plot6,

PlotRange ® All, AspectRatio ® Automatic, ImageSize ® 8250<D

Out[1455]=
-3 -2 -1 1 2 3

-4

-2

2

4

� Exercises 

1. Let f Hx, yL = 4 x2 + 9 y2 and gHx, yL = x y - 4.

a) Plot the level curves of f  and g as well as their gradient vectors. 

b) Find the maximum and minimum values of f  subject to gHx, yL = 0.

2. Find the maximum and minimum values of f Hx, y, zL = x3 - 3 y2 + 4 z subject to the constraint gHx, y, zL = x + y z - 4 = 0.

3. Find the maximum area of a rectangle that can be inscribed in the ellipse x2

a2
+

y2

b2
= 1.

4. Find the maximum volume of a box that can be inscribed in the sphere x2 + y2 + z2 = 4.
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Chapter 15 Multiple Integration
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

� 15.1.  Double Integral over a Rectangle

Students should read Section 15.1 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Integration can be generalized to functions of two or more variables.  As the integral of a single-variable function defines area of
a plane region under the curve, it is natural to consider a double integral of a two-variable function that defines volume of a solid
under a surface.   This definition can be made precise  in terms of double Riemann sums where thin rectangular  columns (as
opposed to rectangles)  are  used as  building blocks to approximate volume (as  opposed to area).   The  exact  volume is then
obtained as a limit where the number of columns increases without bound.

� 15.1.1.  Double Integrals and Riemann Sums

Let  f Hx, yL  be  a  function  of  two  variables  defined  on  a  rectangular  domain  R = @a, bD � @c, dD.   Let

P = 8a = x0 < x1 < ... < xm = b, c = y0 < y1 < ... < yn = d< be an arbitrary partition of R where m and n are integers.  For each

sub-rectangle  Rij = @xi-1, xiD � Ay j-1, y jE  denote  by  DAij  its  area  and  choose  an  arbitrary  base  point  Ixij, yijM Î Rij,  where

xij Î @xi-1, xiD and yij Î Ay j-1, y jE.  The product f Ixij, yijM DAij  represents the volume of a rectangular column.  We then define

the double Riemann sum of f Hx, yL on R with respect to P to be the total volume of all these columns:

SP = â
i=1

m

â
j=1

n

f Ixij, yijM DAij

Define ÈÈ P ÈÈ to be the maximum dimension of all the sub-rectangles.  The double integral of f Hx, yL on the rectangle R is then

defined as the limit of SP as ÈÈ P ÈÈ ® ¥:

à à
R

f Hx, yL â A = limÈÈPÈÈ®¥
â
i=1

m

â
j=1

n

f Ixij, yijM DAij

If the limit exists regardless of the choice of partition and base points, then the double integral is said to exist.  Otherwise, the
double integral does not exist.

MIDPOINT RULE (Uniform Partitions): Let us consider uniform partitions P where the points 8xi< and 9y j= are evenly spaced,

i.e.,   xi = a + i D x,  y j = b + j D y  for  i = 0, 1, ..., m  and  j = 0, 1, ..., n  with  Dx = Hb - aL � m  and  Dy = Hd - cL � n.   Then  the

corresponding double Riemann sum is

Sm,n = â
i=1

m

â
j=1

n

f Ixij, yijM D x D y

Here is a subroutine called MDOUBLERSUM that calculates the double Riemann sum of f Hx, yL over a rectangle R for uniform

partitions  using  the  center  midpoint  of  each  sub-rectangle  as  base  point,  i.e.,  xij = Hxi-1 + xiL � 2 = a + Hi - 1 � 2L D x  and

yij = Iy j-1 + y jM � 2 = c + H j - 1 � 2L D y.
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In[1456]:= Clear@fD
MDOUBLERSUM@a_, b_, c_, d_, m_, n_D := Sum@
f@a + Hi - 1 �2L * Hb - aL �m, c + Hj - 1 �2L * Hd - cL �nD * Hb - aL �m * Hd - cL �n, 8i, 1, m<, 8j, 1, n<D

Example  15.1.   Approximate  the  volume  of  solid  bounded  below  the  surface  f HxL = x2 + y2  and  above  the  rectangle

R = @-1, 1D � @-1, 1D using a uniform partition with m = 10 and n = 10 and center midpoints as base points.  Then experiment

with larger values of m and n and conjecture an answer for the exact volume.

Solution: We calculate the approximate volume for m = 10 and n = 10 using the subroutine MDOUBLERSUM:

In[1458]:= f@x_, y_D = x^2 + y^2;

MDOUBLERSUM@-1, 1, -1, 1, 10, 10D
Out[1459]=

66

25

In[1460]:= N@%D
Out[1460]= 2.64

In[1461]:= Table@MDOUBLERSUM@-1, 1, -1, 1, 10 *k, 10 *kD, 8k, 1, 10<D
Out[1461]= :66

25
,
133

50
,
1798

675
,
533

200
,
1666

625
,
3599

1350
,
3266

1225
,
2133

800
,
16 198

6075
,
3333

1250
>

In[1462]:= N@%D
Out[1462]= 82.64, 2.66, 2.6637, 2.665, 2.6656, 2.66593, 2.66612, 2.66625, 2.66634, 2.6664<
It appears that the exact volume is 8/3.  To prove this, we evaluate the double Riemann sum Sm,n in the limit as m, n ® ¥:

In[1463]:= Clear@S, m, nD;
S@m_, n_D = Simplify@MDOUBLERSUM@-1, 1, -1, 1, m, nDD

Out[1464]=
4

3
2 -

1

m2
-

1

n2

In[1465]:= Limit@Limit@S@m, nD, m ® InfinityD, n ® InfinityD
Out[1465]=

8

3

To see this limiting process visually, evaluate the following subroutine, called DOUBLEMIDPT, which plots the surface of the
function corresponding to the double integral along with the rectangular columns defined by the double Riemann sum considered

in the previous subroutine MDOUBLERSUM.

In[1466]:= Clear@fD;
DOUBLEMIDPT@f_, 8a_, b_, m_<, 8c_, d_, n_<D := Module@8dx, dy, i, j, xstar, ystar, mrect, plot<,

dx = N@Hb - aL �mD;
xstar = Table@a + i * dx, 8i, 0, m<D;
dy = N@Hd - cL �nD;
ystar = Table@c + j * dy, 8j, 0, n<D;
mcolumn = Table@Cuboid@8xstar@@iDD, ystar@@jDD, 0<,8xstar@@i + 1DD, ystar@@j + 1DD, f@Hxstar@@iDD + xstar@@i + 1DDL �2,Hystar@@jDD + ystar@@j + 1DDL �2D<D, 8i, 1, m<, 8j, 1, n<D;
plot = Plot3D@f@x, yD, 8x, a, b<, 8y, c, d<, Filling ® BottomD;
Show@plot, Graphics3D@mcolumnD, ImageSize ® 8300<DD
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In[1468]:= f@x_, y_D := x2 + y^2;

DOUBLEMIDPT@f, 8-1, 1, 10<, 8-1, 1, 10<D

Out[1469]=

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

Here is an animation that demonstrates how the volume of the rectangular  columns approach that of the solid in the limit as
m, n ® ¥:

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

In[1470]:= Animate@DOUBLEMIDPT@f, 8-1, 1, a<, 8-1, 1, a<D , 8a, 0, 50, 5 <D
Out[1470]=

� 15.1.2.  Double Integrals and Iterated Integrals in Mathematica 

The  Mathematica  command for  evaluating double  integrals  is  the  same as  that  for  evaluating integrals  of  a  single-variable
function, except that two limits of integration must be specified, one for each independent variable.  Thus:

Integrate[f[x,y],{x,a,c},{y,c,d}] analytically evaluates the double integral Ù ÙR
f Hx, yL â A over the rectangle R = @a, bD � @c, dD.  

NIntegrate[f[x,y],{x,a,c},{y,c,d}] numerically evaluates the double integral Ù ÙR
f Hx, yL â A over the rectangle R = @a, bD � @c, dD.  

Iterated  Integrals:  In practice  one does not actually use  the  limit definition in terms of Riemann sums to evaluate  double

integrals, but instead apply Fubini's Theorem to easily compute them in terms of iterated integrals:

Fubini's Theorem: (Rectangular Domains) If R = 8Hx, yL : a £ x £ b, c £ y £ d<, then

à à
R

f Hx, yL â A = à
a

bà
c

d

f Hx, yL â y â x = à
c

dà
a

b

f Hx, yL â x â y

Thus Mathematica will naturally apply Fubini's Theorem whenever possible to analytically determine the answer.  Depending on
the form of the double integral, Mathematica  may resort to more sophisticated integration techniques, e.g., contour integration,
which are beyond the scope of this text.

Example 15.2.   Calculate  the  volume of  the  solid  bounded  below by the  surface  f HxL = x2 + y2  and  above  the  rectangle

R = @-1, 1D � @-1, 1D.
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Example 15.2.   Calculate  the  volume of  the  solid  bounded  below by the  surface  f HxL = x2 + y2  and  above  the  rectangle

R = @-1, 1D � @-1, 1D.
Solution: The volume of the solid is given by the double integral Ù ÙR

f Hx, yL â A.  To evaluate it, we use the Integrate command:

In[1471]:= f@x_, y_D := x^2 + y^2;

Integrate@f@x, yD, 8x, -1, 1<, 8y, -1, 1<D
Out[1472]=

8

3

This confirms the conjecture that we made in the previous example for the exact volume.

NOTE: Observe that we obtain the same answer by explicitly computing this double integral as an integrated integral.  Moreover,
for rectangular domains, the order of integration does not matter.

In[1473]:= Integrate@Integrate@f@x, yD, 8x, -1, 1<D, 8y, -1, 1<D
Integrate@Integrate@f@x, yD, 8y, -1, 1<D, 8x, -1, 1<D

Out[1473]=
8

3

Out[1474]=
8

3

Example 15.3.  Compute the double integral Ù ÙR
x e-y2

 â A on the rectangle R = @0, 1D � @0, 1D.
Solution: Observe that the Integrate command here fails to give us an elementary answer:

In[1475]:= Integrate@x *E^H-y^2L, 8x, 0, 1<, 8y, 0, 1<D
Out[1475]=

1

4
Π Erf@1D

This  is  because  the function f Hx, yL = x e-y2
 has no elementary anti-derivative with respect  to y.   Thus,  we instead  use the

NIntegrate Command to numerically approximate the double integral:

In[1476]:= NIntegrate@x *E^H-y^2L, 8x, 0, 1<, 8y, 0, 1<D
Out[1476]= 0.373412

� Exercises 

1. Consider the function f Hx, yL = 16 - x2 - y2 defined over the rectangle R = @0, 2D � @-1, 3D.
a) Use the subroutine MDOUBLERSUM to compute the double Riemann sum Sm,n of f Hx, yL over R for m = 10 and n = 10.

b) Repeat  part  a)  by generating a table of double Riemann sums for m = 10 k  and n = 10 k  where k = 1, 2, ..., 10.  Make a

conjecture for the exact value of Ù ÙR
f Hx, yL â A.

c) Find a formula for Sm,n in terms of m and n.  Verify your conjecture in part b) by evaluating limm,n®¥ Sm,n.

d) Directly compute Ù ÙR
f Hx, yL â A using the Integrate command.

2. Evaluate the double integral à à x4 + y4  â A over the rectangle R = @-2, 1D � @-1, 2D using both the Integrate and NInte-

grate commands.

3. Calculate the volume of the solid lying under the surface z = e-yIx + y2M and over the rectangle R = @0, 2D � @0, 3D.  Then make

a plot of this solid.
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3. Calculate the volume of the solid lying under the surface z = e-yIx + y2M and over the rectangle R = @0, 2D � @0, 3D.  Then make

a plot of this solid.

4.  Evaluate  the double integral  Ù ÙR
f Hx, yL â A  where  f Hx, yL = x y cosIx2 + y2M  and R = @-Π, ΠD � @-Π, ΠD.   Does your answer

make sense?  Make a plot of the solid corresponding to this double integral to intuitively explain your answer. 

� 15.2.  Double Integral over More General Regions

Students should read Section 15.2 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

For domains of integration that are non-rectangular but still simple, i.e., bounded between two curves, Fubini's Theorem contin-
ues to hold.  There are two types to consider: 

Fubini's Theorem: (Simple Domains)

Type I (Vertically Simple): If D = 8Hx, yL : a £ x £ b, ΑHxL £ y £ ΒHxL<, then

à à
D

f Hx, yL â A = à
a

bà
ΑHxL

ΒHxL
f Hx, yL â y â x

The corresponding Mathematica command is Integrate[f[x,y],{x,a,b},{y,Α[x],Β[x]}].

Type II (Horizontally Simple): If D = 8Hx, yL : c £ y £ d , ΑHyL £ x £ ΒHyL<, then

à à
D

f Hx, yL â A = à
c

dà
ΑHyL

ΒHyL
f Hx, yL â x â y

The corresponding Mathematica command is Integrate[f[x,y],{y,c,d},{x,Α[y],Β[y]}].

Warning: Be careful  not to reverse the order of integration prescribed for either type.  For example, evaluating the command

Integrate[f[x,y],{y,Α[x],Β[x]},{x,a,b}] for Type I (x and y are reversed) will lead to incorrect results.

Example 15.4.  Calculate the volume of the solid bounded below by the surface f Hx, yL = 1 - x2 + y2  and above the domain D

bounded by x = 0, x = 1, y = x, and y = 1 + x2.

Solution:  We observe that x = 0 and x = 1 represent  the left and right boundaries, respectively, of D.  Therefore,  we plot the

graphs of the other two equations along the x-interval @0, 2D to visualize D (shaded in the following plot):

In[1477]:= Clear@x, yD
plot1 = Plot@8x, 1 + x^2<, 8x, 0, 1<, Filling ® 81 ® 82<<D

Out[1478]=

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Here is a plot of the corresponding solid situated over D:
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Here is a plot of the corresponding solid situated over D:

In[1479]:= f@x_, y_D = 1 - x^2 + y^2;

plot3 = Plot3D@f@x, yD, 8x, 0, 1<, 8y, x, 1 + x^2<,
Filling ® Bottom, ViewPoint ® 81, 1, 1<, PlotRange ® 80, 4<, ImageSize ® 8250<D

Out[1480]= 0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

0
1

2

3

4

To compute the volume of this solid given by Ù ÙD
f Hx, yL â A, we describe D as a vertically simple domain where 0 £ x £ 1 and

x £ y £ 1 + x2  and apply Fubini's Theorem to evaluate the corresponding iterated integral Ù0

1Ùx

1+x2

f Hx, yL â y â x  (remember to

use the correct order of integration):

In[1481]:= IntegrateAf@x, yD, 8x, 0, 1<, 9y, x, 1 + x2=E
Out[1481]=

29

21

Example 15.5.  Evaluate the double integral Ù ÙD
sin Iy2M â A where D is the domain bounded by x = 0, y = 2, and y = x.

Solution: We first plot the graphs of  x = 0, y = 2, and y = x to visualize the domain D:

In[1482]:= plot1 = ContourPlot@8x � 0, y � 2, y � x<, 8x, -0.5, 2.5<, 8y, -0.5, 2.5<, ImageSize ® 8250<D

Out[1482]=

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

It follows that D is the triangular region bounded by these graphs, which we shade in the following plot to make clear:
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In[1483]:= plot2 = Plot@x, 8x, 0, 2<, Filling ® 2D;
Show@plot1, plot2, ImageSize ® 8250<D

Out[1484]=

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

To compute the given double integral, we describe D as a horizontally simple domain where 0 £ y £ 2 and 0 £ x £ y and apply

Fubini's Theorem to evaluate the corresponding iterated integral Ù0

2Ù0

y
sinIy2M â x â y (again, remember to use the correct order of

integration):

In[1485]:= Integrate@Sin@y^2D, 8y, 0, 2<, 8x, 0, y<D
Out[1485]= Sin@2D2

In[1486]:= N@%D
Out[1486]= 0.826822

NOTE: It is also possible to view D as a vertically simple domain where 0 £ x £ 2 and x £ y £ 2.  The corresponding iterated

integral Ù0

2Ùx

2
sinIy2M â y â x gives the same answer, as it should by Fubini's Theorem:

In[1487]:= Integrate@Sin@y^2D, 8x, 0, 2<, 8y, x, 2<D
Out[1487]= Sin@2D2

Observe that it is actually impossible to evaluate this iterated integral by hand since there is no elementary formula for the anti-
derivative of sinIy2M  with respect  to y.   Thus,  if  necessary,  Mathematica  automatically switches  the  order  of  integration by

converting from one type to the other.

� Exercises 

1. Evaluate the following iterated integrals and plot the solid corresponding to each one.

a) Ù0

1Ù0

x2I4 - x2 + y2M â y â x.

b) Ù0

4Ù0

2-y2

x2 y â x â y.

c) Ù0

ΠÙ0

sin Θ
r2 cosΘ â r â Θ.

2. Evaluate the following double integrals and plot the solid corresponding to each one.

a) Ù ÙD
Hx + yL â A,  D = 9Hx, yL : 0 £ x £ 3, 0 £ y £ x =

b) à ÙD
x + y  â A,  D = 9Hx, yL : 0 £ x £ 1 - y2, 0 £ y £ 1=

c) Ù ÙD
ex+y â A, where D = 9Hx, yL : x2 + y2 £ 4=

d) Ù ÙD

y

x+1
 â A, where D is the following shaded diamond region:
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2. Evaluate the following double integrals and plot the solid corresponding to each one.

a) Ù ÙD
Hx + yL â A,  D = 9Hx, yL : 0 £ x £ 3, 0 £ y £ x =

b) à ÙD
x + y  â A,  D = 9Hx, yL : 0 £ x £ 1 - y2, 0 £ y £ 1=

c) Ù ÙD
ex+y â A, where D = 9Hx, yL : x2 + y2 £ 4=

d) Ù ÙD

y

x+1
 â A, where D is the following shaded diamond region:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

3. Calculate the volume of the following solids:
a) Under the paraboloid z = 16 - x2 - y2 and above the region bounded between the line y = x and the parabola y = 6 - x2.

b) Under the right circular cone z = x2 + y2  and above the disk x2 + y2 £ 1.

c) Bounded between the plane z = 5 + 2 x + 2 y and the paraboloid z = 12 - x2 - y2.  Hint: Equate the two surfaces to obtain the

equation of the domain.

4. Calculate the volume of the solid bounded between the cylinders x2 + y2 = 1 and y2 + z2 = 1.

� 15.3.  Triple Integrals

Students should read Section 15.3 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Once the notion of a double integral is well established, it is straightforward to generalize it to triple (and even higher-order)
integrals for functions of three variables defined over a solid region in space.  Here is the definition of a triple integral in terms of
triple Riemann sums for a function f Hx, y, zL  defined on a box region B = 8Hx, y, zL : a £ x £ b, c £ y £ d , p £ z £ q< (refer  to

your calculus text for details):

à à à
B

f Hx, yL â V = limÈÈPÈÈ®¥
â
i=1

m

â
j=1

n

â
k=1

p

f Ixijk , yijkM DVijk ,

where the notation is analogous to that used for double integrals in Section 15.1 of this text.  Of course, Fubini's Theorem also
generalizes to triple integrals: 

Fubini's Theorem: (Box Domains) If B = 8Hx, y, zL : a £ x £ b, c £ y £ d , p £ z £ q<, then

à à à
B

f Hx, yL â V = à
a

bà
c

dà
p

q

f Hx, yL â z â y â x

The corresponding Mathematica commands are:

Integrate[f[x,y,z],{x,a,c},{y,c,d},{z,e,f}]  analytically  evaluates  the  triple  integral  Ù Ù ÙB
f Hx, yL â V  over  the  box

B = @a, bD � @c, dD � @e, f D.  
NIntegrate[f[x,y],{x,a,c},{y,c,d},{z,e,f}]  numerically  evaluates  the  triple  integral  Ù Ù ÙB

f Hx, yL â V  over  the  rectangle

B = @a, bD � @c, dD � @e, f D.  
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NIntegrate[f[x,y],{x,a,c},{y,c,d},{z,e,f}]  numerically  evaluates  the  triple  integral  Ù Ù ÙB
f Hx, yL â V  over  the  rectangle

B = @a, bD � @c, dD � @e, f D.  
NOTE: For box domains, the order of integration does not matter so that it is possible to write five other versions of triple iterated
integrals besides the one given in Fubini's Theorem.

Example 15.6.  Calculate the triple integral  Ù Ù ÙB
x y z â V  over the box B = @0, 1D � @2, 3D � @4, 5D.

Solution: We use the Integrate command to calculate the given triple integral.

In[1488]:= Integrate@x y z, 8x, 0, 1<, 8y, 2, 3<, 8z, 4, 5<D
Out[1488]=

45

8

Volume as Triple Integral: Recall that if a solid region W is bounded between two surfaces ΨHx, yL and ΦHx, yL where both are

defined on the same domain D with ΨHx, yL £ ΦHx, yL, then its volume V can be expressed by the triple integral

V = à à à
W

1 â V = à à
D

à
ΨHx,yL

ΦHx,yL
1 â z â A

Example 15.7.  Calculate the volume of the solid bounded between the surfaces z = 4 x2 + 4 y2  and z = 16 - 4 x2 - 4 y2  on the

rectangular domain @-1, 1D � @-1, 1D.
Solution: Here is a plot of the solid:

In[1489]:= Plot3D@84 x^2 + 4 y^2, 16 - 4 x^2 - 4 y^2<, 8x, -1, 1<, 8y, -1, 1<,
Filling ® 81 ® 8, 2 ® 8<, ImageSize ® 8250<, ImagePadding ® 8815, 15<, 815, 15<<D

Out[1489]=

-1.0

-0.5

0.0

0.5

1.0 -1.0

-0.5

0.0

0.5

1.0

0

5

10

15

The volume of the solid is given by the triple iterated integral Ù-1

1 Ù-1

1 Ù4 x2+4 y2

16-4 x2-4 y2

1 â z â y â x:

In[1490]:= Integrate@1, 8x, 0, 1<, 8y, -1, 0<, 8z, 4 x^2 + 4 y^2, 16 - 4 x^2 - y^2<D
Out[1490]=

35

3

Mass as Triple Integral: Recall that if a solid region W is bounded between two surfaces ΨHx, yL and ΦHx, yL where both are

defined on the same domain D with ΨHx, yL £ ΦHx, yL and has density defined ΡHx, y, zL, then its mass m can be expressed by the

triple integral
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m = à à à
W

ΡHx, y, zL â V = à à
D

à
ΨHx,yL

ΦHx,yL
ΡHx, y, zL â z â A

Example 15.8.  Calculate the mass of the solid region W bounded between the planes z = 1 - x - y and z = 1 + x + y and situated

over  the  triangular  domain  D  bounded  by  x = 0,  y = 0,  and  y = 1 - x.   Assume  the  density  of  W  is  given  by

ΡHx, y, zL = 1 + x2 + y2.

Solution: Here is a plot of the solid region W:

In[1491]:= Plot3D@81 - x - y, 1 + x + y<, 8x, 0, 1<, 8y, 0, 1 - x<, ViewPoint ® 81, 1, 1<,
Filling ® 81 ® 1, 2 ® 1<, Ticks ® 8Automatic, Automatic, 81, 2<<,
ImageSize ® 8250<, ImagePadding ® 8815, 15<, 815, 15<<D

Out[1491]= 0.0

0.5

1.0

0.0

0.5

1.0

1

2

The mass of the solid is given by the triple iterated integral Ù0

1Ù0

1-xÙ1-x-y

1+x+yI1 + x2 + y2M â z â y â x:

In[1492]:= Integrate@1 + x^2 + y^2, 8x, 0, 1<, 8y, 0, 1 - x<, 8z, 1 - x - y, 1 + x + y<D
Out[1492]=

14

15

� Exercises 

1. Evaluate the following iterated integrals:

a) Ù0

1Ù0

xÙ0

y2Hx + y + zL â z â y â x

b) Ù0

3Ù0

sin yÙ0

y +z
x y z â x â z â y 

c) Ù0

ΠÙ0

ΘÙ0

r cos Θ
r z2 â z â r â Θ.

2. Evaluate the following triple integrals:

a) Ù Ù ÙW
Hx + y zL â V , where W = 9Hx, y, zL : 0 £ x £ 1, 0 £ y £ x , 0 £ z £ y2=

b) Ù Ù ÙW
sin y â V ,  where W  lies under  the plane z = 1 + x + y  and above the triangular  region bounded by x = 0, x = 2, and

y = 3 x. 

c) Ù Ù ÙW
z â V , where W  is bounded by the paraboloid z = 4 - x2 - y2 and z = 0.

3.  Find  the  mass  of  the  solid  tetrahedron  enclosed  by  the  planes  x = 0,  y = 0,  z = 0,  z = 1 - x - y  and  have  density

ΡHx, y, zL = 1 - z. 

4. Midpoint Rule for Triple Integrals:

a) Develop a subroutine called MTRIPLERSUM  to compute the triple Riemann sum of the triple integral Ù Ù ÙB
f Hx, y, zL â V

over the box domain B = 8Hx, y, zL : a £ x £ b, c £ y £ d , p £ z £ q< for uniform partitions and using the center midpoint of each

sub-box as base point.  Hint: Modify the subroutine MDOUBLERSUM in Section 15.1 of this text.  
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4. Midpoint Rule for Triple Integrals:

a) Develop a subroutine called MTRIPLERSUM  to compute the triple Riemann sum of the triple integral Ù Ù ÙB
f Hx, y, zL â V

over the box domain B = 8Hx, y, zL : a £ x £ b, c £ y £ d , p £ z £ q< for uniform partitions and using the center midpoint of each

sub-box as base point.  Hint: Modify the subroutine MDOUBLERSUM in Section 15.1 of this text.  

b) Use your subroutine MTRIPLESUM  in part a) to compute the triple Riemann sum of Ù Ù ÙB
Ix2 + y2 + z2M3�2

 â V  over the box

B = 8Hx, y, zL : 0 £ x £ 1, 0 £ y £ 2, 0 £ z £ 3< by dividing B into 48 equal sub-boxes, i.e., cubes having side length of 1/2.

c) Repeat part b) by dividing B into cubes having side length of 1/4 and more generally into cubes having side length of 1 � 2n for

n sufficiently large in order to obtain an approximation accurate to 2 decimal places.

d) Verify your answer in part c) using Mathematica's NIntegrate command.

� 15.4.  Integration in Polar, Cylindrical, and Spherical Coordinates

Students should read Section 15.4 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

� 15.4.1.  Double Integrals in Polar Coordinates

The following Change of Variables Formula converts a double integral in rectangular coordinates to one in polar coordinates:

Change of Variables Formula (Polar Coordinates):

I. Polar Rectangles: If R = 8Hr, ΘL : Θ1 £ Θ £ Θ2, r1 £ r £ r2<, then

à à
R

f Hx, yL â A = à
Θ1

Θ2à
r1

r2

f Hr cos Θ, r sin ΘL r â r â Θ

II. Polar Regions: If D = 8Hr, ΘL : Θ1 £ Θ £ Θ2, ΑHΘL £ r £ ΒHΘL<, then

à à
D

f Hx, yL â A = à
Θ1

Θ2à
ΑHΘL

ΒHΘL
f Hr cos Θ, r sin ΘL r â r â Θ

Example 15.9.  Calculate the volume of the solid region bounded by the paraboloid f HxL = 4 - x2 - y2  and the xy-plane using

polar coordinates.

Solution: We first plot the paraboloid:
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In[1493]:= f@x_, y_D = 4 - x^2 - y^2

Plot3D@f@x, yD, 8x, -2, 2<, 8y, -2, 2<, PlotRange ® 80, 4<, ImageSize ® 8250<D
Out[1493]= 4 - x2 - y2

Out[1494]=

-2

-1

0

1

2
-2

-1

0

1

2

0

1

2

3

4

The circular  domain D can be easily described in polar coordinates by the polar rectangle R = 8Hr, ΘL : 0 £ r £ 2, 0 £ Θ £ 2 Π<.
Thus, the volume of the solid is given by the corresponding double integral Ù0

2 ΠÙ0

2
f Hr cos Θ, r sin ΘL r â r â Θ in polar coordinates:

In[1495]:= Clear@r, ΘD;
Integrate@r *f@r *Cos@ΘD, r *Sin@ΘDD, 8r, 0, 2<, 8Θ, 0, 2 Pi<D

Out[1496]= 8 Π

Observe that here f Hx, yL simplifies nicely in polar coordinates:

In[1497]:= f@r *Cos@ΘD, r *Sin@ΘDD
Simplify@%D

Out[1497]= 4 - r2 Cos@ΘD2
- r2 Sin@ΘD2

Out[1498]= 4 - r2

NOTE: Evaluating the same double integral in rectangular coordinates by hand would be quite tedious.  This is not a problem
with Mathematica, however:

In[1499]:= Integrate@f@x, yD, 8x, -2, 2<, 8y, -Sqrt@4 - x^2D, Sqrt@4 - x^2D<D
Out[1499]= 8 Π

� 15.4.2.  Triple Integrals in Cylindrical Coordinates

The following Change of Variables Formula converts a triple integral in rectangular coordinates to one in cylindrical coordinates:

Change of Variables Formula (Cylindrical Coordinates): If a solid region W is described by Θ1 £ Θ £ Θ2, ΑHΘL £ r £ ΒHΘL, and

z1Hr, ΘL £ z £ z2Hr, ΘL, then 

à à à
W

f Hx, y, zL â V = à
Θ1

Θ2à
ΑHΘL

ΒHΘLà
z1Hr,ΘL

z2Hr,ΘL
f Hr cos Θ, r sin Θ, zL r â z â r â Θ

Example 15.10.   Use cylindrical coordinates to calculate  the triple integral Ù Ù ÙW
z â V  where W is the solid region bounded

above by the plane z = 8 - x - y, below by the paraboloid z = 4 - x2 - y2, and inside the cylinder x2 + y2 = 4.

Solution: Since W lies inside the cylinder x2 + y2 = 4, this implies that it has a circular base on the xy-plane given by the same

equation, which can be described in polar coordinates by 0 £ Θ £ 2 Π and 0 £ r £ 2.  Here is a plot of all three surfaces (plane,

paraboloid, and cylinder):
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Solution: Since W lies inside the cylinder x2 + y2 = 4, this implies that it has a circular base on the xy-plane given by the same

equation, which can be described in polar coordinates by 0 £ Θ £ 2 Π and 0 £ r £ 2.  Here is a plot of all three surfaces (plane,

paraboloid, and cylinder):

In[1500]:= plotplane = Plot3D@8 - x - y, 8x, -2, 2<, 8y, -2, 2<D;
plotparaboloid = Plot3D@4 - x^2 - y^2, 8x, -2, 2<, 8y, -2, 2<D;
plotcylinder = ParametricPlot3D@82 *Cos@ΘD, 2 *Sin@ΘD, z<, 8Θ, 0, 2 Π<, 8z, 0, 12<D;
Show@plotplane, plotparaboloid, plotcylinder, PlotRange ® All, ImageSize ® 8250<D

Out[1503]=

-2

-1

0

1

2 -2

-1

0

1

2

0

5

10

Since W is bounded in z by 4 - x2 - y2 £ z £ 8 - x - y, or in cylindrical coordinates,  4 - r cos Θ - r sin Θ £ z £ 4 - r2, it follows

that the given triple integral transforms to

Ù0

2 ΠÙ0

2Ù4-r2

4-r cos Θ-r sin Θ
z r â z â r â Θ

Evaluating this integral in Mathematica yields the answer

In[1504]:= Integrate@z *r, 8Θ, 0, 2 Π<, 8r, 0, 2<, 8z, 4 - r *Cos@ΘD - r *Sin@ΘD, 8 + r *Cos@ΘD + r *Sin@ΘD<D
Out[1504]= 96 Π

� 15.4.3.  Triple Integrals in Spherical Coordinates

The following Change of Variables Formula converts a triple integral in rectangular coordinates to one in spherical coordinates:

Change of  Variables  Formula (Spherical  Coordinates):  If  a  solid region W  is  described  by Θ1 £ Θ £ Θ2,  Φ1 £ Φ £ Φ2,  and

Ρ1HΘ, ΦL £ Ρ £ Ρ2HΘ, ΦL, then 

à à à
W

f Hx, y, zL â V = à
Θ1

Θ2à
Φ1

Φ2à
Ρ1HΘ,ΦL

Ρ2HΘ,ΦL
f HΡ cos Θ sin Φ, Ρ sin Θ sin Φ, Ρ cos ΦL Ρ2 sinΦ â Ρ â Φ â Θ

Example 15.11.  Use spherical coordinates to calculate the volume of the solid W lying inside the sphere x2 + y2 + z2 = z and

above the cone z = x2 + y2 .

Solution: In spherical coordinates the equation of the sphere is given by

Ρ 2 = Ρ cos Φ,

or equivalently, Ρ = cos Φ.  Similarly, the equation of the cone transforms to

Ρ cos Φ = HΡ cos Θ sin ΦL2
+ HΡ sin Θ sin ΦL2

= Ρ sin Φ.
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Ρ cos Φ = HΡ cos Θ sin ΦL2
+ HΡ sin Θ sin ΦL2

= Ρ sin Φ.

It follows that cos Φ = sin Φ, or Φ = Π � 4.  Therefore, the cone makes an angle of 45 degrees with respect to the z-axis, as shown in

the following plot along with the top half of the sphere:

In[1505]:= Clear@ΡD
plotcone = ParametricPlot3D@8Ρ Cos@ΘD Sin@Pi �4D, Ρ Sin@ΘD Sin@Pi �4D, Ρ Cos@Pi �4D<, 8Θ, 0, 2 Pi<, 8Ρ, 0, Sqrt@2D �2<D;
plotsphere = ParametricPlot3D@8Cos@ΦD Cos@ΘD Sin@ΦD, Cos@ΦD Sin@ΘD Sin@ΦD, Cos@ΦD Cos@ΦD<,8Θ, 0, 2 Pi<, 8Φ, 0, Pi �4<D;
Show@plotcone, plotsphere, PlotRange ® All, ViewPoint ® 81, 1, 1 �4<, ImageSize ® 8250<D

Out[1508]=

-0.5

0.0

0.5

-0.5

0.0

0.5

0.0

0.5

1.0

It is now clear that the solid W is described by 0 £ Θ £ 2 Π, 0 £ Φ £ Π � 4, and 0 £ Ρ £ cos Φ.  Thus, its volume is given by the triple

integral

à
0

2 Πà
0

Π�4à
0

cos Φ

Ρ2 sin Φ â Ρ â Φ â Θ,

which in Mathematica evaluates to

In[1509]:= Integrate@Ρ^2 *Sin@ΦD, 8Θ, 0, 2 Pi<, 8Φ, 0, Pi �4<, 8Ρ, 0, Cos@ΦD<D
Out[1509]=

Π

8

� Exercises 

1. Evaluate the double integral Ù0

2Ù0

4-x2

e-Ix2+y2M â y â x by converting to polar coordinates.

2. Use polar coordinates to calculate the volume of the solid that lies below the paraboloid z = x2 + y2  and inside the cylinder

x2 + y2 = 2 y.

3. Evaluate the triple integral Ù0

2Ù0

4-x2 Ù0

4-x2-y2 Ix2 + y2M â z â y â x by converting to cylindrical coordinates.

4. Use cylindrical coordinates to calculate the triple integral Ù Ù ÙW
Ix2 + y 2M â V  where W is the solid bounded between the two

paraboloids z = x2 + y2 and z = 8 - x2 - y2.
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4. Use cylindrical coordinates to calculate the triple integral Ù Ù ÙW
Ix2 + y 2M â V  where W is the solid bounded between the two

paraboloids z = x2 + y2 and z = 8 - x2 - y2.

5. Evaluate the triple integral Ù-2

2 Ù
- 4-x2

4-x2 Ù
x2+y2

4-x2-y2 Ix2 + y2 + z2M â z â y â x by converting to spherical coordinates.

6. The solid defined by the spherical equation Ρ = sin Φ is called the torus.

a) Plot the torus.
b) Calculate the volume of the torus.

� 15.5.  Change of Variables

Students should read Section 15.5 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

The following Change of Variables Formula converts a double integral from one coordinate system to another:

Change of Variables Formula (Coordinate Transformation): If FHu, vL = HxHu, vL, yHu, vLL is a C1-mapping from D0 to D, then

à à
D

f Hx, yL â x â y = à à
D0

f HxHu, vL, yHu, vLL ¶ Hx, yL
¶ Hu, vL â u â v,

where Ë ¶Hx,yL
¶Hu,vL Ë = È JacHFL È =

¶x
¶u

¶x
¶v

¶y

¶u

¶y

¶v

=
¶x
¶u

 
¶y

¶v
-

¶x
¶v

 
¶y

¶u
.

Example 15.12.   Make an appropriate changes of variables to calculate  the double integral Ù ÙD
x y â A where D is the region

bounded by the curves x y = 1, x y = 2, x y2 = 1, and x y2 = 2.

Solution: Here is a plot of the region D:

In[1510]:= ContourPlot@8x *y � 1, x *y == 2, x *y^2 == 1, x *y^2 == 2<,8x, 0, 5<, 8y, 0, 5<, ImageSize ® 8250<D

Out[1510]=

0 1 2 3 4 5

0

1

2

3

4

5

Since D is rather complicated, we consider the change of variables u = x y and v = x y2, which D transforms to a simple square

region D0 in the uv-plane bounded by u = 1, u = 2, v = 1, and v = 2.   The corresponding Jacobian is
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In[1511]:= Clear@sol, x, y, u, vD
sol = Solve@8u == x *y, v == x *y^2<, 8x, y<D

Out[1512]= ::x ®
u2

v
, y ®

v

u
>>

In[1513]:= x = sol@@1, 1, 2DD
y = sol@@1, 2, 2DD

Out[1513]=
u2

v

Out[1514]=
v

u

In[1515]:= Jac = D@x, uD *D@y, vD - D@x, vD *D@y, uD
Out[1515]=

1

v

Thus, the given integral transforms to Ù ÙD
x y â A = Ù ÙD0

u
v

 â A = Ù1

2Ù1

2 u
v

 â v â u:

In[1516]:= Integrate@u �v, 8u, 1, 2<, 8v, 1, 2<D
Out[1516]=

3 Log@2D
2

� Exercises 

1. Evaluate the integral Ù ÙD
x y â A, where D is the region in the first quadrant bounded by the equations y = x, y = 4 x, x y = 1,

and x y = 4.  Hint: Consider the change of variables u = x y and v = y.

2.  Evaluate  the  integral  Ù ÙD
Hx + yL � Hx - yL â A,  where  D  is  the  parallelogram  bounded  by  the  lines  x - y = 1,  x - y = 3,

2 x + y = 0, and 2 x + y � 2.  Hint: Consider the change of variables u = x - y and v = 2 x + y.

3. Evaluate the integral Ù ÙD

y

x
 â A, where D is the region bounded by the circles x2 + y2 = 1, x2 + y2 = 4 and lines y = x, y � 3 x.

Hint: Consider the change of variables u = x2 + y2 and v = y � x.
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Chapter 16 Line and Surface Integrals
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

� 16.1.  Vector Fields

Students should read Section 16.1 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Let F1, F2, and F3 be functions of x, y, and z. The vector-valued function

FHx, y, zL = XF1Hx, y, zL, F2Hx, y, zL, F3Hx, y, zL\
is called a vector field. We have already encountered a vector field in the form of the gradient of a function. Other useful exam-
ples of vector fields are the gravitational force, the velocity of fluid, magnetic fields, and electric fields. 

We use the Mathematica  commands VectorFieldPlot  and VectorFieldPlot3D  to plot the graphs of vector fields.   However,

before using these commands we need to load the VectorFieldPlots package. This is done by evaluating

In[1517]:= Needs@"VectorFieldPlots`"D
Example 16.1.  Draw the following vector fields.
a) FHx, yL = Xsin y, cos x\ b)   F Hx, y, zL = Xy, x + z, 2 x - y\    
Solution:
a) 

In[1518]:= Clear@F, x, y, zD
F@x_, y_D = 8Sin@yD, Cos@xD<

Out[1519]= 8Sin@yD, Cos@xD<
In[1520]:= VectorFieldPlot@F@x, yD, 8x, -5, 5<, 8y, -4, 4<, ImageSize ® 8250< D

Out[1520]=

Here is another display of the preceding vector field with some options specified. 
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In[1521]:= VectorFieldPlot@F@x, yD, 8x, -5, 5<, 8y, -4, 4<, Axes ® True,

AxesOrigin ® 80, 0<, Frame ® False, ColorFunction ® Hue, ImageSize ® 8250<D

Out[1521]=
-4 -2 2 4

-4

-2

2

4

To see other available options of VectorFieldPlot, evaluate the command Options[VectorFieldPlot].

b) We shall use two of the options of VectorFieldPlot3D, which does not have as many options as VectorFieldPlot. (Again, you

can find these by evaluating Options[VectorFieldPlot3D].)

In[1522]:= Clear@F, x, y, zD
F@x_, y_, z_D = 9y z2, x z2, 2 x y z=
VectorFieldPlot3D@F@x, y, zD, 8x, -3, 3<, 8y, -3, 3<,8z, -3, 3<, ColorFunction ® Hue, VectorHeads ® True, ImageSize ® 8250<D

Out[1523]= 9y z2, x z2, 2 x y z=

Out[1524]=

Example 16.2.  Draw the unit radial vector fields:

a) FHx, yL = [ x

x2+y2
,

y

x2+y2
_ b)   F Hx, y, zL = [ x

x2+y2+z2
,

y

x2+y2+z2
, z

x2+y2+z2
_    

Solution: For convenience, we define both vector fields to be 0 at the origin. We shall use the If command to do so. 

a)

326 Mathematica for Rogawski's Calculus



In[1525]:= Clear@F, x, yD
F@x_, y_D = IfBx2 + y2 ¹ 0,

8x, y<
x2 + y2

, 80, 0<F
VectorFieldPlot@F@x, yD, 8x, -3, 3<, 8y, -3, 3<, ImageSize ® 8250<D

Out[1526]= IfBx2 + y2 ¹ 0,
8x, y<
x2 + y2

, 80, 0<F

Out[1527]=

b) 
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In[1528]:= Clear@F, x, y, zD
F@x_, y_, z_D = IfBx2 + y2 + z2 ¹ 0,

8x, y, z<
x2 + y2 + z2

, 80, 0, 0<F
VectorFieldPlot3D@F@x, y, zD, 8x, -3, 3<, 8y, -3, 3<,8z, -3, 3<, ColorFunction ® Hue, VectorHeads ® True, ImageSize ® 8250<D

Out[1529]= IfBx2 + y2 + z2 ¹ 0,
8x, y, z<
x2 + y2 + z2

, 80, 0, 0<F

Out[1530]=

� Exercises 

1. Draw the following vector fields:
a) FHx, yL = Y y2 - 2 xy, xy + 6 x2] b)   F Hx, y, zL = Xsin x, cos y , xz\   
c) FHx, yL = [ -

y

x2+y2
, x

x2+y2
_ d)   F Hx, y, zL = X x + cos HxzL, y sin HxyL, xz cos HyzL \    

2. Calculate and plot the gradient vector field for each of the following functions.
a) f Hx, yL = lnIx + y2M b)   f Hx, y, zL = sin x Hcos z � yL   

� 16.2.  Line Integrals

Students should read Section 16.2 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Suppose C is a smooth curve in space whose parametric equations are given by 

x = xHtL, y = yHtL, z = zHtL,
where  a £ t £ b.   Let  C1, C2, C3, .... , CN  be  a  partition  of  the  curve  C  with  arc  length  Ds1, Ds2, Ds3, ... , DsN  and  let

P1, P2, P3, ... , PN  be points on the subarcs.  

If f Hx, y, zL is a function that is continuous on the curve C, then the line integral of f  is defined by 

ÙC
f Hx, y, zL â s = limDsi®0 Úi=1

N f HPiL Dsi.
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ÙC
f Hx, y, zL â s = limDsi®0 Úi=1

N f HPiL Dsi.

NOTE: If c HtL = XxHtL, yHtL, zHtL\ is the vector equation of the curve C, then it can be shown (refer to your calculus textbook) that 

ÙC
f Hx, y, zL â s = Ùa

b
f HcHtL °c ' HtL´ â t.

In addition, if FHx, y, zL = XF1, F2, F3\ is a vector field that is continuous on C, then the line integral of F over C is given by 

ÙC
FHx, y, zL × â s = ÙC

HF × TL â s = Ùa

b
F HcHtLL × c ' HtL â t,

where T is the unit vector T =
c' HtL

°c' HtL´  and F × T is the dot product of F and T.

Example 16.3.  Find ÙC
f Hx, y, zL â s, where f Hx, y, zL = x y + z2 and C is given by  x = t, y = t2, and z = t3, for 0 £ t £ 1.

Solution: 

In[1531]:= Clear@x, y, z, t, f, cD
f@x_, y_, z_D = x 2 y + x z

x@t_D = t

y@t_D = t2

z@t_D = t3

c@t_D = 8x@tD, y@tD, z@tD<
Out[1532]= x2 y + x z

Out[1533]= t

Out[1534]= t2

Out[1535]= t3

Out[1536]= 9t, t2, t3=

Chapter 16 329



In[1537]:= à
0

1

f@x@tD, y@tD, z@tDD Norm@c'@tDD ât

Out[1537]= 2 -84 987 H-1L3�4 2 ä + 5 + 532 ä 14 EllipticEBArcSinB 3 + 3 ä

2 J-2 ä + 5 N
F, 2 ä - 5

2 ä + 5
F +

266 70 EllipticEBArcSinB 3 + 3 ä

2 J-2 ä + 5 N
F, 2 ä - 5

2 ä + 5
F -

415 ä 14 EllipticFBArcSinB 3 + 3 ä

2 J-2 ä + 5 N
F, 2 ä - 5

2 ä + 5
F -

266 70 EllipticFBArcSinB 3 + 3 ä

2 J-2 ä + 5 N
F, 2 ä - 5

2 ä + 5
F � 229 635 -

7 ä

2 J-2 ä + 5 N

Here is a numerical approximation of the preceding line integral.

In[1538]:= NIntegrate@f@x@tD, y@tD, z@tDD Norm@c'@tDD, 8t, 0, 1<D
Out[1538]= 1.16521

Example 16.4.  Find ÙC
FHx, y, zL × â s, where FHx, y, zL = Y x z, z y2, y x2] and the curve C  is given by  x = 2 t, y = sin t, and

z = cos t, 0 £ t £ 2 Π.

Solution: 

In[1539]:= Clear@x, y, z, t, f, cD
F@x_, y_, z_D = 9x z, z y2, y x2=
x@t_D = 2 t

y@t_D = Sin@tD
z@t_D = Cos@tD
c@t_D = 8x@tD, y@tD, z@tD<

Out[1540]= 9x z, y2 z, x2 y=
Out[1541]= 2 t

Out[1542]= Sin@tD
Out[1543]= Cos@tD
Out[1544]= 82 t, Sin@tD, Cos@tD<

In[1545]:= à
0

2 Pi

F@x@tD, y@tD, z@tDD.c'@tD ât

Out[1545]=
9 Π

4
-
16 Π3

3
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In[1546]:= N@%D
Out[1546]= -158.298

� Exercises 

1. Find ÙC
f Hx, y, zL â s, where

a) f Hx, y, zL = x y2 - 4 zy and C is given by  x = 2 t, y = t2�3, and z = 1 - 3 t2, for 0 £ t £ 1.

b) f Hx, y, zL =
yz

x
 and C is given by  x = ln t, y = t2, and z = 3 t, for 3 £ t £ 5.

2. Find ÙC
FHx, yL × â s, where 

a) FHx, yL = Y e3 x-2 y, e2 x+3 y] and C is given by  x = 2 t, y = sin t,  0 £ t £ Π

b) FHx, yL = Yx2, yx + y2] and C is the unit circle center at the origin.

3. Find ÙC
FHx, y, zL × â s, where 

a) FHx, y, zL = Xxyz, - xz, xy \ and C is given by  x = t, y = 2 t2, z = 3 t  0 £ t £ 1

b) FHx, y, zL = Yxy3, z + x2, z3] and C is the line segment joining H-1, 2, -1L and H1, 3, 4L.

� 16.3.  Conservative Vector Fields

Students should read Section 16.3 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

Let FHx, y, zL = XF1, F2, F3\ be a vector field. Let C1  and C2  be any two different curves with the same initial point P and end

point Q.  We say that the vector field F is path independent if 

ÙC1
FHx, y, zL × â s = ÙC2

FHx, y, zL × â s.

A vector field that is path independent is called conservative.  

NOTE 1: A vector field F is conservative if  

à
C

FHx, y, zL × â s = 0.

for every closed curve C.

NOTE 2: If F = Ñu is the gradient of a function u = uHx, y, zL, then we say that u is the potential of F.  Moreover, if the end

points of C are P and Q, we have 

à
C

FHx, y, zL × â s = uHPL - uHQL
In particular, if the curve is closed, that is, if P = Q, then 

à
C

FHx, y, zL × â s = 0.

Therefore, gradient is conservative. The converse of this statement is true if its domain is an open connected domain.  

NOTE 3: Let F = XF1, F2\.  If F = Ñu = Z ¶ u
¶ x

, ¶ u
¶ y

^, then F1 =
¶ u
¶ x

 and F2 =
¶ u
¶ y

. Taking the partial derivative of F1with respect to y

and that of F2 with respect to x and using the fact that ¶2 u
¶ x ¶ y

=
¶2 u

¶ y ¶ x
, we see that F1 and F2 must satisfy 
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NOTE 3: Let F = XF1, F2\.  If F = Ñu = Z ¶ u
¶ x

, ¶ u
¶ y

^, then F1 =
¶ u
¶ x

 and F2 =
¶ u
¶ y

. Taking the partial derivative of F1with respect to y

and that of F2 with respect to x and using the fact that ¶2 u
¶ x ¶ y

=
¶2 u

¶ y ¶ x
, we see that F1 and F2 must satisfy 

¶ F1

¶ y
=

¶ F2

¶ x
.

This equation is used to check if a vector field is conservative.  In that case, we solve F1 =
¶ u
¶ x

 for u by integrating with respect to

x and then use the equation F2 =
¶ u
¶ y

 to find the constant of integration. Here is an example.

Example 16.5.  Show that the vector function F = Y3 x2 - 2 xy + 2, 6 y2 - x2 + 3]  is conservative and find its potential.

Solution: Here F1 = x y2 and F2 = x2 y. We now compare 
¶ F1

¶ y
 and 

¶ F2

¶ x
 to verify if F is conservative.

In[1547]:= Clear@x, y, F1, F2D
F1@x_, y_D = 3 x2 - 2 x y + 2

F2@x_, y_D = 6 y2 - x2 + 3

Out[1548]= 2 + 3 x2 - 2 x y

Out[1549]= 3 - x2 + 6 y2

In[1550]:= D@F1@x, yD, yD
D@F2@x, yD, xD

Out[1550]= -2 x

Out[1551]= -2 x

Thus, the vector field is conservative. To find its potential u, we integrate F1 =
¶ u
¶ x

 with respect to x to get 

In[1552]:= Clear@h, uD
u = Integrate@F1@x, yD, xD + h@yD

Out[1553]= 2 x + x3 - x2 y + h@yD
Note that the addition of hHyL is necessary because the constant of integration may depend on y.  We now solve the equation

F2 =
¶ u
¶ y

 for h ' HyL.
In[1554]:= Clear@solD

sol = Solve@D@u, yD � F2@x, yD, h'@yDD
Out[1555]= 99h¢@yD ® 3 I1 + 2 y2M==
This means that h ' HyL = 3 I1 + 2 y2M.
In[1556]:= Integrate@sol@@1, 1, 2DD, yD
Out[1556]= 3 y + 2 y3

Hence, hHyL = 3 y + 2 y2  and so uHx, yL = 2 x + x3 - x2 y + 3 y + 2 y3 is the potential of F.

NOTE 4: Let F = XF1, F2, F3\.  If F = Ñu = Z ¶ u
¶ x

, ¶ u
¶ y

, ¶ u
¶ z

^, then F1 =
¶ u
¶ x

, F2 =
¶ u
¶ y

 and F3 =
¶ u
¶ z

. Taking the partial derivative of

F1with respect to y and that of F2 with respect to x and using the fact that ¶2 u
¶x ¶y

=
¶2 u

¶y ¶x
, we see that F1 and F2 must satisfy 

¶ F1

¶ y
=

¶ F2

¶ x
.

Taking the partial derivative of F1with respect to z and that of F3 with respect to x and using the fact that ¶2 u
¶x ¶z

=
¶2 u

¶z ¶x
, we see that

F1 and F3 must satisfy 
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Taking the partial derivative of F1with respect to z and that of F3 with respect to x and using the fact that ¶2 u
¶x ¶z

=
¶2 u

¶z ¶x
, we see that

F1 and F3 must satisfy 

¶ F1

¶ z
=

¶ F3

¶ x
.

The preceding two equations can be used to check if a vector field is conservative. If this the case, we solve F1 =
¶ u
¶ x

 for u by

integrating with respect to x and then use F2 =
¶ u
¶ y

 to find the constant of integration. We show this by the following example.

Example 16.6.  Show that the vector function F = Xyz + yz cos Hxy L, xz + xz cos HxyL , xy + sin HxyL\  is conservative and find its

potential. 

Solution: Here F1 = y z + y z cosH x yL ,  F2 = x z + x z cos Hx yL,  and F3 = x y + sinHx yL .  

In[1557]:= Clear@x, y, F1, F2, F3D
F1@x_, y_, z_D = y z + y z Cos@x yD
F2@x_, y_, z_D = x z + x z Cos@x yD
F3@x_, y_, z_D = x y + Sin@x yD

Out[1558]= y z + y z Cos@x yD
Out[1559]= x z + x z Cos@x yD
Out[1560]= x y + Sin@x yD
 We now compare 

¶ F1

¶ y
 and 

¶ F2

¶ x
:

In[1561]:= D@F1@x, y, zD, yD
D@F2@x, y, zD, xD

Out[1561]= z + z Cos@x yD - x y z Sin@x yD
Out[1562]= z + z Cos@x yD - x y z Sin@x yD
Next we compare 

¶ F1

¶ z
 and 

¶ F2

¶ x
:

In[1563]:= D@F1@x, y, zD, zD
D@F3@x, y, zD, xD

Out[1563]= y + y Cos@x yD
Out[1564]= y + y Cos@x yD
Thus, the vector field is conservative. To find its potential u, we integrate F1 =

¶ u
¶ x

 with repsetct to x to get 

In[1565]:= Clear@u, hD
u = Integrate@F1@x, y, zD, xD + h@y, zD

Out[1566]= x y z + h@y, zD + z Sin@x yD
Note that the addition of hHy, zL  is necessary because  the constant of intgeration can depend on y  and z.  We now solve the

equation F2 =
¶ u
¶ y

 for ¶ h
¶ y

.
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In[1567]:= Clear@solD
sol = SolveAD@u, yD � F2@x, y, zD, ¶y h@y, zDE

Out[1568]= 99hH1,0L@y, zD ® 0==
This means that ¶ h

¶ y
= 0 and hence h is a function of z only.   Next, we solve the equation F3 =

¶ u
¶ z

 for ¶ h
¶ z

.

In[1569]:= Clear@sol2D
sol2 = Solve@D@u, zD � F3@x, y, zD, ¶z h@y, zDD

Out[1570]= 99hH0,1L@y, zD ® 0==
Hence ¶ h

¶ z
= 0 and we can take h = 0. Therefore, u = x y z + z sin Hx yL is the potential for the vector field F.

� Exercises 

1. Show that the vector field F = Y y3 - 3 x2 y, 3 xy2 - x3]  is conservative and find its potential. 

2. Show that the vector field F = Zy z +
2 xy

z
, xz +

x2

z
, xy -

x2 y

z2
^  is conservative and find its potential. 

3. Determine whether the vector field F = Yx2, yx + ez, y ez]  is conservative.  If it is, find its potential.

� 16.4.  Parametrized Surfaces and Surface Integrals

Students should read Section 16.4 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

A parametrized surface is a surface whose points are given in the form

GHu, vL = HxHu, vL, yHu, vL, zHu, vLL
where u and v (called parameters) are independent variables used to describe a domain D (called the parameter domain).

The command for plotting parametrized surfaces is ParametricPlot3D.  This command has been discussed in Section 14.1.2 of
this text.

Example  16.7.   Plot  the  parametrized  surface  defined  by  GHu, vL = Hcos u sin v, 4 sin u cos v, cos vL  over  the  domain

D = 8Hu, vL È 0 £ u £ 2 Π, 0 £ v £ 2 Π<.
Solution:
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In[1571]:= ParametricPlot3D@8 Cos@uD Sin@vD, 4 Sin@uD Cos@vD, Cos@vD<,8u, 0, 2 Pi<, 8v, 0, 2 Pi<, ImageSize ® 8250<D

Out[1571]=

-1.0
-0.5

0.0
0.5

1.0

-4

-2

0

2

4

-1.0

-0.5

0.0

0.5

1.0

Example  16.8.   Plot  the  parametrized  surface  defined  by  GHu, vL = Iu cos v, u sin v, 1 - u2M  over  the  domain

D = 8Hu, vL È 0 £ u £ 1, 0 £ v £ 2 Π<.
Solution:

In[1572]:= ParametricPlot3DA9u Cos@vD , u Sin@vD , 1 - u2=, 8u, 0, 1<,8v, 0, 2 Pi<, ColorFunction ® "BlueGreenYellow", ImageSize ® 8250<,
ImagePadding ® 8815, 15<, 815, 15<<E

Out[1572]=

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

NOTE:  On a parametrized  surface  GHu, vL = HxHu, vL, yHu, vL, zHu, vLL,  if  we fix one of the variables,  we get a  curve on the

surface.  The plot following shows the curves corresponding to u = 3 � 4 (in red) and v = 5 Π � 3 (in blue).
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In[1573]:= Clear@plot1, plot2, plot3D
plot1 = ParametricPlot3DA9u Cos@vD , u Sin@vD , 1 - u2=,8u, 0, 1<, 8v, 0, 2 Pi<, ColorFunction ® "BlueGreenYellow"E;
plot2 = ParametricPlot3D@8 3 �4 Cos@vD , 3 �4 Sin@vD , 7 �16<,8v, 0, 2 Pi<, PlotStyle ® 8Thickness@0.01D, Red<D;
plot3 = ParametricPlot3DA9 u Cos@5 Pi �3D , u Sin@5 Pi �3D , 1 - u2=,8u, 0, 1<, PlotStyle ® 8Thickness@0.01D, Blue<E;
Show@plot1, plot2, plot3, PlotRange ® All, ImageSize ® 8250<,
ImagePadding ® 8815, 15<, 815, 15<<D

Out[1577]=

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

Let P = GHu0, v0L be a point on the parametrized surface S.  For fixed v = v0, the tangent vector to the curve GHu, v0L at Hu0, v0L  is
given by 

Tu =
¶G
¶u

 Hu0, v0L
while the tangent vector for  GHu0, vL corresponding to a fixed u = u0 is given by 

Tv =
¶G
¶v

 Hu0, v0L
These two vectors are tangent to the surface S.  Thus, the normal vector n to the tangent plane at GHu0, v0L is given by 

n HPL = n Hu0, v0L = Tu ´ Tv

Example 16.9.  Consider the parametrized surface GHu, vL = I u cos v, u sin v, 1 - v2M.
a) Find Tu, Tv, and n.

b) Find the equation of the tangent plane at H1 � 2, 5 Π � 3L.
c) Plot the tangent plane and surface.

Solution:  Let us define G as a function of u and v in Mathematica. 

In[1578]:= Clear@G, u, vD
G@u_, v_D = 9u Cos@vD, u Sin@vD, 1 - u2=

Out[1579]= 9u Cos@vD, u Sin@vD, 1 - u2=
a) We use Tu for Tu and Tv for Tv. We evaluate these as functions of u and v.
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In[1580]:= Clear@Tu, Tv, nD
Tu@u_, v_D = D@G@u, vD, uD
Tv@u_, v_D = D@G@u, vD, vD
n@u_, v_D = Cross@Tu@u, vD, Tv@u, vDD

Out[1581]= 8Cos@vD, Sin@vD, -2 u<
Out[1582]= 8-u Sin@vD, u Cos@vD, 0<
Out[1583]= 92 u2 Cos@vD, 2 u2 Sin@vD, u Cos@vD2

+ u Sin@vD2=
b) The normal vector to the tangent plane at H1 � 2, 5 Π � 3L is 

In[1584]:= Clear@normalD
normal = n@1 �2, 5 Pi �3D

Out[1585]= :1
4
, -

3

4
,
1

2
>

The tangent plane passes through the point

In[1586]:= Clear@pointD
point = G@1 �2, 5 Pi �3D

Out[1587]= :1
4
, -

3

4
,
3

4
>

Thus, the equation of the tangent plane is given by 

In[1588]:= Clear@tplaneD
tplane = normal.H8x, y, z< - pointL == 0

Out[1589]=
1

4
-
1

4
+ x -

1

4
3

3

4
+ y +

1

2
-
3

4
+ z � 0

which simplifies to 

In[1590]:= Simplify@tplaneD
Out[1590]= 2 x + 4 z � 5 + 2 3 y

c) Here is the plot of the surface and the tangent plane. Observe that we have used ColorFunction and ColorFunctionScaling
options.
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In[1591]:= Clear@plot1, plot2D
plot1 = ParametricPlot3D@G@u, vD, 8u, 0, 1<, 8v, 0, 2 Pi<, ColorFunction ® "BlueGreenYellow"D;
plot2 = ContourPlot3DB2 x + 4 z � 5 + 2 3 y, 8x, -3, 3<, 8y, -3, 3<, 8z, -4, 4<,

ColorFunction ® Function@8x, y, z<, Hue@Mod@z, 1DDD, ColorFunctionScaling ® FalseF;
Show@plot1, plot2, ImageSize ® 8250<, ImagePadding ® 8815, 15<, 815, 15<<D

Out[1594]=

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

NOTE: The area AHSL of a parametrized surface S: GHu, vL = HxHu, vL, yHu, vL, zHu, vLL, where Hu, vL Î D, is given by  

AHSL = Ù ÙD
ÈÈ nHu, vL ÈÈ â u â v 

If f Hx, y, zL is continuous at all points of S, then the surface area of f  over S is given by 

Ù ÙS
f Hx, y, zL â S = Ù ÙD

f HGHu, vLL ÈÈ nHu, vL ÈÈ â u â v

Example 16.10.  Show the following:
a) The area of the cylinder of height h  and radius r is 2 Π rh.

b) The area of the sphere of radius r is 4 Π r2.

Solution: 
a) A parametric equation of the cylinder of height h  and radius r can be given by  

 x = r cos v, y = r sin v, and z = u, where  0 £ v £ 2 Π , 0 £ u £ h.

Thus, the cylinder is given by GHu, vL = Hr cos u, r sin u, vL. 
In[1595]:= Clear@ G, u, v, rD

G@u_, v_D = 8r Cos@vD, r Sin@vD, u<
Out[1596]= 8r Cos@vD, r Sin@vD, u<
Here is a plot of the cylinder with r = 3 and h = 5:
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In[1597]:= r = 3; h = 5;

ParametricPlot3D@G@u, vD, 8u, 0, h<, 8v, 0, 2 Pi<D

Out[1598]=

-2

0

2

-2

0

2

0

2

4

To compute the surface area of the cylinder, we need to compute its normal vector. 

In[1599]:= Clear@Tu, Tv, n, r, hD
Tu@u_, v_D = D@G@u, vD, uD;
Tv@u_, v_D = D@G@u, vD, vD;
n@u_, v_D = Cross@Tu@u, vD, Tv@u, vDD

Out[1602]= 8-r Cos@vD, -r Sin@vD, 0<
Here is a plot of the cylinder with its normal vector for  r = 3 and h = 5:
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In[1603]:= r = 3; h = 5;

Clear@plot1, plot2D
plot1 = ParametricPlot3D@G@u, vD, 8u, 0, h<, 8v, 0, 2 Pi<D;
plot2 = VectorFieldPlot3D@n@u, vD, 8u, 0, h<,8v, -2 Pi, 2 Pi<, 8z, -3, 3<, VectorHeads ® True, PlotPoints ® 15D;
Show@plot1, plot2, ImageSize ® 8250<D
Clear@r, hD

Out[1607]=

-2

0

2

-2

0

2

0

2

4

The surface area is 

In[1609]:= SArea = à
0

hà
0

2 Pi

Norm@n@u, vDD âv âu

Out[1609]= 2 h Π Abs@rD
Since r > 0,  r¤ = r and hence the preceding output is 2 Π r h .

b) A parametric equation of the sphere of radius r is

 x = r cos u sin v, y = r sin u sin v, z = r cos v,

where 0 £ u £ 2 Π and 0 £ v £ Π.  Thus, the sphere is given by GHu, vL = Hr cos u sin v, r sin u sin v, r cos vL. 
In[1610]:= Clear@ G, u, v, rD

G@u_, v_D = 8r Cos@uD Sin@vD, r Sin@uD Sin@vD, r Cos@vD<
Out[1611]= 8r Cos@uD Sin@vD, r Sin@uD Sin@vD, r Cos@vD<
Here is a plot of the sphere with r = 3. 
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In[1612]:= r = 3;

ParametricPlot3D@G@u, vD, 8u, 0, 2 Pi<, 8v, 0, Pi<, ImageSize ® 8250<D

Out[1613]=

-2

0

2

-2

0

2

-2

0

2

To compute the surface area of the sphere, we need to compute its normal vector. 

In[1614]:= Clear@Tu, Tv, n, rD
Tu@u_, v_D = D@G@u, vD, uD;
Tv@u_, v_D = D@G@u, vD, vD;
n@u_, v_D = Cross@Tu@u, vD, Tv@u, vDD

Out[1617]= 9-r2 Cos@uD Sin@vD2, -r2 Sin@uD Sin@vD2, -r2 Cos@uD2 Cos@vD Sin@vD - r2 Cos@vD Sin@uD2 Sin@vD=
Here is a plot of the sphere with its normal vector for  r = 3.  
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In[1618]:= r = 3; h = 5;

Clear@plot1, plot2D
plot1 = ParametricPlot3D@G@u, vD, 8u, 0, 2 Pi<, 8v, 0, h<D;
plot2 = VectorFieldPlot3D@n@u, vD, 8u, -2 Pi, 2 Pi<,8v, 0, h<, 8z, -3, 3<, VectorHeads ® True, PlotPoints ® 10D;
Show@plot1, plot2, ImageSize ® 8250<D
Clear@r, hD

Out[1622]=

-2

0

2

-2

0

2

-2

0

2

The surface area is 

In[1624]:= SArea = à
0

Pià
0

2 Pi

Norm@n@u, vDD âu âv

Out[1624]= 4 Π r Conjugate@rD
For a real number r, the conjugate of r is r and hence the preceding output is 4 Π r2.

Example 16.11.  Consider the parametrized surface S defined by GHu, vL = H u cos v, u sin v, vL, where 0 £ u £ 1, 0 £ v £ 2 Π.

a) Find the surface area of S.

b) Evaluate Ù ÙS
xyz â S.

Solution:
a)

In[1625]:= Clear@ G, u, vD
G@u_, v_D = 8u Cos@vD, u Sin@vD, v<

Out[1626]= 8u Cos@vD, u Sin@vD, v<
In[1627]:= Clear@Tu, Tv, nD

Tu@u_, v_D = D@G@u, vD, uD
Tv@u_, v_D = D@G@u, vD, vD
n@u_, v_D = Cross@Tu@u, vD, Tv@u, vDD

Out[1628]= 8Cos@vD, Sin@vD, 0<
Out[1629]= 8-u Sin@vD, u Cos@vD, 1<
Out[1630]= 9Sin@vD, -Cos@vD, u Cos@vD2

+ u Sin@vD2=
  The surface area AHSL is given by 
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  The surface area AHSL is given by 

In[1631]:= SArea = à
0

1à
0

2 Pi

Norm@n@u, vDD âv âu

Out[1631]= Π J 2 + ArcSinh@1DN
which is approximately equal to  

In[1632]:= N@%D
Out[1632]= 7.2118

b) We define f :

In[1633]:= Clear@fD
f@x_, y_, z_D = x y z

Out[1634]= x y z

The surface integral of f  is

In[1635]:= à
0

1à
0

2 Pi

f@G@u, vD@@1DD, G@u, vD@@2DD, G@u, vD@@3DDD Norm@n@u, vDD âv âu

Out[1635]= -
1

16
Π J3 2 - ArcSinh@1DN

Or numerically,

In[1636]:= N@%D
Out[1636]= -0.659983

�   Exercises 

1. Plot the parametrized surface GHu, vL = Heu sin v, eu cos v, vL over the domain D = 8Hu, vL È -1 £ u £ 1, 0 £ v £ 2 Π<. 
2. Plot the parametrized surface GHu, vL = H3 sin u cos v, sin u sin v, cos v + 3 cos uL over the domain 

D = 8Hu, vL È 0 £ u £ 2 Π, 0 £ v £ 2 Π<.
3. Consider the parametrized surface GHu, vL = He-u cos v, eu sin v, eu cos vL.
a)  Find Tu, Tv, and n.

b)  Find the equation of the tangent plane at H0, Π � 2L.
c)  Plot the tangent plane and surface.

4. Consider the parametrized surface S: GHu, vL = I u - v , 3 u + v, u2 - 2 u v + 6 v2M, where 0 £ u £ 1, 0 £ v £ 1.

a)  Find the surface area of S. (Use NIntegrate for faster integration.)

b)  Evaluate Ù ÙS
I3 x + 2 y2 - z2M â S.

� 16.5.  Surface Integrals of Vector Fields

Students should read Section 16.5 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

An orientation of a surface S is a continuously varying choice of the unit normal vector enHPL at each point of the surface.  Thus,

en is given by either  
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An orientation of a surface S is a continuously varying choice of the unit normal vector enHPL at each point of the surface.  Thus,

en is given by either  

enHPL =
nHPL

ÈÈnHPLÈÈ    or   enHPL = -
nHPL

ÈÈnHPLÈÈ .

If FHx, y, zL is continuous at all points of a parametrized surface S, then the surface integral of F over S is given by 

Ù ÙS
F × â S = Ù ÙS

HF × enL â S,

where en is the unit normal determined by an orientation. The surface integral of F is also called the flux of F across S.

The surface integral of F over a parametrized surface S given by GHu, vL = HxHu, vL, yHu, vL, zHu, vLL, where Hu, vL Î D, is given by 

Ù ÙS
F × â S = Ù ÙS

HF × enL â S = Ù ÙD
FHGHu, vLL × nHu, vL â u â v

Example 16.12.  Find Ù ÙS
F × â S, where FHx, y, zL = Xx z, z , y x\ and S is given by  GHu, vL = Iu - v2, u v, u2 - vM, 0 £ u £ 2, and

1 £ v £ 3.

Solution:

In[1637]:= Clear@F, G, x, y, z, u, vD
F@x_, y_, z_D = 8x z, z, y x<
G@u_, v_D = 9u - v2, u v, u2 - v=

Out[1638]= 8x z, z, x y<
Out[1639]= 9u - v2, u v, u2 - v=
In[1640]:= Clear@Tu, Tv, nD

Tu@u_, v_D = D@G@u, vD, uD
Tv@u_, v_D = D@G@u, vD, vD
n@u_, v_D = Cross@Tu@u, vD, Tv@u, vDD

Out[1641]= 81, v, 2 u<
Out[1642]= 8-2 v, u, -1<
Out[1643]= 9-2 u2 - v, 1 - 4 u v, u + 2 v2=

In[1644]:= Flux = à
0

2à
1

3

F@G@u, vD@@1DD, G@u, vD@@2DD, G@u, vD@@3DDD .n@u, vD âv âu

Out[1644]= -
6928

15

Example 16.13.   Find  Ù ÙS
F × â S,  where  FHx, y, zL = Yx2, z2 , y + x2]  and  S  is  the  upper  hemisphere  x2 + y2 + z2 = 4  with

outward normal orientation.

Solution:   First we find the parametric  equation of the cylinder. This  can be given by x = 2 cos u sin v,  y = 2 sin u sin v,  and

z = 2 cos v, where 0 £ u £ 2 Π and 0 £ v £ Π � 2. 

For the hemisphere to have the outward orientation, we note that n = Tv ´ Tu. With this in mind we compute the flux of F across

S through the following steps.
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In[1645]:= Clear@F, G, x, y, z, u, vD
F@x_, y_, z_D = 9 x2, z2, x2 + y + z3=
G@u_, v_D = 8 2 Cos@uD Sin@vD , 2 Sin@uD Sin@vD , Cos@vD <

Out[1646]= 9x2, z2, x2 + y + z3=
Out[1647]= 82 Cos@uD Sin@vD, 2 Sin@uD Sin@vD, Cos@vD<
In[1648]:= Clear@Tu, Tv, nD

Tu@u_, v_D = D@G@u, vD, uD
Tv@u_, v_D = D@G@u, vD, vD
n@u_, v_D = Cross@Tv@u, vD, Tu@u, vDD

Out[1649]= 8-2 Sin@uD Sin@vD, 2 Cos@uD Sin@vD, 0<
Out[1650]= 82 Cos@uD Cos@vD, 2 Cos@vD Sin@uD, -Sin@vD<
Out[1651]= 92 Cos@uD Sin@vD2, 2 Sin@uD Sin@vD2, 4 Cos@uD2 Cos@vD Sin@vD + 4 Cos@vD Sin@uD2 Sin@vD=

In[1652]:= Flux = à
0

Pi�2à
0

2 Pi

F@G@u, vD@@1DD, G@u, vD@@2DD, G@u, vD@@3DDD .n@u, vD âu âv

Out[1652]=
28 Π

5

�  Exercises 

1. Find Ù ÙS
F × â S, where FHx, y, zL = X ez, z, y x\ and S is given by GHu, vL = Hu v, u - v, uL, 0 £ u £ 2, and -1 £ v £ 1, and 

oriented by n = Tu ´ Tv.

2. Find Ù ÙS
F × â S, where FHx, y, zL = X z, x , y \ and S is the portion of the ellipsoid  x2

16
+

y2

9
+

z2

4
= 1 for which x £ 0,   y £ 0, 

and z £ 0 with outward normal orientation.

3. Let S be given by GHu, vL = II1 + v cos 
u
2

M cos u, I1 + v cos 
u
2

M sin u , v sin u
2

M, 0 £ u £ 2 Π, and -1
2

£ v £
1
2

.

a) Plot the surface S. (S is an example of a Mobius strip.)

b) Find the surface area of S.

c) Evaluate Ù ÙS
Ix2 + 2 y2 + 3 z2M â S.

d) Find the intersection points of S and the xy-plane.

e) For each of the points on the intersection of S and the xy-plane, find the normal vector n.

f) Show that n varies continuously but that nH2 Π, 0L = -nHu, 0L. (This shows that S is not orientable and hence it is impossible to 

integrate a vector field over S.) 

� 16.6.  Fundamental Theorems of Vector Analysis

Students should read Sections 17.1-17.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

In order to perform the operations of curl  and divergence on vector fields discussed in this section using Mathematica,  it is

necessary to first load the VectorAnalysis package:

In[1653]:= Needs@"VectorAnalysis`"D
The Fundamental Theorem of Calculus for functions of a single variable states that the integral of a function over an interval
(domain) can be calculated  as the difference  of its anti-derivative at the endpoints (boundary) of the interval.   This integral
relationship between domain and boundary can be generalized to vector fields involving the operations of curl and divergence
and is described by the following three theorems:
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The Fundamental Theorem of Calculus for functions of a single variable states that the integral of a function over an interval
(domain) can be calculated  as the difference  of its anti-derivative at the endpoints (boundary) of the interval.   This integral
relationship between domain and boundary can be generalized to vector fields involving the operations of curl and divergence
and is described by the following three theorems:

� 16.6.1.  Green's Theorem

Let  FHx, yL = XPHx, yL, QHx, yL\ a vector field continuous on an oriented curve C. Then the line itegral of F along C is denoted by 

ÙC
FHx, y, zL × â s = ÙC

P â x + Q â y.

If c HtL = XxHtL, yHtL, zHtL\ is the vector equation of the curve C, then

�C
P â x + Q â y = Ùa

bJPHxHtL, yHtLL d x
d t

+ QHxHtL, yHtLL d y

d t
N d t.

Green's Theorem states that if C is a simple closed curve oriented counterclockwise and D is the region enclosed and if P and Q

are differentiable and have continuous first partial derivatives, then  

�C
P â x + Q â y = Ù ÙD

J ¶ Q

¶ x
-

¶ P
¶ y

N â A .

Example 16.14. Compute the line integral �C
e2 x+y â x + e-y â y, where C is the boundary of the square with vertices H0, 0L, H1, 0L,

H1, 1L, H1, 0L oriented counterclockwise.

Solution: We will use Green's Theorem.  Thus, we need to verify that the hypotheses of Green's Theorem hold. To this end we
define the function P and Q and compute their partial derivatives.   

In[1654]:= Clear@x, y, P, QD
P@x_, y_D = E2 x+y

Q@x_, y_D = E-y

Out[1655]= ã2 x+y

Out[1656]= ã-y

In[1657]:= D@P@x, yD, xD
D@P@x, yD, yD
D@Q@x, yD, xD
D@Q@x, yD, yD

Out[1657]= 2 ã2 x+y

Out[1658]= ã2 x+y

Out[1659]= 0

Out[1660]= -ã-y

The partial  derivatives are  continuous inside the square  and the curve is oriented counterclockwise. Thus,  the hypotheses of
Green's Theorem are satisfied.  Note that the region D enclosed by C is given by 0 £ x £ 1 and 0 £ y £ 1.

In[1661]:= à
0

1à
0

1HD@Q@x, yD, xD - D@P@x, yD, yDL ây âx

Out[1661]= -
1

2
H-1 + ãL2 H1 + ãL
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In[1662]:= N@%D
Out[1662]= -5.4891

NOTE: If we were to solve this using the definition of line integral as discussed in Chapter 16 of this text, we would then need to
consider four pieces of parametrization of C and then sum the four integrals.   Towards this end, let us use C1 for the lower edge,

C2 for the right edge, C3 for the top edge, and C4 for the left edge of the square.  Here are the parametrizations followed by their

line integrals.

In[1663]:= Clear@x1, x2, x3, x4, y1, y2, y3, y4, t, F, c1, c2, c3, c4D
F@x_, y_D = 8P@x, yD, Q@x, yD <
x1@t_D = t

y1@t_D = 0

c1@t_D = 8x1@tD, y1@tD<
x2@t_D = 1

y2@t_D = t

c2@t_D = 8x2@tD, y2@tD<
x3@t_D = 1 - t

y3@t_D = 1

c3@t_D = 8x3@tD, y3@tD<
x4@t_D = 0

y4@t_D = 1 - t

c4@t_D = 8x4@tD, y4@tD<
Out[1664]= 9ã2 x+y, ã-y=
Out[1665]= t

Out[1666]= 0

Out[1667]= 8t, 0<
Out[1668]= 1

Out[1669]= t

Out[1670]= 81, t<
Out[1671]= 1 - t

Out[1672]= 1

Out[1673]= 81 - t, 1<
Out[1674]= 0

Out[1675]= 1 - t

Out[1676]= 80, 1 - t<
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In[1677]:= à
0

1

F@x1@tD, y1@tDD.c1'@tD ât + à
0

1

F@x2@tD, y2@tDD.c2'@tD ât +

à
0

1

F@x3@tD, y3@tDD.c3'@tD ât + à
0

1

F@x4@tD, y4@tDD.c4'@tD ât

Out[1677]= -1 +
1

ã
+

-1 + ã

ã
+
1

2
I-1 + ã2M -

1

2
ã I-1 + ã2M

In[1678]:= N@%D
Out[1678]= -5.4891

� 16.6.2.  Stokes' Theorem

Let FHx, y, zL = XF1, F2, F3\ be a vector field.  The curl of F, denoted by curlHFL or Ñ ´ F, is defined by 

curlHFL = Ñ ´ F =

i j k
¶

¶x
¶

¶y
¶

¶z

F1 F2 F3

= Z ¶F3

¶y
-

¶F2

¶z
,

¶F1

¶z
-

¶F3

¶x
,

¶F2

¶x
-

¶F1

¶y
^

Here we are using the "del" or (nabla) symbol Ñ to denote the vector operator Ñ = Z ¶

¶x
, ¶

¶y
, ¶

¶z
^.

The Mathematica  command for computing the curl of a vector field F is Curl[F,coordsys], where coordsys  is the coordinate
system of the vector field.  This is demonstrated in the next example.

Stokes's Theorem states that if  FHx, y, zL a vector field with continuous partial derivatives and if S  is an oriented surface S with

boundary ¶S,  then 

�¶S
F × â S = Ù ÙS

curlHFL × â S.

If S is closed, then it has no boundary and hence both integrals are equal to 0.

Recall that if the surface S is given by GHu, vL = HxHu, vL, yHu, vL, zHu, vLL, where Hu, vL Î D, then ÙS
curlHFL × â S is given by 

Ù ÙS
curlHFL × â S = Ù ÙD

curlHFL HGHu, vLL × nHu, vL â u â v .

Example 16.15.  Find the curl of the vector field FHx, y, zL = Y x sin Hy zL, ex �y z , y x2].
Solution: We use the Curl command:

In[1679]:= Clear@F, F1, F2, F3, x, y, zD
F1 = x Sin@y zD
F2 = Ex�y z

F3 = x 2 y

F = 8F1, F2, F3<
Out[1680]= x Sin@y zD
Out[1681]= ãx�y z
Out[1682]= x2 y

Out[1683]= 9x Sin@y zD, ãx�y z, x2 y=
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In[1684]:= Curl@F, Cartesian@x, y, zDD
Out[1684]= :-ãx�y + x2, -2 x y + x y Cos@y zD, ãx�y z

y
- x z Cos@y zD>

NOTE: We obtain the same answer for the curl of F using the explicit formula:

In[1685]:= curl = 9¶y F3 - ¶zF2, ¶zF1 - ¶xF3, ¶xF2 - ¶yF1=
Out[1685]= :-ãx�y + x2, -2 x y + x y Cos@y zD, ãx�y z

y
- x z Cos@y zD>

Or equivalently,

In[1686]:= CurlF = 8D@F3, yD - D@F2, zD, D@F3, xD - D@F1, zD, D@F2, xD - D@F1, yD<
Out[1686]= :-ãx�y + x2, 2 x y - x y Cos@y zD, ãx�y z

y
- x z Cos@y zD>

Example 16.16.   Let f Hx, y, zL  be  a  function of three  variables  with continuous first  and second partial  derivatives and let

F = Ñ f  be the gradient of f .  Find the curl of the vector field F.  

Solution: 

In[1687]:= Clear@f, F1, F2, F3, x, y, zD
F1 = D@f@x, y, zD, xD
F2 = D@f@x, y, zD, yD
F3 = D@f@x, y, zD, zD
F = 8F1, F2, F3<

Out[1688]= fH1,0,0L@x, y, zD
Out[1689]= fH0,1,0L@x, y, zD
Out[1690]= fH0,0,1L@x, y, zD
Out[1691]= 9fH1,0,0L@x, y, zD, fH0,1,0L@x, y, zD, fH0,0,1L@x, y, zD=
Then the curl of F is 

In[1692]:= Curl@F, Cartesian@x, y, zDD
Out[1692]= 80, 0, 0<
To see why the curl is zero, let us examine each partial derivative used in computing of the curl of F.  

In[1693]:= D@F3, yD
D@F2, zD

Out[1693]= fH0,1,1L@x, y, zD
Out[1694]= fH0,1,1L@x, y, zD
NOTE: Here fH0,1,1L@x, y, zD stands for fyz. Thus, the two partial derivatives that appear in the x-component of the curl of F are

equal and hence their difference is zero. Similarly, we have 
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In[1695]:= D@F3, xD
D@F1, zD

Out[1695]= fH1,0,1L@x, y, zD
Out[1696]= fH1,0,1L@x, y, zD
and 

In[1697]:= D@F2, xD
D@F1, yD

Out[1697]= fH1,1,0L@x, y, zD
Out[1698]= fH1,1,0L@x, y, zD
Example 16.17.  Find �¶S

F × â S, where FHx, y, zL = Y x y z, z + 3 x - 3 y , y 2 x] and S is the upper hemisphere of radius 4.

Solution: Note that ¶S is a circle of radius 4 lying on the xy-plane. Hence, ¶S can be parametrized by 

 x = 4 cos t, y = 4 sin t, z = 0, where  0 £ t £ 2 Π.  

  Using the line integral definition, we have 

In[1699]:= Clear@F, x, y, z, t, c, curlFD
F@x_, y_, z_D = 9x y z, z + 3 x - 3 y, y2 x=
x@t_D = 4 Cos@tD
y@t_D = 4 Sin@tD
z@t_D = 0

c@t_D = 8x@tD, y@tD, z@tD<
Out[1700]= 9x y z, 3 x - 3 y + z, x y2=
Out[1701]= 4 Cos@tD
Out[1702]= 4 Sin@tD
Out[1703]= 0

Out[1704]= 84 Cos@tD, 4 Sin@tD, 0<

In[1705]:= à
0

2 Pi

F@x@tD, y@tD, z@tDD.c'@tD ât

Out[1705]= 48 Π

Next, we use Stokes' Theorem to obtain the same answer via the corresponding surface  integral.  The parametrization of the
upper hemisphere of radius 4 is given by GHu, vL = 8xHu, vL, yHu, vL, zHu, vL<, where

 x = 4 cos u sin v,  y = 4 sin u sin v, and z = 4 cos v,    where    0 £ u £ 2 Π, 0 £ v £ Π � 2.

We now compute the normal of the upper hemisphere.
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In[1706]:= Clear@G, u, v, Tu, Tv, nD
G@u_, v_D := 8 4 Cos@uD Sin@vD, 4 Sin@uD Sin@vD, 4 Cos@vD <
Tu@u_, v_D := D@G@u, vD, uD
Tv@u_, v_D := D@G@u, vD, vD
n@u_, v_D = Cross@Tv@u, vD, Tu@u, vDD

Out[1710]= 916 Cos@uD Sin@vD2, 16 Sin@uD Sin@vD2, 16 Cos@uD2 Cos@vD Sin@vD + 16 Cos@vD Sin@uD2 Sin@vD=
The curl of F is 

In[1711]:= curlF@x_, y_, z_D = Curl@F@x, y, zD, Cartesian@x, y, zDD
Out[1711]= 9-1 + 2 x y, x y - y2, 3 - x z=
The surface integral is given by 

In[1712]:= à
0

Pi�2à
0

2 Pi

curlF@G@u, vD@@1DD, G@u, vD@@2DD, G@u, vD@@3DDD .n@u, vD âu âv

Out[1712]= 48 Π

Example 16.18.  Find the flux of the curl of the vector field FHx, y, zL = Y x2, z2 , y + x2] across S, where S  is the part of the

cone z2 = x2 + y2 for which 1 £ z £ 4 with outward normal orientation.

Solution:   First we find the parametric  equation of the cone. This can be given by x = u cos v , y = u sin v, and z = u, where

0 £ v £ 2 Π and 1 £ u £ 4. 

For the cone to have the outward orientation, we note that n = Tv ´ Tu.  With this in mind we compute n through the following

steps.

In[1713]:= Clear@F, G, u, v, Tu, Tv, nD
F@x_, y_, z_D = 9x2 + y2, x + z2, 0=
G@u_, v_D := 8 u Cos@vD , u Sin@vD , u <
Tu@u_, v_D := D@G@u, vD, uD
Tv@u_, v_D := D@G@u, vD, vD
n@u_, v_D = Cross@Tv@u, vD, Tu@u, vDD

Out[1714]= 9x2 + y2, x + z2, 0=
Out[1718]= 9u Cos@vD, u Sin@vD, -u Cos@vD2

- u Sin@vD2=
 We now compute the flux of curl HFL across S through the following steps.

In[1719]:= curlF@x_, y_, z_D = Curl@F@x, y, zD, Cartesian@x, y, zDD
Out[1719]= 8-2 z, 0, 1 - 2 y<

In[1720]:= Flux = à
1

4à
0

2 Pi

curlF@G@u, vD@@1DD, G@u, vD@@2DD, G@u, vD@@3DDD.n@u, vD âv âu

Out[1720]= -15 Π

� 16.6.3.  Divergence Theorem

Let FHx, y, zL = XF1, F2, F3\ be a vector field.  The divergence of F, denoted by divHFL or Ñ × F, is defined by 

divHFL = Ñ × F =
¶F1

¶x
+

¶F2

¶ y
+

¶F3

¶z
,

where Ñ = Z ¶

¶x
, ¶

¶y
, ¶

¶z
^.
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where Ñ = Z ¶

¶x
, ¶

¶y
, ¶

¶z
^.

The Mathematica command for computing the divergence of a vector field F is Div[F,coordsys], where coordsys is the coordi-
nate system of the vector field.  This is demonstrated in the next example.

The  Divergence  Theorem  states the following: let W  be a region in R3  whose boundary ¶W  is a piecewise smooth surface,

oriented so that the normal vectors to ¶W  point outside of W , and FHx, y, zL be a vector field with continuous partial derivatives

whose domain contains W .  Then

Ù Ù¶W
F × â S = Ù Ù ÙW

divHFL â V

Example 16.19.  Find the divergence of the vector field FHx, y, zL = Y x sin HyzL, ex �y z , yx2].
Solution: 

In[1721]:= Clear@F1, F2, F3, x, y, zD
F1 = x Sin@y zD
F2 = Ex�y z

F3 = x 2 y

F = 8F1, F2, F3<
Out[1722]= x Sin@y zD
Out[1723]= ãx�y z
Out[1724]= x2 y

Out[1725]= 9x Sin@y zD, ãx�y z, x2 y=
Then the divergence of F is 

In[1726]:= Div@F, Cartesian@x, y, zDD
Out[1726]= -

ãx�y x z
y2

+ Sin@y zD

NOTE: Again we obtain the same answer for the divergence of F using the explicit formula:

In[1727]:= D@F1, xD + D@F2, yD + D@F3, zD
Out[1727]= -

ãx�y x z
y2

+ Sin@y zD

Example 16.20.  Find Ù ÙS
F × â S, where FHx, y, zL = Y x , y2, y + z] and S = ¶W  is the boundary of the region W contained in the

cylinder  x2 + y2 = 4 between the plane z = x and z = 8.

Solution: If S is the boundary of the solid W , then W  is given by

W = :Hx, y, zL : -2 £ x £ 2, - 4 - x2 £ y £ 4 - x2 , x £ z £ 8>

352 Mathematica for Rogawski's Calculus



In[1728]:= Clear@F, divF, x, y, zD
F@x_, y_, z_D = 9x, y2, y + z=
divF = Div@F@x, y, zD, Cartesian@x, y, zDD

Out[1729]= 9x, y2, y + z=
Out[1730]= 2 + 2 y

By the Divergence Theorem, we see that Ù ÙS
F × â S is given by 

In[1731]:= à
-2

2à
- 4-x2

4-x2 à
x

8

divF âz ây âx

Out[1731]= 64 Π

�  Exercises 

1. Compute the line integral �C
y2  sin x â x + x y â y, where C is the boundary of the triangle with vertices H0, 0L, H1, 0L, H1, 1L, 

oriented counterclockwise.

2. Find the curl of the vector field FHx, y, zL = Y ln Ix2 + y2 + z2M, x � z , ex sin Hy zL].
3. Find �¶S

F × â S, where FHx, y, zL = YtanHx y zL, ex - y z, secIy 2 xM] and S is the upper hemisphere of radius 4.

4. Find the flux of the curl of the vector field

FHx, y, zL = Y x3 e - 3 x y + z3, 2 z3 - x z2 + y4, 6 y + 2 z3 x2]
across S, where S is the part of the paraboloid z = x2 + y2 for which z £ 9 with outward normal orientation. 

 5. Find Ù ÙS
F × â S, where FHx, y, zL = Y x ez , y2, y + z x] and S = ¶W  is the boundary of the region W bounded by the plane 

3 x + 4 y + 5 z = 15 and the coordinate planes in the first octant.
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Appendices

� A. Traditional Notation versus Mathematica Notation

Traditional Mathematica 

f HxL = x2  f = x^2  or  f @x_D := x^2

f H1L f �. x -> 1 or  f @1D
f HxL Sqrt[ f @xD]

È f HxL È Abs[ f @xD]
lim
x®a

 f HxL Limit@ f @xD, x -> aD
f ' HxL f ' @xD or D@ f @xD, xD

Ù f HxL â x Integrate@ f @xD, xD
Ùa

b
f HxL â x Integrate@ f @xD, 8x, a, b<D or NIntegrate@ f @xD, 8x, a, b<D

Plot f HxL on @a, bD Plot@ f @xD, 8x, a, b<D
Solve f HxL = gHxL for x Solve@ f @xD == g@xD, xD
Π Pi or Π (from palette menu)

e (Euler number) E or ã (from palette menu)

¥ Infinity or ¥ (from palette menu)

sin x Sin@xD
arcsin x or sin-1 x ArcSin@xD
ex E^x or Exp@xD or ãx 

ln x Log@xD
log a x Log@x, aD

� B. Useful Programming and Editing Commands

Command Description 

SHIFT+ENTER Evaluates input

% Refers to previous output

%% Refers to second previous output

%k Refers to output line k



%k Refers to output line k

CTRL+L Reproduces the previous input

CTRL+SHIFT+L Reproduces the previous output

?Plot Lists all Mathematica commands containing the expression Plot
         (or any other specified command)

� C. Formatting Cells in a Notebook

Mathematica organizes a notebook in terms of data boxes called cells.  The size of a cell is indicated by the corresponding size of
the right bracket symbol attached to the right-hand margin of each cell.  A new cell can always be created by moving the cursor
to any position between cells and begin typing.  To edit a cell, just move the cursor to the desired position within that cell.

Each cell can be formatted to perform a specified function.  By default, a new cell is always formatted as an input cell, which are
used to evaluate Mathematica expressions.  Mathematica outputs are contained within output cells, naturally.  Other cell formats
include title, section, subsection, text, formula, etc.  The format of a cell is indicated by the left-most box on the toolbar. To
change its format, first highlight the cell by clicking on the right bracket symbol attached to it.  Then click on the indicator box
and choose the desired format.

� D. Saving and Printing a Notebook

Saving or printing a notebook can be accomplished by going to the File menu and selecting the desired option.  To print a  portion
of a notebook that has been highlighted, choose the Print Selection option instead.
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